Qt convert to double without added precision - qt

There is a lot of questions on rounding that i have looked at but tey all involve rounding a number to its nearest whole, or to a certain number of points. What i want to do is simply convert a string to a double without any added digits on the right of the decimal point. Here is my code and result as of now:
Convert the string 0.78240 to a double, which should be 0.78240 but instead is 0.78239999999999998 when i look at it in the debugger.
The string value is a QString and is converted to a double simply using the toDouble() function.
I don't understand how or where these extra numbers are coming from, but any help on converting from QString to double directly would be greatly appreciated!

The extra digits are there because you are converting a decimal real number to binary floating point.
Unlike real numbers, floating-point representations have infinite resolution and finite range, and also binary floating-point values do not exactly coincide with all (or even most) decimal real values.
The simple fact is that binary floating-point cannot exactly represent 0.7824010, your debugger is showing you all the available digits after round-tripping the binary value back to decimal.
It is not necessarily a problem, because the error is infinitesimally small compared to the magnitude of the value, and in any event the original 0.78240 value is no doubt some approximation of a real-world value - they are both approximations, just binary or decimal approximations.
The issue is normally dealt with at presentation rather then representation. For example, in this case, unlike your debugger which necessarily shows the full precision of the internal representation (you would not want it any other way in a debugger), the standard means of presenting such a value will limit itself to a small, or caller defined number of decimal places and this value presented to even 15 decimal places will be correctly presented as 0.782400000000000 (by default standard output methods will show just 0.7824).
Any double value presented at 15 significant decimal figures or fewer will display as expected, for a float this reduces to just 6 significant figures. I imagine your debugger is displaying more digits that can accurately be presented in an IEEE 754 64-bit FP (double) value because internally the x86 FPU uses an 80bit representation.
You are quite literally sweating the small stuff.
One place where this difference in representation does matter is in financial applications. For those, it is common to use decimal floating point and normally to many more significant figures than double can provide. However decimal floating-point is not normally implemented in hardware, so is much slower. Moreover decimal floating point is not directly supported in most programming languages, and requires library support. C# is an example of a language with built-in support for decimal floating-point; its decimal type is good for 28 significant figures.

Related

Is there a way to display more than 25 digits when outputting in Scilab?

I'm working with Scilab 5.5.2 and when using the format command I can display at most 25 digits of a number. Is there a way to somehow display more than this number?
Scilab operates with double precision floating point numbers; it does not support variable-precision arithmetics. Double precision means relative error of %eps, which is 2-52, approximately 2e-16.
This means you can't even get 25 correct decimal digits: when using format(25) you get garbage at the end. For example,
format(25); sqrt(3)
returns 1.732050807568877 1931766
I separated the last 7 digits here because they are wrong; the correct value of sqrt(3) begins with
1.732050807568877 2935274
Of course, if you don't mind the digits being wrong, you can have as many as you want:
strcat([sprintf('%.15f', sqrt(3)), "1111111111111111111111111111111"])
returns 1.7320508075688771111111111111111111111111111111.
But if you want to have arbitrary exceeding of real numbers, Scilab is not the right tool for the job (correction: phuclv pointed out Multiple Precision Arithmetic Toolbox which might work for you). Out of free software packages, mpmath Python library implements arbitrary precision of real numbers: it can be used directly or via Sagemath or SymPy. Commercial packages (Matlab, Maple, Mathematica) support variable precision too.
As for Scilab, I recommend using formatted print commands such as fprintf or sprintf, because they actually care about the output being meaningful. Example: printf('%.25f', sqrt(3)) returns
1.7320508075688772000000000
with garbage replaced by zeros. The last nonzero digit is still off by 1, but at least it's not meaningless.
Scilab uses double-precision floating-point type which has 53 bits of mantissa and can only be precise to ~15-17 digits. There's no reason printing digits beyond that.
If 25 digits of accuracy is needed then you can use a quadruple precision or double-double arithmetic library like ATOMS: Multiple Precision Arithmetic Toolbox details
If you need even more precision then the only way is using an arbitrary precision library like mpscilab, Xnum, etc...

SQLite returns incorrect arthimetic value

I'm working on a query that adds the following numbers and it's returning a puzzling result.
>SELECT ((36.7300 - 20.4300) - 16.3) AS Amount;
>-3.5527136788005e-15
I've tried everything I can think of like casting the values to different data types, but I'm still getting the same result.
When I separate out the steps it returns the right answer, but I can't get the two arthetic steps to work together for some reason.
>SELECT 36.7300 - 20.4300 AS Amount;
>16.3
>SELECT 16.3 - 16.3 AS Amount;
>0.0
This happens because SQLite uses binary arithmetic instead of base-10 arithmetic.
From the SQLite FAQ:
(16) Why does ROUND(9.95,1) return 9.9 instead of 10.0? Shouldn't 9.95 round up?
SQLite uses binary arithmetic and in binary, there is no way to write
9.95 in a finite number of bits. The closest to you can get to 9.95 in a 64-bit IEEE float (which is what SQLite uses) is
9.949999999999999289457264239899814128875732421875. So when you type "9.95", SQLite really understands the number to be the much longer
value shown above. And that value rounds down.
This kind of problem comes up all the time when dealing with floating
point binary numbers. The general rule to remember is that most
fractional numbers that have a finite representation in decimal (a.k.a
"base-10") do not have a finite representation in binary (a.k.a
"base-2"). And so they are approximated using the closest binary
number available. That approximation is usually very close, but it
will be slightly off and in some cases can cause your results to be a
little different from what you might expect.
There is no direct solution for this, but there are several workarounds to face this problem:
Store your amount without decimals and compute INTEGER operations
Returning your REALs and do your math out of the database
Round your result out of the database
It depends on what are you going to do with your data. For example if you are managing currency you can store your amount in cents instead of dollars, but if you are storing scientific data this solution is far from valid and you may need to retrieve the operands and compute the results out of SQLite.

Truncating 64-bit IEEE doubles to 61-bits in a safe fashion

I am developing a programming language, September, which uses a tagged variant type as its main value type. 3 bits are used for the type (integer, string, object, exception, etc.), and 61 bits are used for the actual value (the actual integer, pointer to the object, etc.).
Soon, it will be time to add a float type to the language. I almost have the space for a 64-bit double, so I wanted to make use of doubles for calculations internally. Since I'm actually 3 bits short for storage, I would have to round the doubles off after each calculation - essentially resulting in a 61-bit double with a mantissa or exponent shorter by 3 bits.
But! I know floating point is fraught with peril and doing things which sound sensible on paper can produce disastrous results with FP math, so I have an open-ended question to the experts out there:
Is this approach viable at all? Will I run into serious error-accumulation problems in long-running calculations by rounding at each step? Is there some specific way in which I could do the rounding in order to avoid that? Are there any special values that I won't be able to treat that way (subnormals come to mind)?
Ideally, I would like my floats to be as well-behaved as a native 61-bit double would be.
I would recommend borrowing bits from the exponent field of the double-precision format. This is the method described in this article (that you would modify to borrow 3 bits from the exponent instead of 1). With this approach, all computations that do not use very large or very small intermediate results behave exactly as the original double-precision computation would. Even computations that run into the subnormal region of the new format behave exactly as they would if a 1+8+52 61-bit format had been standardized by IEEE.
By contrast, naively borrowing any number of bits at all from the significand introduces many double-rounding problems, all the more frequent that you are rounding from a 52-bit significand to a significand with only a few bits removed. Borrowing one bit from the significand as you suggest in an edit to your question would be the worst, with half the operations statistically producing double-rounded results that are different from what the ideal “native 61-bit double” would have produced. This means that instead of being accurate to 0.5ULP, the basic operations would be accurate to 3/4ULP, a dramatic loss of accuracy that would derail many of the existing, finely-designed numerical algorithms that expect 0.5ULP.
Three is a significant number of bits to borrow from an exponent that only has 11, though, and you could also consider using the single-precision 32-bit format in your language (calling the single-precision operations from the host).
Lastly, I give visibility here to another solution found by Jakub: borrow the three bits from the significand, and simulate round-to-odd for the intermediate double-precision computation before converting to the nearest number in 49-explicit-significand-bit, 11-exponent-bit format. If this way is chosen, it may useful to remark that the rounding itself to 49 bits of significand can be achieved with the following operations:
if ((repr & 7) == 4)
repr += (repr & 8) >> 1); /* midpoint case */
else
repr += 4;
repr &= ~(uint64_t)7; /* round to the nearest */
Despite working on the integer having the same representation as the double being considered, the above snippet works even if the number goes from normal to subnormal, from subnormal to normal, or from normal to infinite. You will of course want to set a tag in the three bits that have been freed as above. To recover a standard double-precision number from its unboxed representation, simply clear the tag with repr &= ~(uint64_t)7;.
This is a summary of my own research and information from the excellent answer by #Pascal Cuoq.
There are two places where we can truncate the 3-bits we need: the exponent, and the mantissa (significand). Both approaches run into problems which have to be explicitly handled in order for the calculations to behave as if we used a hypothetical native 61-bit IEEE format.
Truncating the mantissa
We shorten the mantissa by 3 bits, resulting in a 1s+11e+49m format. When we do that, performing calculations in double-precision and then rounding after each computation exposes us to double rounding problems. Fortunately, double rounding can be avoided by using a special rounding mode (round-to-odd) for the intermediate computations. There is an academic paper describing the approach and proving its correctness for all doubles - as long as we truncate at least 2 bits.
Portable implementation in C99 is straightforward. Since round-to-odd is not one of the available rounding modes, we emulate it by using fesetround(FE_TOWARD_ZERO), and then setting the last bit if the FE_INEXACT exception occurs. After computing the final double this way, we simply round to nearest for storage.
The format of the resulting float loses about 1 significant (decimal) digit compared to a full 64-bit double (from 15-17 digits to 14-16).
Truncating the exponent
We take 3 bits from the exponent, resulting in a 1s+8e+52m format. This approach (applied to a hypothetical introduction of 63-bit floats in OCaml) is described in an article. Since we reduce the range, we have to handle out-of-range exponents on both the positive side (by simply 'rounding' them to infinity) and the negative side. Doing this correctly on the negative side requires biasing the inputs to any operation in order to ensure that we get subnormals in the 64-bit computation whenever the 61-bit result needs to be subnormal. This has to be done a bit differently for each operation, since what matters is not whether the operands are subnormal, but whether we expect the result to be (in 61-bit).
The resulting format has significantly reduced range since we borrow a whopping 3 out of 11 bits of the exponent. The range goes down from 10-308...10308 to about 10-38 to 1038. Seems OK for computation, but we still lose a lot.
Comparison
Both approaches yield a well-behaved 61-bit float. I'm personally leaning towards truncating the mantissa, for three reasons:
the "fix-up" operations for round-to-odd are simpler, do not differ from operation to operation, and can be done after the computation
there is a proof of mathematical correctness of this approach
giving up one significant digit seems less impactful than giving up a big chunk of the double's range
Still, for some uses, truncating the exponent might be more attractive (especially if we care more about precision than range).

Integer divide by Zero and Float (Real no.) divide by Zero

If I run following line of code, I get DIVIDE BY ZERO error
1. System.out.println(5/0);
which is the expected behavior.
Now I run the below line of code
2. System.out.println(5/0F);
here there is no DIVIDE BY ZERO error, rather it shows INFINITY
In the first line I am dividing two integers and in the second two real numbers.
Why does dividing by zero for integers gives DIVIDE BY ZERO error while in the case of real numbers it gives INFINITY
I am sure it is not specific to any programming language.
(EDIT: The question has been changed a bit - it specifically referred to Java at one point.)
The integer types in Java don't have representations of infinity, "not a number" values etc - whereas IEEE-754 floating point types such as float and double do. It's as simple as that, really. It's not really a "real" vs "integer" difference - for example, BigDecimal represents real numbers too, but it doesn't have a representation of infinity either.
EDIT: Just to be clear, this is language/platform specific, in that you could create your own language/platform which worked differently. However, the underlying CPUs typically work the same way - so you'll find that many, many languages behave this way.
EDIT: In terms of motivation, bear in mind that for the infinity case in particular, there are ways of getting to infinity without dividing by zero - such as dividing by a very, very small floating point number. In the case of integers, there's obviously nothing between zero and one.
Also bear in mind that the cases in which integers (or decimal floating point types) are used typically don't need to concept of infinity, or "not a number" results - whereas in scientific applications (where float/double are more typically useful), "infinity" (or at least, "a number which is too large to sensibly represent") is still a potentially valid result.
This is specific to one programming language or a family of languages. Not all languages allow integers and floats to be used in the same expression. Not all languages have both types (for example, ECMAScript implementations like JavaScript have no notion of an integer type externally). Not all languages have syntax like this to convert values inline.
However, there is an intrinsic difference between integer arithmetic and floating-point arithmetic. In integer arithmetic, you must define that division by zero is an error, because there are no values to represent the result. In floating-point arithmetic, specifically that defined in IEEE-754, there are additional values (combinations of sign bit, exponent and mantissa) for the mathematical concept of infinity and meta-concepts like NaN (not a number).
So we can assume that the / operator in this programming language is generic, that it performs integer division if both operands are of the language's integer type; and that it performs floating-point division if at least one of the operands is of a float type of the language, whereas the other operands would be implicitly converted to that float type for the purpose of the operation.
In real-number math, division of a number by a number close to zero is equivalent to multiplying the first number by a number whose absolute is very large (x / (1 / y) = x * y). So it is reasonable that the result of dividing by zero should be (defined as) infinity as the precision of the floating-point value would be exceeded.
Implementation details were to be found in that programming language's specification.

How to get around some rounding errors?

I have a method that deals with some geographic coordinates in .NET, and I have a struct that stores a coordinate pair such that if 256 is passed in for one of the coordinates, it becomes 0. However, in one particular instance a value of approximately 255.99999998 is calculated, and thus stored in the struct. When it's printed in ToString(), it becomes 256, which should not happen - 256 should be 0. I wouldn't mind if it printed 255.9999998 but the fact that it prints 256 when the debugger shows 255.99999998 is a problem. Having it both store and display 0 would be even better.
Specifically there's an issue with comparison. 255.99999998 is sufficiently close to 256 such that it should equal it. What should I do when comparing doubles? use some sort of epsilon value?
EDIT: Specifically, my problem is that I take a value, perform some calculations, then perform the opposite calculations on that number, and I need to get back the original value exactly.
This sounds like a problem with how the number is printed, not how it is stored. A double has about 15 significant figures, so it can tell 255.99999998 from 256 with precision to spare.
You could use the epsilon approach, but the epsilon is typically a fudge to get around the fact that floating-point arithmetic is lossy.
You might consider avoiding binary floating-points altogether and use a nice Rational class.
The calculation above was probably destined to be 256 if you were doing lossless arithmetic as you would get with a Rational type.
Rational types can go by the name of Ratio or Fraction class, and are fairly simple to write
Here's one example.
Here's another
Edit....
To understand your problem consider that when the decimal value 0.01 is converted to a binary representation it cannot be stored exactly in finite memory. The Hexidecimal representation for this value is 0.028F5C28F5C where the "28F5C" repeats infinitely. So even before doing any calculations, you loose exactness just by storing 0.01 in binary format.
Rational and Decimal classes are used to overcome this problem, albeit with a performance cost. Rational types avoid this problem by storing a numerator and a denominator to represent your value. Decimal type use a binary encoded decimal format, which can be lossy in division, but can store common decimal values exactly.
For your purpose I still suggest a Rational type.
You can choose format strings which should let you display as much of the number as you like.
The usual way to compare doubles for equality is to subtract them and see if the absolute value is less than some predefined epsilon, maybe 0.000001.
You have to decide yourself on a threshold under which two values are equal. This amounts to using so-called fixed point numbers (as opposed to floating point). Then, you have to perform the round up manually.
I would go with some unsigned type with known size (eg. uint32 or uint64 if they're available, I don't know .NET) and treat it as a fixed point number type mod 256.
Eg.
typedef uint32 fixed;
inline fixed to_fixed(double d)
{
return (fixed)(fmod(d, 256.) * (double)(1 << 24))
}
inline double to_double(fixed f)
{
return (double)f / (double)(1 << 24);
}
or something more elaborated to suit a rounding convention (to nearest, to lower, to higher, to odd, to even). The highest 8 bits of fixed hold the integer part, the 24 lower bits hold the fractional part. Absolute precision is 2^{-24}.
Note that adding and substracting such numbers naturally wraps around at 256. For multiplication, you should beware.

Resources