I'm using the R package crossmatch that itself relies on some other R packages ( survival, nbpMatching, MASS) and that in turn import a wide range of more dependencies.
The crossmatch package implements a statistical test on a (potentially) large matrix, that I need to compute very often (within an MCMC algorithm). I've written the following wrapper that computes some preprocessing steps before the actual test is computed (which is the crossmatchtest() in the last line):
# wrapper function to directly call the crossmatch test with a single matrix
# first column of the matrix must be a binary group indicator, following columns are observations
# code is modified from the documentation of the crossmatch package
crossmatchdata <- function(dat) {
# the grouping variable should be in the first column
z = dat[,1]
X = subset(dat, select = -1)
## Rank based Mahalanobis distance between each pair:
# X <- as.matrix(X)
n <- dim(X)[1]
k <- dim(X)[2]
for (j in 1:k) {
X[, j] <- rank(X[, j])
}
cv <- cov(X)
vuntied <- var(1:n)
rat <- sqrt(vuntied / diag(cv))
cv <- diag(rat) %*% cv %*% diag(rat)
out <- matrix(NA, n, n)
icov <- ginv(cv)
for (i in 1:n) {
out[i, ] <- mahalanobis(X, X[i, ], icov, inverted = TRUE)
}
dis <- out
## The cross-match test:
return(crossmatchtest(z, dis))
}
I've noticed that if the matrix is rather small, this test will only use one CPU:
library(MASS)
library(crossmatch)
source("theCodeFromAbove.R")
# create a dummy matrix
m = cbind(c(rep(0, 100), rep(1, 100)))
m = cbind(m, (matrix(runif(100), ncol=10, nrow=20, byrow=T)))
while(TRUE) { crossmatchdata(m) }
as monitored via htop. However, if I'm increasing this matrix, R will use as many cores as are available (at least it looks like this):
# create a dummy matrix
m = cbind(c(rep(0, 1000), rep(1, 1000)))
m = cbind(m, (matrix(runif(100000), ncol=1000, nrow=2000, byrow=T)))
while(TRUE) { crossmatchdata(m) }
I'm fine with this parallelization in general but I would like to be able to manually control the number of cores the R process is using. I've tried options(mc.cores = 4) without success.
Is there any other variable I could set? Or what's the best way of finding the package that's responsible for the use of more than one core?
Let's look at the dependencies:
library(miniCRAN)
tags <- "crossmatch"
dg <- makeDepGraph(tags, enhances = FALSE, suggests = FALSE)
set.seed(1)
plot(dg, legendPosition = c(-1, 1), vertex.size = 20)
That is quite a few dependencies. At a first glance, there is no package for R level parallelization there. That leaves the possibility of packages using parallelization via compiled code. One such package is data.table (there might be others), try if using setDTthreads(1) turns off parallelization.
Of course, you might also have R linked to an optimized BLAS. If that's the case, the parallelization most likely happens there during matrix algebra.
Update:
#Dirk Eddelbuettel just pointed out that packages RhpcBLASctl and OpenMPController allow controlling the number of cores used by the BLAS or OpenMP.
Edit by kartoffelsalat:
The following worked for the issue in the question under Ubuntu 16.04. It did not work under macOS (neither did the package OpenMPController).
library(RhpcBLASctl)
blas_set_num_threads(3)
Related
I'm working on improving the speed of a function (for a dissimilarity measure) I'm writing which is quite similar mathematically to the Euclidean distance function. However, when I time my function compared to that implemented in the daisy function from the cluster package, I find quite a significant difference in speed, with daisy performing much better. Given that (I'm assuming) a dissimilarity measure would require O(n x p) time due to the need to compare each object to itself over all variables (where n is number of objects and p is number of variables), I find it difficult to understand how the daisy function performs so well (near constant time, from the few experiments I've done) relative to my simple and direct implementation. I present the code I have used both to implement and test below. I have tried looking through the r source code for the implementation of the daisy function, but I found it difficult to understand. I found no nested for loop. Any help with understanding why this function performs so fast and how I could possibly modify my code to have similar speed would be very highly appreciated.
euclidean <- function (df){
no_obj <- nrow(df)
dist <- array(0, dim = c(no_obj, no_obj))
for (i in 1:no_obj){
for (j in 1:no_obj){
dist_v <- 0
if(i != j){
for (v in 1:ncol(df)){
dist_v <- dist_v + sqrt((df[i,v] - df[j,v])^2)
}
}
dist[i,j] <- dist_v
}
}
return(dist)
}
data("iris")
tic <- Sys.time()
dst <- euclidean(iris[,1:4])
time <- difftime(Sys.time(), tic, units = "secs")[[1]]
print(paste("Time taken [Euclidean]: ", time))
tic <- Sys.time()
dst <- daisy(iris[,1:4])
time <- difftime(Sys.time(), tic, units = "secs")[[1]]
print(paste("Time taken [Daisy]: ", time))
one option:
euclidean3 <- function(df) {
require(data.table)
n <- nrow(df)
i <- CJ(1:n, 1:n) # generate all row combinations
dl <- sapply(df, function(x) sqrt((x[i[[1]]] - x[i[[2]]])^2)) # loop over columns
dv <- rowSums(dl) # sum values of columns
d <- matrix(dv, n, n) # fill in matrix
d
}
dst3 <- euclidean3(iris[,1:4])
all.equal(euclidean(iris[,1:4]), dst3) # TRUE
[1] "Time taken [Euclidean3]: 0.008"
[1] "Time taken [Daisy]: 0.002"
Largest bottleneck in your code is selecting data.frame elements in loop (df[j,v])). Maybe changing it to matrix also could improver speed. I believe there could be more performant approach on stackoverflow, you just need to search by correct keywords...
I need to run a hierarchical clustering algorithm in R on a dataset with 173000 rows and 17 columns.
When running the function dist() on the dataset, R aborts. I have also tried it with a Windows pc and the error message I get is "cannot allocate vector of size 110.5 Gb".
My Mac and my Windows pc have 4 GB of RAM.
Is there a way to still do this in R? I know hierarchical algorithms are not the best for large datasets but it is requireed by a University assignment.
Thank you
The problem can be solved by writing a function to compute the pairwise euclidian distances between columns of the data set, assumed below to be in tabular form. For other distances, a similar function can be written.
dist2 <- function(X){
cmb <- combn(seq_len(ncol(X)), 2)
d <- matrix(NA_real_, nrow = ncol(X), ncol = ncol(X))
if(!is.null(colnames(X)))
dimnames(d) <- list(colnames(X), colnames(X))
for(i in seq_len(ncol(cmb))){
ix <- cmb[1, i]
iy <- cmb[2, i]
res <- sqrt(sum((X[, ix] - X[, iy])^2))
d[ix, iy] <- d[iy, ix] <- res
diag(d) <- 0
}
d
}
Now test the function with a data.frame of the dimensions in the question.
set.seed(2021)
m <- replicate(17, rnorm(173000))
m <- as.data.frame(m)
dist2(m)
First and foremost, it would be very nice of you to provide a reprex (reproducible example). Make sure you will do it later.
Speaking about the issue, you can use sample_frac function (if I am not mistaken, this is a function from tidyverse package). For example, sample_frac(your_data, .5) will sample 50% of your dataframe. It will reduce the size of data to be clustered and it will be easier for your laptop.
The other way is to extend the memory.limit(size = n) where n is a number in megabytes.
I am working on a project that requires large matrices with a larger number of zeros. Unfortunately, as some of these matrices can have more than 1e10 elements, working with the "standard" R matrices is not an option, due to RAM constraints. Also, I need to work on multiple cores, as the computation can take quite a long time and really shouldn't.
So far, I have been working with the foreach package, and converted the results (which come in standard matrices) to sparse matrices afterwards. I can't help but think that there must be a smarter way.
Here is a minimal example of what I have been doing so far:
cl <- makeSOCKcluster(8)
registerDoSNOW(cl)
Mat <- foreach(j=1:length(lambda), .combine='cbind') %dopar% {
replicate(iter, rpois(n=1, lambda[j]))
}
Mat <- Matrix(Mat, sparse=TRUE)
stopCluster(cl)
The lambdas are all quite small, so that only every 5th element or so is different from zero, making it sensible to store the results in a sparse matrix.
Unfortunately, it has now become necessary to increase the number of iterations from 1e6 to at least 1e7, so that the matrix that is produced by the foreach loop is too large to be stored on 8GB of RAM. What I now want to do is split up the tasks into steps that each have 1e6 iterations, and combine these into a single, sparse matrix.
I now have the following as an idea:
library(Matrix)
library(snow)
cl <- makeSOCKcluster(8)
iter <- 1e6
steps <- 1e5
numsteps <- iter / steps
draws <- function(x, lambda, steps){
replicate(n=steps, rpois(n=1, lambda=lambda))
}
for(i in 1:numsteps){
Mat <- Matrix(0, nrow=steps, ncol=96, sparse=TRUE)
Mat <- Matrix(
parApply(cl=cl, X=Mat, MARGIN=2, FUN=draws, lambda=0.2, steps=steps)
, sparse = TRUE)
if(!exists("fullmat")) fullmat <- Mat else fullmat <- rBind(fullmat, Mat)
rm(Mat)
}
stopCluster(cl)
It works fine, but I had to fix lambda to some value. For my application, I need the values in the ith row to come from a poisson distribution with mean equal to the ith element of the lambda vector. This obviously worked fine in the foreach loop., but I have yet to find a way to make it work in an apply loop.
My questions are:
Is it possible to have the apply function "know" on which row it is operating and pass a corresponding argument to a function?
Is there a way to work with foreach and sparse matrices without the need of creating a standard matrix and converting it into a sparse one in the next step?
If none of the above, is there a way for me to manually assign tasks to slave processes of R - that is, could I specifically tell a process to work on column 1, another to work on column 2 and so on, each creating a sparse vector and only combining these in the last step.
I was able to find a solution to my problem.
In my case, I am able to define a unique ID for each of the columns, and can address the parameters by that. The following code should illustrate what I mean:
library(snow)
library(Matrix)
iter <- 1e6
steps <- 1e5
# define a unique id
SZid <- seq(from=1, to=10, by=1)
# in order to have reproducible code, generate random parameters
SZlambda <- replicate(runif(n=1, min=0, max=.5))
SZmu <- replicate(runif(n=1, min=10, max=15))
SZsigma <- replicate(runif(n=1, min=1, max=3))
cl <- makeSOCKcluster(8)
clusterExport(cl, list=c("SZlambda", "SZmu", "SZsigma"))
numsteps <- iter / steps
MCSZ <- function(SZid, steps){ # Monte Carlo Simulation
lambda <- SZlambda[SZid]; mu <- SZmu[SZid]; sigma <- SZsigma[SZid];
replicate(steps, sum(rlnorm(meanlog=mu, sdlog=sigma,
n = rpois(n=1, lambda))
))
}
for (i in 1:numsteps){
Mat <- Matrix(
parSapply(cl, X=SZid, FUN=MCSZ, steps=steps), sparse=TRUE)
if(!exists("LossSZ")) LossSZ <- Mat else LossSZ <- rBind(LossSZ, Mat)
rm(Mat)
}
stopCluster(cl)
The trick is to apply the function not over the matrix, but over a vector of unique ids that line up with the indices of the parameters.
I've been using the parallel package in R to do loops like:
cl <- makeCluster(getOption("cl.cores", 6))
result <- parSapply(cl,1:k,function(i){ ... })
Is there a natural way to parallelize a nested for loop in R using this package? Or perhaps another package? I know there are several ways to implement parallelism in R.
My loop looks something like this. I simplified a bit but it gets the message across:
sup_mse <- matrix(0,nrow=k,ncol=length(sigma))
k <- 100000 #Number of iterations
sigma <- seq(from=0.1,to=10,by=0.2)
for(i in 1:k){
for(j in 1:length(sigma)){
sup<-supsmu(x,y)
sup_mse[i,j] <- mean((m(x)-sup$y)^2)
}
}
Thanks for making the reproducible example! I prefer snowfall for my parallel processing, so here's how it looks in there.
install.packages('snowfall')
require(snowfall)
### wasn't sure what you were using for x or y
set.seed(1001)
x <- sample(seq(1,100),20)
y <- sample(seq(1,100),20)
k <- 100
sigma <- seq(0.1, 10, 0.2)
### makes a local cluster on 4 cores and puts the data each core will need onto each
sfInit(parallel=TRUE,cpus=4, type="SOCK",socketHosts=rep("localhost",4))
sfExport('x','y','k','sigma')
answers <- sfSapply(seq(1,k), function(M)
sapply(seq(1,length(sigma)), function(N)
mean((mean(x)-supsmu(x,y)$y)^2) ## wasn't sure what you mean by m(x) so guessed mean
)
)
sup_mse <- t(answers) ## will give you a matrix with length(sigma) columns and k rows
sfStop()
I remember reading somewhere that you only want to use sfSapply in the outer loops and then use your regular apply functions inside of that loop. Hope this helps!
I try to compare up to thousands of estimated beta distributions. Each beta distribution is characterized by the two shape parameters alpha & beta.
I now draw 100,000 samples of every distribution. As a final result I want to get an order of the distributions with the highest Probability in every sample draw.
My first approach was to use lapply for generating a matrix of N * NDRAWS numeric values which was consuming too much memory as N gets beyond 10,000. (10,000 * 100,000 * 8 Bytes)
So I decided to use a sequential approach of ordering every single draw, then cumsum the order of all draws and get the final order as shown in the example below:
set.seed(12345)
N=100
NDRAWS=100000
df <- data.frame(alpha=sample(1:20, N, replace=T), beta=sample(1:200, N, replace=T))
vec <- vector(mode = "integer", length = N )
for(i in 1:NDRAWS){
# order probabilities after a single draw for every theta
pos <- order(rbeta(N, shape1=df$alpha, shape2=df$beta) )
# sum up winning positions for every theta
vec[pos] <- vec[pos] + 1:N
}
# order thetas
ord <- order(-vec)
df[ord,]
This is only consuming N * 4 Bytes of memory, as there is no giant matrix but a single vector of length N. My Question now is, how to speed up this operation using snowfall (or any other multicore package) by taking advantage of my 4 CPU Cores, instead of using just one core???
# parallelize using snowfall pckg
library(snowfall)
sfInit( parallel=TRUE, cpus=4, type="SOCK")
sfLapply( 1:NDRAWS, function(x) ?????? )
sfStop()
Any help is appreciated!
This can be parallelized in the same way that one would parallelize random forest or bootstrapping. You just perform the sequential code on each of the workers but with each using a smaller number of iterations. That is much more efficient than splitting each iteration of the for loop into a separate parallel task.
Here's your complete example converted to use the foreach package with the doParallel backend:
set.seed(12345)
N=100
NDRAWS=100000
df <- data.frame(alpha=sample(1:20, N, replace=T),
beta=sample(1:200, N, replace=T))
library(doParallel)
nworkers <- detectCores()
cl <- makePSOCKcluster(nworkers)
clusterSetRNGStream(cl, c(1,2,3,4,5,6,7))
registerDoParallel(cl)
vec <- foreach(ndraws=rep(ceiling(NDRAWS/nworkers), nworkers),
.combine='+') %dopar% {
v <- integer(N)
for(i in 1:ndraws) {
pos <- order(rbeta(N, shape1=df$alpha, shape2=df$beta) )
v[pos] <- v[pos] + 1:N
}
v
}
ord <- order(-vec)
df[ord,]
Note that this gives different results than the sequential version because different random numbers are generated by the workers. I used the parallel random number support provided by the parallel package since that is good practice.
Well, the functionality is there. I'm not sure though what you'd be returning with each iteration.
Perhaps try this?
myFunc <- function(xx, N) {
pos <- order(rbeta(N, shape1=df$alpha, shape2=df$beta) )
vec[pos] + 1:N
}
Using doParallel will allow you to add results:
require(doParallel)
registerDoParallel(cores=4)
foreach(i=1:NDRAWS, .combine='+') %dopar% myFunc(i, N)