Related
I have a set of vertices/vectors and I need to extrude them inside object boundaries to give that object a thickness
as an example:
I need to turn something like this:
to something like this:
how can I achieve this?
(I'm using C++, OpenGL & GLM)
-- Update --
thanks to #Futurologist answer, I was able to resolve the issue and hey, It works like a charm!
Sorry for the python, but it's faster and easier for me to write it like that, plus it maybe reveals some the geometric concepts in the background.
Is this what you are after?
'''
angle bisectors and offsetting a polygon
'''
def bisectors(P, thickness):
#P is n x 2 matrix, row P[j,:] is a vertex of a polygon in the plane,
#P is the ordered set of vertices of the polygon
n = P.shape[0];
B = np.zeros((n,2), dtype=float);
for j in range(n):
if j == 0:
v_in = P[0,:] - P[n-1,:];
v_out = P[1,:] - P[0,:];
elif j == n-1:
v_in = P[n-1,:] - P[n-2,:];
v_out = P[0,:] - P[n-1,:];
else:
v_in = P[j,:] - P[j-1,:];
v_out =P[j+1,:] - P[j,:];
v_in = v_in / math.sqrt(v_in.dot(v_in)); #normalize edge-vector
v_out = v_out / math.sqrt(v_out.dot(v_out)); #normalize edge-vector
# bisector of the complementary angle at the vertex j,
# pointing counter clockwise and displacing the vertex so that
# the resulting polygon is "thickness" units inwards in normal direction:
bisector = v_in + v_out;
bisector = bisector / abs(bisector.dot(v_in));
bisector = thickness * bisector
# 90 degree counter clockwise rotation of complementary bisector:
B[j,0] = - bisector[1];
B[j,1] = bisector[0];
return B
def offset_vertices(Polygon, thickness):
Polygon_off = Polygon + bisectors(Polygon, thickness)
return Polygon_off
P = np.array([[0,0],[2,0],[3,1],[1,3]])
P_off = offset_vertices(P, 0.1)
# Plotting
P = np.vstack((P, P[0,:] ))
P_off = np.vstack((P_off, P_off[0,:] ))
fig, axs = plt.subplots(1)
axs.plot(P[:,0], P[:,1], 'bo')
axs.plot(P_off[:,0], P_off[:,1], 'ro')
axs.plot(P[:,0], P[:,1])
axs.plot(P_off[:,0], P_off[:,1])
axs.set_aspect('equal')
plt.grid()
plt.show()
I'm trying to align multiple line objects along a human body circumference depending on the orientation of the triangles from the mesh. I would like to put the lines parallel to the mesh. I correctly assign the position for the lines along the circumference, but I also need to add the rotation of the lines such that to be parallel with the body.
The body is a mesh formed by multiple triangles and every line is "linked" with a triangle.
All I have is:
3 points for the closest triangle from the mesh for every line
The normal of the triangle
The positions for the instantiated lines (2 points, start and end)
I need to calculate the angle for every X, Y, Z axes for the line such that the normal of the triangle is perpendicular with the line mesh. I don't know how to get the desired angle. I really appreciate if someone would like to help me.
input:
FVector TrianglePoints[3];
FVector Triangle_Normal; //Calculated as (B-A)^(C-A), where A,B,C are the points of the triangle
FVector linePosition; //I also have the start line and the endLine position if that helps
ouput:
//FRotator rotation(x,y,z), such that the triangle normal and the line object to be perpendicular.
An overview of the circumference line construction. Now the rotation is calculated using the Start position and End position for each line. When we cross some irregular parts of the mesh we want to rotate the lines correctly. Now the rotation is fixed, depending just on the line start and end position.
If I have understood correctly your goal, here is some related vector geometry:
A,B,C are the vertices of the triangle:
A = [xA, yA, zA],
B = [xB, yB, zB]
C = [xC, yC, zC]
K,L are the endpoints of the line-segment:
K = [xK, yK, zK]
L = [xL, yL, zL]
vectors are interpreted as row-vectors
by . I denote matrix multiplication
by x I denote cross product of 3D vectors
by t() I denote the transpose of a matrix
by | | I denote the norm (magnitude) of a vector
Goal: find the rotation matrix and rotation transformation of segment KL
around its midpoint, so that after rotation KL is parallel to the plane ABC
also, the rotation is the "minimal" angle rotation by witch we need to
rotate KL in order to make it parallel to ABC
AB = B - A
AC = C - A
KL = L - K
n = AB x AC
n = n / |n|
u = KL x n
u = u / |u|
v = n x u
cos = ( KL . t(v) ) / |KL|
sin = ( KL . t(n) ) / |KL|
U = [[ u[0], u[1], u[2] ],
[ v[0], v[1], v[2] ],
[ n[0], n[1], n[2] ],
R = [[1, 0, 0],
[0, cos, sin],
[0, -sin, cos]]
ROT = t(U).R.U
then, one can rotate the segment KL around its midpoint
M = (K + L)/2
Y = M + ROT (X - M)
Here is a python script version
A = np.array([0,0,0])
B = np.array([3,0,0])
C = np.array([2,3,0])
K = np.array([ -1,0,1])
L = np.array([ 2,2,2])
KL = L-K
U = np.empty((3,3), dtype=float)
U[2,:] = np.cross(B-A, C-A)
U[2,:] = U[2,:] / np.linalg.norm(U[2,:])
U[0,:] = np.cross(KL, U[2,:])
U[0,:] = U[0,:] / np.linalg.norm(U[0,:])
U[1,:] = np.cross(U[2,:], U[0,:])
norm_KL = np.linalg.norm(KL)
cos_ = KL.dot(U[1,:]) / norm_KL
sin_ = KL.dot(U[2,:]) / norm_KL
R = np.array([[1, 0, 0],
[0, cos_, sin_],
[0,-sin_, cos_]])
ROT = (U.T).dot(R.dot(U))
M = (K+L) / 2
K_rot = M + ROT.dot( K - M )
L_rot = M + ROT.dot( L - M )
print(L_rot)
print(K_rot)
print(L_rot-K_rot)
print((L_rot-K_rot).dot(U[2,:]))
A more inspired solution was to use a procedural mesh, generated at runtime, that have all the requirements that I need:
Continuously along multiple vertices
Easy to apply a UV map for texture tiling
Can be updated at runtime
Isn't hard to compute/work with it
I have a graph where each node has coordinates in 2D (it's actually a geographic graph, with latitude and longitude.)
I need to verify that if the distance between two edges is less than MAX_DIST then they share a node. Of course, if they intersect, then the distance between them is zero.
The brute force algorithm is trivial, is there a more efficient algorithm?
I was thinking of trying to adapt https://en.wikipedia.org/wiki/Closest_pair_of_points_problem to graph edges (and ignoring pairs of edges with a shared node), but it is not trivial to do so.
I was curios to see how the rtree index idea would perform so I created a small script to test it using two really cool libraries for Python: Rtree and shapely
The snippet generates 1000 segments with 1 < length < 5 and coordinates in the [0, 100] interval, populates the index and then counts the pairs that are closer than MAX_DIST==0.1 (using the classic and the index-based method).
In my tests the index method was around 25x faster using the conditions above; this might vary greatly for your data set but the result is encouraging:
found 532 pairs of close segments using classic method
7.47 seconds for classic count
found 532 pairs of close segments using index method
0.28 seconds for index count
The performance and correctness of the index method depends on how your segments are distributed (how many are close, if you have very long segments, the parameters used).
import time
import random
from rtree import Rtree
from shapely.geometry import LineString
def generate_segments(number):
segments = {}
for i in range(number):
while True:
x1 = random.randint(0, 100)
y1 = random.randint(0, 100)
x2 = random.randint(0, 100)
y2 = random.randint(0, 100)
segment = LineString([(x1, y1), (x2, y2)])
if 1 < segment.length < 5: # only add relatively small segments
segments[i] = segment
break
return segments
def populate_index(segments):
idx = Rtree()
for index, segment in segments.items():
idx.add(index, segment.bounds)
return idx
def count_close_segments(segments, max_distance):
count = 0
for i in range(len(segments)-1):
s1 = segments[i]
for j in range(i+1, len(segments)):
s2 = segments[j]
if s1.distance(s2) < max_distance:
count += 1
return count
def count_close_segments_index(segments, idx, max_distance):
count = 0
for index, segment in segments.items():
close_indexes = idx.nearest(segment.bounds, 10)
for close_index in close_indexes:
if index >= close_index: # do not count duplicates
continue
close_segment = segments[close_index]
if segment.distance(close_segment) < max_distance:
count += 1
return count
if __name__ == "__main__":
MAX_DIST = 0.1
s = generate_segments(1000)
r_idx = populate_index(s)
t = time.time()
print("found %d pairs of close segments using classic method" % count_close_segments(s, MAX_DIST))
print("%.2f seconds for classic count" % (time.time() - t))
t = time.time()
print("found %d pairs of close segments using index method" % count_close_segments_index(s, r_idx, MAX_DIST))
print("%.2f seconds for index count" % (time.time() - t))
I have two data files, each of them contain a big number of 3-dimensional points (file A stores approximately 50,000 points, file B stores approximately 500,000 points). My goal is to find for every point (a) in file A the point (b) in file B which has the smallest distance to (a). I store the points in two lists like this:
List A nodes:
(ID X Y Z)
[ ['478277', -107.0, 190.5674, 128.1634],
['478279', -107.0, 190.5674, 134.0172],
['478282', -107.0, 190.5674, 131.0903],
['478283', -107.0, 191.9798, 124.6807],
... ]
List B data:
(X Y Z Data)
[ [-28.102, 173.657, 229.744, 14.318],
[-28.265, 175.549, 227.824, 13.648],
[-27.695, 175.925, 227.133, 13.142],
...]
My first approach was to simply iterate through the first and second list with a nested loop and compute the distance between every points like this:
outfile = open(job[0] + '/' + output, 'wb');
dist_min = float(job[5]);
dist_max = float(job[6]);
dists = [];
for node in nodes:
shortest_distance = 1000.0;
shortest_data = 0.0;
for entry in data:
dist = math.sqrt((node[1] - entry[0])**2 + (node[2] - entry[1])**2 + (node[3] - entry[2])**2);
if (dist_min <= dist <= dist_max) and (dist < shortest_distance):
shortest_distance = dist;
shortest_data = entry[3];
outfile.write(node[0] + ', ' + str('%10.5f' % shortest_data + '\n'));
outfile.close();
I recognized that the amount of loops Python has to run is way too big (~25,000,000,000), so I had to fasten my code. I tried to first calculate all distances with list comprehensions but the code still is too slow:
p_x = [row[1] for row in nodes];
p_y = [row[2] for row in nodes];
p_z = [row[3] for row in nodes];
q_x = [row[0] for row in data];
q_y = [row[1] for row in data];
q_z = [row[2] for row in data];
dx = [[(px - qx) for px in p_x] for qx in q_x];
dy = [[(py - qy) for py in p_y] for qy in q_y];
dz = [[(pz - qz) for pz in p_z] for qz in q_z];
dx = [[dxxx * dxxx for dxxx in dxx] for dxx in dx];
dy = [[dyyy * dyyy for dyyy in dyy] for dyy in dy];
dz = [[dzzz * dzzz for dzzz in dzz] for dzz in dz];
D = [[(dx[i][j] + dy[i][j] + dz[i][j]) for j in range(len(dx[0]))] for i in range(len(dx))];
D = [[(DDD**(0.5)) for DDD in DD] for DD in D];
To be honest, at this point, I do not know which of the two approaches is better, anyway, none of the two possibilities seem feasible. I'm not even sure if it is possible to write a code which calculates all distances in an acceptable time. Is there even another way to solve my problem without calculating all distances?
Edit: I forgot to mention that I am running on Python 2.5.1 and am not allowed to install or add any new libraries...
Just in case someone is interrested in the solution:
I found a way to speed up the whole process by not calculating all distances:
I created a 3D-list, representing a grid in the given 3D space, divided in X, Y and Z in a given step size (e.g. (Max. - Min.) / 1,000). Then I iterated over every 3D point to put it into my grid. After that I iterated over the points of set A again, looking if there are points from B in the same cube, if not I would increase the search radius, so the process is looking in the adjacent 26 cubes for points. The radius is increasing until there is at least one point found. The resulting list is comparatively small and can be ordered in short time and the nearest point is found.
The processing time went down to a couple minutes and it is working fine.
p_x = [row[1] for row in nodes];
p_y = [row[2] for row in nodes];
p_z = [row[3] for row in nodes];
q_x = [row[0] for row in data];
q_y = [row[1] for row in data];
q_z = [row[2] for row in data];
min_x = min(p_x + q_x);
min_y = min(p_y + q_y);
min_z = min(p_z + q_z);
max_x = max(p_x + q_x);
max_y = max(p_y + q_y);
max_z = max(p_z + q_z);
max_n = max(max_x, max_y, max_z);
min_n = min(min_x, min_y, max_z);
gridcount = 1000;
step = (max_n - min_n) / gridcount;
ruler_x = [min_x + (i * step) for i in range(gridcount + 1)];
ruler_y = [min_y + (i * step) for i in range(gridcount + 1)];
ruler_z = [min_z + (i * step) for i in range(gridcount + 1)];
grid = [[[0 for i in range(gridcount)] for j in range(gridcount)] for k in range(gridcount)];
for node in nodes:
loc_x = self.abatemp_get_cell(node[1], ruler_x);
loc_y = self.abatemp_get_cell(node[2], ruler_y);
loc_z = self.abatemp_get_cell(node[3], ruler_z);
if grid[loc_x][loc_y][loc_z] is 0:
grid[loc_x][loc_y][loc_z] = [[node[1], node[2], node[3], node[0]]];
else:
grid[loc_x][loc_y][loc_z].append([node[1], node[2], node[3], node[0]]);
for entry in data:
loc_x = self.abatemp_get_cell(entry[0], ruler_x);
loc_y = self.abatemp_get_cell(entry[1], ruler_y);
loc_z = self.abatemp_get_cell(entry[2], ruler_z);
if grid[loc_x][loc_y][loc_z] is 0:
grid[loc_x][loc_y][loc_z] = [[entry[0], entry[1], entry[2], entry[3]]];
else:
grid[loc_x][loc_y][loc_z].append([entry[0], entry[1], entry[2], entry[3]]);
out = [];
outfile = open(job[0] + '/' + output, 'wb');
for node in nodes:
neighbours = [];
radius = -1;
loc_nx = self.abatemp_get_cell(node[1], ruler_x);
loc_ny = self.abatemp_get_cell(node[2], ruler_y);
loc_nz = self.abatemp_get_cell(node[3], ruler_z);
reloop = True;
while reloop:
if neighbours:
reloop = False;
radius += 1;
start_x = 0 if ((loc_nx - radius) < 0) else (loc_nx - radius);
start_y = 0 if ((loc_ny - radius) < 0) else (loc_ny - radius);
start_z = 0 if ((loc_nz - radius) < 0) else (loc_nz - radius);
end_x = (len(ruler_x) - 1) if ((loc_nx + radius + 1) > (len(ruler_x) - 1)) else (loc_nx + radius + 1);
end_y = (len(ruler_y) - 1) if ((loc_ny + radius + 1) > (len(ruler_y) - 1)) else (loc_ny + radius + 1);
end_z = (len(ruler_z) - 1) if ((loc_nz + radius + 1) > (len(ruler_z) - 1)) else (loc_nz + radius + 1);
for i in range(start_x, end_x):
for j in range(start_y, end_y):
for k in range(start_z, end_z):
if not grid[i][j][k] is 0:
for grid_entry in grid[i][j][k]:
if not isinstance(grid_entry[3], basestring):
neighbours.append(grid_entry);
dists = [];
for n in neighbours:
d = math.sqrt((node[1] - n[0])**2 + (node[2] - n[1])**2 + (node[3] - n[2])**2);
dists.append([d, n[3]]);
dists = sorted(dists);
outfile.write(node[0] + ', ' + str(dists[0][-1]) + '\n');
outfile.close();
Function to get the position of a point:
def abatemp_get_cell(self, n, ruler):
for i in range(len(ruler)):
if i >= len(ruler):
return False;
if ruler[i] <= n <= ruler[i + 1]:
return i;
The gridcount variable gives one the chance to fasten the process, with a small gridcount the process of sorting the points into the grid is very fast, but the lists of neighbours in the search loop gets bigger and more time is needed for this part of the process. With a big gridcount more time is needed at the beginning, however the loop runs faster.
The only issue I have now is the fact, that there are cases when the process found neighbours but there are other points, which are not yet found, but are closer to the point (see picture). So far I solved this issue by incrementing the search radius another time when there are already neigbours. And still then I have points which are closer but not in the neighbours list, although it's a very small amount (92 out of ~100,000). I could solve this problem by increment the radius two times after finding neighbours, but this solution seems not very smart. Maybe you guys have an idea...
This is the first working draft of the process, I think it will be possible to improve it even more, just to give you an idea of how it is working...
It took me a bit of thought but at the end I think I found a solution for you.
Your problem is not in the code you wrote but in the algorithm it implements.
There is an algorithm called Dijkstra's algorithm and here is the gist of it: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm .
Now what you need to do is to use this algorithm in a clever way:
create a node S (stand for source).
Now link edges from S to all the nodes in B group.
After you done that you should link edges from each point b in B to each point a in A.
You should set the cost of the links from the source to 0 and the other to the distance between 2 points (only in 3D).
Now if we will use Dijkstra's algorithm the output we will get would be the cost to travel from S to each point in the graph (we are only interested in the distance to points in group A).
So since the cost is 0 to each point b in B and S is only connected to points in B so the road to any point a in A must include a node in B (actually exactly one since the shortest distance between to points is a single line).
I am not sure if this will fasten your code but as far as I know, a way to solve this problem without calculating all distances does not exist and this algorithm is the best time complexity one could hope for.
take a look at this generic 3D data structure:
https://github.com/m4nh/skimap_ros
it has a very fast RadiusSearch feature just ready to be used. This solution (similar to Octree but faster) avoids to you to create the Regular Grid first (you don't have to fix MAX/MIN size along each axis) and you save a lot of memory
How can I find the line of intersection between two planes?
I know the mathematics idea, and I did the cross product between the the planes normal vectors
but how to get the line from the resulted vector programmatically
The equation of the plane is ax + by + cz + d = 0, where (a,b,c) is the plane's normal, and d is the distance to the origin. This means that every point (x,y,z) that satisfies that equation is a member of the plane.
Given two planes:
P1: a1x + b1y + c1z + d1 = 0
P2: a2x + b2y + c2z + d2 = 0
The intersection between the two is the set of points that verifies both equations. To find points along this line, you can simply pick a value for x, any value, and then solve the equations for y and z.
y = (-c1z -a1x -d1) / b1
z = ((b2/b1)*(a1x+d1) -a2x -d2)/(c2 - c1*b2/b1)
If you make x=0, this gets simpler:
y = (-c1z -d1) / b1
z = ((b2/b1)*d1 -d2)/(c2 - c1*b2/b1)
Finding the line between two planes can be calculated using a simplified version of the 3-plane intersection algorithm.
The 2'nd, "more robust method" from bobobobo's answer references the 3-plane intersection.
While this works well for 2 planes (where the 3rd plane can be calculated using the cross product of the first two), the problem can be further reduced for the 2-plane version.
No need to use a 3x3 matrix determinant,instead we can use the squared length of the cross product between the first and second plane (which is the direction of the 3'rd plane).
No need to include the 3rd planes distance,(calculating the final location).
No need to negate the distances.Save some cpu-cycles by swapping the cross product order instead.
Including this code-example, since it may not be immediately obvious.
// Intersection of 2-planes: a variation based on the 3-plane version.
// see: Graphics Gems 1 pg 305
//
// Note that the 'normal' components of the planes need not be unit length
bool isect_plane_plane_to_normal_ray(
const Plane& p1, const Plane& p2,
// output args
Vector3f& r_point, Vector3f& r_normal)
{
// logically the 3rd plane, but we only use the normal component.
const Vector3f p3_normal = p1.normal.cross(p2.normal);
const float det = p3_normal.length_squared();
// If the determinant is 0, that means parallel planes, no intersection.
// note: you may want to check against an epsilon value here.
if (det != 0.0) {
// calculate the final (point, normal)
r_point = ((p3_normal.cross(p2.normal) * p1.d) +
(p1.normal.cross(p3_normal) * p2.d)) / det;
r_normal = p3_normal;
return true;
}
else {
return false;
}
}
Adding this answer for completeness, since at time of writing, none of the answers here contain a working code-example which directly addresses the question.
Though other answers here already covered the principles.
Finding a point on the line
To get the intersection of 2 planes, you need a point on the line and the direction of that line.
Finding the direction of that line is really easy, just cross the 2 normals of the 2 planes that are intersecting.
lineDir = n1 × n2
But that line passes through the origin, and the line that runs along your plane intersections might not. So, Martinho's answer provides a great start to finding a point on the line of intersection (basically any point that is on both planes).
In case you wanted to see the derivation for how to solve this, here's the math behind it:
First let x=0. Now we have 2 unknowns in 2 equations instead of 3 unknowns in 2 equations (we arbitrarily chose one of the unknowns).
Then the plane equations are (A terms were eliminated since we chose x=0):
B1y + C1z + D1 = 0
B2y + C2z + D2 = 0
We want y and z such that those equations are both solved correctly (=0) for the B1, C1 given.
So, just multiply the top eq by (-B2/B1) to get
-B2y + (-B2/B1)*C1z + (-B2/B1)*D1 = 0
B2y + C2z + D2 = 0
Add the eqs to get
z = ( (-B2/B1)*D1 - D2 ) / (C2 * B2/B1)*C1)
Throw the z you find into the 1st equation now to find y as
y = (-D1 - C1z) / B1
Note the best variable to make 0 is the one with the lowest coefficients, because it carries no information anyway. So if C1 and C2 were both 0, choosing z=0 (instead of x=0) would be a better choice.
The above solution can still screw up if B1=0 (which isn't that unlikely). You could add in some if statements that check if B1=0, and if it is, be sure to solve for one of the other variables instead.
Solution using intersection of 3 planes
From user's answer, a closed form solution for the intersection of 3 planes was actually in Graphics Gems 1. The formula is:
P_intersection = (( point_on1 • n1 )( n2 × n3 ) + ( point_on2 • n2 )( n3 × n1 ) + ( point_on3 • n3 )( n1 × n2 )) / det(n1,n2,n3)
Actually point_on1 • n1 = -d1 (assuming you write your planes Ax + By + Cz + D=0, and not =-D). So, you could rewrite it as:
P_intersection = (( -d1 )( n2 × n3 ) + ( -d2 )( n3 × n1 ) + ( -d3 )( n1 × n2 )) / det(n1,n2,n3)
A function that intersects 3 planes:
// Intersection of 3 planes, Graphics Gems 1 pg 305
static Vector3f getIntersection( const Plane& plane1, const Plane& plane2, const Plane& plane3 )
{
float det = Matrix3f::det( plane1.normal, plane2.normal, plane3.normal ) ;
// If the determinant is 0, that means parallel planes, no intn.
if( det == 0.f ) return 0 ; //could return inf or whatever
return ( plane2.normal.cross( plane3.normal )*-plane1.d +
plane3.normal.cross( plane1.normal )*-plane2.d +
plane1.normal.cross( plane2.normal )*-plane3.d ) / det ;
}
Proof it works (yellow dot is intersection of rgb planes here)
Getting the line
Once you have a point of intersection common to the 2 planes, the line just goes
P + t*d
Where P is the point of intersection, t can go from (-inf, inf), and d is the direction vector that is the cross product of the normals of the two original planes.
The line of intersection between the red and blue planes looks like this
Efficiency and stability
The "robust" (2nd way) takes 48 elementary ops by my count, vs the 36 elementary ops that the 1st way (isolation of x,y) uses. There is a trade off between stability and # computations between these 2 ways.
It'd be pretty catastrophic to get (0,inf,inf) back from a call to the 1st way in the case that B1 was 0 and you didn't check. So adding in if statements and making sure not to divide by 0 to the 1st way may give you the stability at the cost of code bloat, and the added branching (which might be quite expensive). The 3 plane intersection method is almost branchless and won't give you infinities.
This method avoids division by zero as long as the two planes are not parallel.
If these are the planes:
A1*x + B1*y + C1*z + D1 = 0
A2*x + B2*y + C2*z + D2 = 0
1) Find a vector parallel to the line of intersection. This is also the normal of a 3rd plane which is perpendicular to the other two planes:
(A3,B3,C3) = (A1,B1,C1) cross (A2,B2,C2)
2) Form a system of 3 equations. These describe 3 planes which intersect at a point:
A1*x1 + B1*y1 + C1*z1 + D1 = 0
A2*x1 + B2*y1 + C2*z1 + D2 = 0
A3*x1 + B3*y1 + C3*z1 = 0
3) Solve them to find x1,y1,z1. This is a point on the line of intersection.
4) The parametric equations of the line of intersection are:
x = x1 + A3 * t
y = y1 + B3 * t
z = z1 + C3 * t
The determinant-based approach is neat, but it's hard to follow why it works.
Here's another way that's more intuitive.
The idea is to first go from the origin to the closest point on the first plane (p1), and then from there go to the closest point on the line of intersection of the two planes. (Along a vector that I'm calling v below.)
Given
=====
First plane: n1 • r = k1
Second plane: n2 • r = k2
Working
=======
dir = n1 × n2
p1 = (k1 / (n1 • n1)) * n1
v = n1 × dir
pt = LineIntersectPlane(line = (p1, v), plane = (n2, k2))
LineIntersectPlane
==================
#We have n2 • (p1 + lambda * v) = k2
lambda = (k2 - n2 • p1) / (n2 • v)
Return p1 + lambda * v
Output
======
Line where two planes intersect: (pt, dir)
This should give the same point as the determinant-based approach. There's almost certainly a link between the two. At least the denominator, n2 • v, is the same, if we apply the "scalar triple product" rule. So these methods are probably similar as far as condition numbers go.
Don't forget to check for (almost) parallel planes. For example: if (dir • dir < 1e-8) should work well if unit normals are used.
You can find the formula for the intersection line of two planes in this link.
P1: a1x + b1y + c1z = d1
P2: a2x + b2y + c2z = d2
n1=(a1,b1,c1); n2=(a2,b2,c2); n12=Norm[Cross[n1,n2]]^2
If n12 != 0
a1 = (d1*Norm[n2]^2 - d2*n1.n2)/n12;
a2 = (d2*Norm[n1]^2 - d1*n1.n2)/n12;
P = a1 n1 + a2 n2;
(*formula for the intersection line*)
Li[t_] := P + t*Cross[n1, n2];
The cross product of the line is the direction of the intersection line. Now you need a point in the intersection.
You can do this by taking a point on the cross product, then subtracting Normal of plane A * distance to plane A and Normal of plane B * distance to plane b. Cleaner:
p = Point on cross product
intersection point = ([p] - ([Normal of plane A] * [distance from p to plane A]) - ([Normal of plane B] * [distance from p to plane B]))
Edit:
You have two planes with two normals:
N1 and N2
The cross product is the direction of the Intersection Line:
C = N1 x N2
The class above has a function to calculate the distance between a point and a plane. Use it to get the distance of some point p on C to both planes:
p = C //p = 1 times C to get a point on C
d1 = plane1.getDistance(p)
d2 = plane2.getDistance(p)
Intersection line:
resultPoint1 = (p - (d1 * N1) - (d2 * N2))
resultPoint2 = resultPoint1 + C