How to convert a nested list to a single list? - r

Consider the following nested list:
vars <- c("A", "B")
lapply(1:2, function(x) combn(vars, x, simplify=FALSE))
[[1]]
[[1]][[1]]
[1] "A"
[[1]][[2]]
[1] "B"
[[2]]
[[2]][[1]]
[1] "A" "B"
I want to convert the results (maybe by using a different function other than lapply) to the following:
[[1]]
[1] "A"
[[2]]
[1] "B"
[[3]]
[1] "A" "B"

Seems like you just want to remove one level of nesting. You can do that with unlist(..., recursive=FALSE)
vars <- c("A", "B")
x <- lapply(1:2, function(x) combn(vars, x, simplify=FALSE))
unlist(x, recursive=FALSE)
# [[1]]
# [1] "A"
#
# [[2]]
# [1] "B"
#
# [[3]]
# [1] "A" "B"

Related

Assign element to list in R

We can use append function to add element to list. For example like blow.
a_list <- list()
a_list <- append(a_list, "a")
But I want do to like this. The append_new don't return but change the a_list.
a_list <- list()
append_new(a_list, "a")
It can be used by eval function to do this.
a_list <- list()
eval(parse(text="a_list[[1]]<-a"))
a_list
But if I want to write the function add_element_to_list.
a_list <- list()
add_element_to_list(a_list, "a")
a_list ## same as list("a")
How to write the function? This function like assign but more powerful.
The post use eval(parse(text="")) but it can not write in the custom function append_new.
Simpler:
`append<-` <- function(x, value) {
c(x, value)
}
x <- as.list(1:3)
y <- as.list(1:3)
append(x) <- y
append(x) <- "a"
print(x)
[[1]]
[1] 1
[[2]]
[1] 2
[[3]]
[1] 3
[[4]]
[1] 1
[[5]]
[1] 2
[[6]]
[1] 3
[[7]]
[1] "a"
Using evil parse:
append_new <- function(x, y){
eval(parse(text = paste0(x, "[ length(", x, ") + 1 ]<<- '", y, "'")))
}
a_list <- list()
append_new(x = "a_list", y = "a")
a_list
# [[1]]
# [1] "a"
append_new(x = "a_list", y = "b")
a_list
# [[1]]
# [1] "a"
#
# [[2]]
# [1] "b"
Perhaps something like this?
add_element_to_list <- function(this, that)
{
if(typeof(this) != "list") stop("append_new requires a list as first argument")
assign(deparse(substitute(this)),
append(this, that),
envir = parent.frame(),
inherits = TRUE)
}
a_list <- list()
add_element_to_list(a_list, "a")
a_list
#> [[1]]
#> [1] "a"
add_element_to_list(a_list, "b")
a_list
#> [[1]]
#> [1] "a"
#>
#> [[2]]
#> [1] "b"
I would be very cautious in using something like this in a package though, since it is not idiomatic R. In general, R users expect functions not to modify existing objects but to return new objects.
Of course there are some notable exceptions...

R: How to extract all labels in a certain node of a dendrogram

I am writing a program that (as a part of it) automatically creates dendrograms from an input dataset.
For each node/split I want to extract all the labels that are under that node and the location of that node on the dendrogram plot (for further plotting purposes).
So, let's say my data looks like this:
> Ltrs <- data.frame("A" = c(3,1), "B" = c(1,1), "C" = c(2,4), "D" = c(6,6))
> dend <- as.dendrogram(hclust(dist(t(Ltrs))))
> plot(dend)
The dendrogram
Now I can extract the location of the splits/nodes:
> library(dendextend)
> nodes <- get_nodes_xy(dend)
> nodes <- nodes[nodes[,2] != 0, ]
> nodes
[,1] [,2]
[1,] 1.875 7.071068
[2,] 2.750 3.162278
[3,] 3.500 2.000000
Now I want to get all the labels under a node, for each node (/row from the 'nodes' variable).
This should look something like this:
$`1`
[1] "D" "C" "B" "A"
$`2`
[1] "C" "B" "A"
$`3 `
[1] "B" "A"
Can anybody help me out? Thanks in advance :)
How about something like this?
library(tidyverse)
library(dendextend)
Ltrs <- data.frame("A" = c(3,1), "B" = c(1,1), "C" = c(2,4), "D" = c(6,6))
dend <- as.dendrogram(hclust(dist(t(Ltrs))))
accumulator <- list();
myleaves <- function(anode){
if(!is.list(anode))return(attr(anode,"label"))
accumulator[[length(accumulator)+1]] <<- (reduce(lapply(anode,myleaves),c))
}
myleaves(dend);
ret <- rev(accumulator); #generation was depth first, so root was found last.
Better test this. I am not very trustworthy. In particular, I really hope the list ret is in an order that makes sense, otherwise it's going to be a pain associating the entries with the correct nodes! Good luck.
Function partition_leaves() extracts all leaf labels per each node and makes a list ordered in the same fashion as get_nodes_xy() output. With your example,
Ltrs <- data.frame("A" = c(3,1), "B" = c(1,1), "C" = c(2,4), "D" = c(6,6))
dend <- as.dendrogram(hclust(dist(t(Ltrs))))
plot(dend)
partition_leaves(dend)
yields:
[[1]]
[1] "D" "C" "A" "B"
[[2]]
[1] "D"
[[3]]
[1] "C" "A" "B"
[[4]]
[1] "C"
[[5]]
[1] "A" "B"
[[6]]
[1] "A"
[[7]]
[1] "B"
filtering list by vector length will give output similar to the desired one.

How to extract elements and their indices from a list in R

I would like to extract list elements and their indices in R while removing items with 0 length. Let's say I have the following list in R:
l1 <- character(0)
l2 <- c("a","b")
l3 <- c("c","d","e")
list1 <- list(l1, l1, l2, l1, l3)
Then list1 returns the following:
[[1]]
character(0)
[[2]]
character(0)
[[3]]
[1] "a" "b"
[[4]]
character(0)
[[5]]
[1] "c" "d" "e"
I would like to somehow extract an object that displays the index/position for each non-empty element, as well as the contents of that element. So something that looks like this:
[[3]]
[1] "a" "b"
[[5]]
[1] "c" "d" "e"
The closest I've come to doing this is by removing the empty elements, but then I lose the original index/position of the remaining elements:
list2 <- list1[lapply(list1, length) > 0]
list2
[[1]]
[1] "a" "b"
[[2]]
[1] "c" "d" "e"
keep, will keep elements matching a predicate. negate(is_empty) creates a function that returns TRUE if a vector is not empty.
library("purrr")
names(list1) <- seq_along(list1)
keep(list1, negate(is_empty))
#> $`3`
#> [1] "a" "b"
#>
#> $`5`
#> [1] "c" "d" "e"
Overview
Keeping the indices required me to name each element in the list. This answer uses which() to set the condition that I apply to list1 to keep non-zero length elements.
# load data
l1 <- character(0)
l2 <- c("a","b")
l3 <- c("c","d","e")
list1 <- list( l1, l1, l2, l1, l3)
# name each element in the list
names( list1 ) <- as.character( 1:length( list1 ) )
# create a condition that
# keeps only non zero length elements
# from list1
non.zero.length.elements <-
which( lapply( X = list1, FUN = length ) != 0 )
# apply the condition to list1
# to view the non zero length elements
list1[ non.zero.length.elements ]
# $`3`
# [1] "a" "b"
#
# $`5`
# [1] "c" "d" "e"
# end of script #
I'm not sure exactly what 'extract an object that displays' means, but if you just want to print you can use this modified print.
I just slightly edited print.listof (it's not recursive! zero length subelements will be displayed):
print2 <- function (x, ...)
{
nn <- names(x)
ll <- length(x)
if (length(nn) != ll)
nn <- paste0("[[", seq.int(ll),"]]")
for (i in seq_len(ll)[lengths(x)>0]) {
cat(nn[i], "\n")
print(x[[i]], ...)
cat("\n")
}
invisible(x)
}
print2(list1)
[[3]]
[1] "a" "b"
[[5]]
[1] "c" "d" "e"
A very simple solution is to provide names to the elements of your list and then run your function again. There are several ways to name your elements.
l1 <- character(0)
l2 <- c("a","b")
l3 <- c("c","d","e")
list1 <- list(e1=l1, e2=l1, e3=l2, e4=l1, e5=l3)
list1
names(list1)<-paste0("element",seq(length(list1)))
list1[lapply(list1, length) > 0]

Extracting names of vector by time bin

I have written this loop to extract the names of each element of a vector that occurs within a time interval (bin). I was wondering if I am missing a faster way to do this... I want to implement a randomization aspect to vectors that are 1000s in length and as such do not want to rely on a loop.
mydata <- structure(c(1199.91666666667, 1200.5, 1204.63333333333, 1205.5,
1206.3, 1208.73333333333, 1209.06666666667, 1209.93333333333,
1210.98333333333, 1214.56666666667, 1216.06666666667, 1216.63333333333,
1216.91666666667, 1219.13333333333, 1221.35, 1221.51666666667,
1225.35, 1225.53333333333, 1225.96666666667, 1227.61666666667,
1228.91666666667, 1230.31666666667, 1233.53333333333, 1235.8,
1237.51666666667, 1239.41666666667, 1241.6, 1247.08333333333,
1247.45, 1252.7, 1253.26666666667), .Names = c("B", "A", "B",
"E", "A", "A", "B", "G", "G", "C", "A", "D", "E", "B", "B", "E",
"E", "G", "F", "A", "C", "A", "F", "B", "A", "F", "F", "G", "F",
"G", "F"))
mydata
B A B E A A B G G C A D E B B E E
1199.917 1200.500 1204.633 1205.500 1206.300 1208.733 1209.067 1209.933 1210.983 1214.567 1216.067 1216.633 1216.917 1219.133 1221.350 1221.517 1225.350
G F A C A F B A F F G F G F
1225.533 1225.967 1227.617 1228.917 1230.317 1233.533 1235.800 1237.517 1239.417 1241.600 1247.083 1247.450 1252.700 1253.267
These represent consecutive times in seconds of events. Say we want to make our intervals 5s long. My approach is to make a vector of the beginning of each interval and then use a loop to find the names of elements occurring within that interval:
N=5
ints <- seq(mydata[1], mydata[length(mydata)], N)
out<-list()
for(i in 1:length(ints)){
out[[i]] <- names(mydata[mydata>=ints[i] & mydata<ints[i]+N])
}
out
[[1]]
[1] "B" "A" "B"
[[2]]
[1] "E" "A" "A" "B"
[[3]]
[1] "G" "G" "C"
[[4]]
[1] "A" "D" "E" "B"
[[5]]
[1] "B" "E"
[[6]]
[1] "E" "G" "F" "A" "C"
[[7]]
[1] "A" "F"
[[8]]
[1] "B" "A" "F"
[[9]]
[1] "F"
[[10]]
[1] "G" "F"
[[11]]
[1] "G" "F"
This is fine for small samples - but I can see this would get slow when dealing with very large samples that are permuted 1000s of times.
My suggestion is to use findInterval (based on an answer to this earlier question of mine):
mydata2 = c(-Inf, mydata)
ints <- seq(mydata[1], mydata[length(mydata)]+5, N)
idx = findInterval(ints-1e-10, mydata2)
out<-list()
for(i in 1:(length(ints)-1)){
out[[i]] <- names(mydata2[(idx[i]+1):(idx[i+1])])
}
As you can see I have to do a little tinkering with the beginning (adding a first value that is smaller than the first breakpoint, adding an epsilon). Here's the result, it is identical to yours:
> out
[[1]]
[1] "B" "A" "B"
[[2]]
[1] "E" "A" "A" "B"
[[3]]
[1] "G" "G" "C"
[[4]]
[1] "A" "D" "E" "B"
[[5]]
[1] "B" "E"
[[6]]
[1] "E" "G" "F" "A" "C"
[[7]]
[1] "A" "F"
[[8]]
[1] "B" "A" "F"
[[9]]
[1] "F"
[[10]]
[1] "G" "F"
[[11]]
[1] "G" "F"
In terms of speed for the example there is some improvement:
> microbenchmark( jalapic = {out<-list(); for(i in 1:length(ints)){out[[i]] <- names(mydata[mydata>=ints[i] & mydata<ints[i]+N])}},
+ mts = {idx = findInterval(ints2-1e-10, mydata2); out<-list(); for(i in 1:(length(ints)-1)){out[[i]] <- names(mydata2[(idx[i]+1):(idx[i+1])])}},
+ alexis = {split(names(mydata), findInterval(mydata, ints))},
+ R_Yoda = {dt[, groups := cut2(data,ints)]; result <- dt[, paste0(names, collapse=", "), by=groups]})
Unit: microseconds
expr min lq mean median uq max neval
jalapic 67.177 76.9725 85.73347 82.8035 95.866 119.890 100
mts 43.851 52.7150 62.72116 58.3130 73.007 96.099 100
alexis 75.573 86.5360 95.72593 91.4340 100.531 234.649 100
R_Yoda 2032.066 2158.4870 2303.68887 2191.3750 2281.409 8719.314 100
For larger vectors (I chose length 2000) this is clearer:
set.seed(123)
mydata = sort(runif(n = 2000, min = 0, max = 100))
names(mydata) = sample(LETTERS[1:7], size = 2000, replace = T)
mydata2 = c(-Inf, mydata)
ints2 <- seq(mydata[1], mydata[length(mydata)]+5, N)
dt <- data.table(data=mydata, names=names(mydata) )
> microbenchmark( jalapic = {out<-list(); for(i in 1:length(ints)){out[[i]] <- names(mydata[mydata>=ints[i] & mydata<ints[i]+N])}},
+ mts = {idx = findInterval(ints2-1e-10, mydata2); out<-list(); for(i in 1:(length(ints)-1)){out[[i]] <- names(mydata2[(idx[i]+1):(idx[i+1])])}},
+ alexis = {split(names(mydata), findInterval(mydata, ints))},
+ R_Yoda = {dt[, groups := cut2(data,ints)]; result <- dt[, paste0(names, collapse=", "), by=groups]})
Unit: microseconds
expr min lq mean median uq max neval
jalapic 804.243 846.9275 993.9957 862.0890 883.3140 7140.218 100
mts 77.439 88.8685 100.6148 100.0640 106.5955 188.466 100
alexis 187.066 204.7930 220.1689 215.5225 225.3190 299.026 100
R_Yoda 3831.348 4066.4640 4366.5382 4140.1700 4248.8635 11829.923 100
For performance reasons I am using data.table:
Edit: This solution works, but is NOT very fast (as proved by the answer of mts)
library(Hmisc)
library(data.table)
# assuming that your mydata vector from the question is loaded
N=5 # code from your question...
ints <- seq(mydata[1], mydata[length(mydata)], N) # code from your question...
dt <- data.table(data=mydata, names=names(mydata) )
dt[, groups := cut2(data,ints)] # attention: shall the interval ends be included in the group or not?
groups <- dt[ , .(result=list(names)), by=groups] # the elements of a data.table can be a list itself!
# to get the result as list:
out <- groups[,result]
out
Edit: You could replace cut2 by findInterval and do it all in one line, but it is still slower:
out <- dt[, .(result=list(names)), by = findInterval(data,ints) ]
This is the result:
[[1]]
[1] "B" "A" "B"
[[2]]
[1] "E" "A" "A" "B"
[[3]]
[1] "G" "G" "C"
[[4]]
[1] "A" "D" "E" "B"
[[5]]
[1] "B" "E"
[[6]]
[1] "E" "G" "F" "A" "C"
[[7]]
[1] "A" "F"
[[8]]
[1] "B" "A" "F"
[[9]]
[1] "F"
[[10]]
[1] "G" "F"
[[11]]
[1] "G" "F"

Generate all combinations given a constraint

How can I generate all of the 6 combinations of 2 treatments (A,B) in blocks of 4, such that in each block there is an equal number of A's and B's, using R?
"AABB","ABAB","ABBA","BBAA","BABA","BAAB"
P.S. The number of combinations is calculated as follows:
If
T = #treatments
n = #treatments in each block = k*T,
The number of combinations equals n! / [k!*k! (T times)]
Thank you
Something like this should work:
library(gtools)
t <- c('A','B')
k <- 2
n <- k * length(t)
t2 <- rep(t, k)
m <- permutations(n,n)
res <- unique(apply(m,MARGIN=1,function(x) paste(t2[x],collapse='')))
--------------------------------------------------------------------
res
[1] "ABAB" "ABBA" "AABB" "BAAB" "BABA" "BBAA"
The multicool package implements an algorithm for permuting multisets --- exactly the task you want to have performed. Here's an example of what it can do:
library(multicool)
# Create a simple convenience function
enumAllPartitions <- function(multiset) {
m1 <- initMC(multiset) # Initialize the permutation object
N <- fact(length(multiset))/ # Calculate number of permutations
prod(fact(table(multiset)))
sapply(seq_len(N), function(X) paste(nextPerm(m1), collapse=""))
}
# Try it out with a few different multisets
x <- c("A", "A", "B", "B")
y <- c("G", "L", "L", "L")
z <- c("X", "X", "Y", "Z", "Z")
lapply(list(x,y,z), enumAllPartitions)
[[1]]
[1] "BBAA" "ABBA" "BABA" "ABAB" "AABB" "BAAB"
[[2]]
[1] "LLLG" "GLLL" "LGLL" "LLGL"
[[3]]
[1] "ZZYXX" "XZZYX" "ZXZYX" "ZZXYX" "XZZXY" "ZXZXY" "XZXZY" "XXZZY" "ZXXZY"
[10] "ZZXXY" "YZZXX" "ZYZXX" "XZYZX" "ZXYZX" "YZXZX" "XYZZX" "YXZZX" "ZYXZX"
[19] "XZYXZ" "ZXYXZ" "XZXYZ" "XXZYZ" "ZXXYZ" "YZXXZ" "XYZXZ" "YXZXZ" "XYXZZ"
[28] "XXYZZ" "YXXZZ" "ZYXXZ"
The expected solution can also be achieved using the new iterpc package.
I <- iterpc(c(2, 2), labels=c("A", "B"), ordered=TRUE)
getall(I)
# [,1] [,2] [,3] [,4]
# [1,] "A" "A" "B" "B"
# [2,] "A" "B" "A" "B"
# [3,] "A" "B" "B" "A"
# [4,] "B" "A" "A" "B"
# [5,] "B" "A" "B" "A"
# [6,] "B" "B" "A" "A"

Resources