Identify duplicate values and remove them - r

I have a vector:
vec <- c(2,3,5,5,5,5,6,1,9,4,4,4)
I want to check if a particular value is repeated consecutively and if yes, keep the first two values and assign NA to the rest of the values.
For example, in the above vector, 5 is repeated 4 times, therefore I will keep the first two 5's and make the second two 5's NA.
Similarly, 4 is repeated three times, so I will keep the first two 4's and remove the third one.
In the end my vector should look like:
2,3,5,5,NA,NA,6,1,9,4,4,NA
I did this:
bad.values <- vec - binhf::shift(vec, 1, dir="right")
bad.repeat <- bad.values == 0
vec[bad.repeat] <- NA
[1] 2 3 5 NA NA NA 6 1 9 4 NA NA
I can only get it to work to keep the first 5 and 4 (rather than first two 5's or 4',4's).
Any solutions?

Another option with just base R functions:
rl <- rle(vec)
i <- unlist(lapply(rl$lengths, function(l) if (l > 2) c(FALSE,FALSE,rep(TRUE, l - 2)) else rep(FALSE, l)))
vec * NA^i
which gives:
[1] 2 3 5 5 NA NA 6 1 9 4 4 NA

I figured it out. I just had to change the argument to 2 in binhf::shift
vec <- c(2,3,5,5,5,5,6,1,9,4,4,4)
bad.values <- vec - binhf::shift(vec, 2, dir="right")
bad.repeat <- bad.values == 0
vec[bad.repeat] <- NA
[1] 2 3 5 5 NA NA 6 1 9 4 4 NA

I think this might work, if I got your problem right:
vec <- c(2,3,5,5,5,5,6,1,9,4,4,4)
diffs1<-vec-binhf::shift(vec,1,dir="right")
diffs2<-vec-binhf::shift(vec,2,dir="right")
get_zeros<-abs(diffs1)+abs(diffs2)
vec[which(get_zeros==0)]<-NA
I hope this helps!

This question may refer to a problem you encountered in a dataframe, not a vector. In any case, here's a tidyverse solution to both.
tibble(x = vec) %>%
group_by(x) %>%
mutate(mycol = ifelse(row_number()>2, NA, x) ) %>%
pull(mycol)

Related

RowSums NA + NA gives 0 [duplicate]

This question already has answers here:
There is pmin and pmax each taking na.rm, why no psum?
(3 answers)
Closed 6 years ago.
I'll just understand a (for me) weird behavior of the function rowSums. Imagine I have this super simple dataframe:
a = c(NA, NA,3)
b = c(2,NA,2)
df = data.frame(a,b)
df
a b
1 NA 2
2 NA NA
3 3 2
and now I want a third column that is the sum of the other two. I cannot use simply + because of the NA:
df$c <- df$a + df$b
df
a b c
1 NA 2 NA
2 NA NA NA
3 3 2 5
but if I use rowSums the rows that have NA are calculated as 0, while if there is only one NA everything works fine:
df$d <- rowSums(df, na.rm=T)
df
a b c d
1 NA 2 NA 2
2 NA NA NA 0
3 3 2 5 10
am I missing something?
Thanks to all
One option with rowSums would be to get the rowSums with na.rm=TRUE and multiply with the negated (!) rowSums of negated (!) logical matrix based on the NA values after converting the rows that have all NAs into NA (NA^)
rowSums(df, na.rm=TRUE) *NA^!rowSums(!is.na(df))
#[1] 2 NA 10
Because
sum(numeric(0))
# 0
Once you used na.rm = TRUE in rowSums, the second row is numeric(0). After taking sum, it is 0.
If you want to retain NA for all NA cases, it would be a two-stage work. I recommend writing a small function for this purpose:
my_rowSums <- function(x) {
if (is.data.frame(x)) x <- as.matrix(x)
z <- base::rowSums(x, na.rm = TRUE)
z[!base::rowSums(!is.na(x))] <- NA
z
}
my_rowSums(df)
# [1] 2 NA 10
This can be particularly useful, if the input x is a data frame (as in your case). base::rowSums would first check whether input is matrix or not. If it gets a data frame, it would convert it into a matrix first. Type conversion is in fact more costly than actual row sum computation. Note that we call base::rowSums two times. To reduce type conversion overhead, we should make sure x is a matrix beforehand.
For #akrun's "hacking" answer, I suggest:
akrun_rowSums <- function (x) {
if (is.data.frame(x)) x <- as.matrix(x)
rowSums(x, na.rm=TRUE) *NA^!rowSums(!is.na(x))
}
akrun_rowSums(df)
# [1] 2 NA 10

Complete.cases used on list of data frames

I'm trying to remove all the NA values from a list of data frames. The only way I have got it to work is by cleaning the data with complete.cases in a for loop. Is there another way of doing this with lapply as I had been trying for a while to no avail. Here is the code that works.
I start with
data_in <- lapply (file_name,read.csv)
Then have:
clean_data <- list()
for (i in seq_along(id)) {
clean_data[[i]] <- data_in[[i]][complete.cases(data_in[[i]]), ]
}
But what I tried to get to work was using lapply all the way like this.
comp <- lapply(data_in, complete.cases)
clean_data <- lapply(data_in, data_in[[id]][comp,])
Which returns this error "Error in [.default(xj, i) : invalid subscript type 'list' "
What I'd like to know is some alternatives or if I was going about this right. And why didn't the last example not work?
Thank you so much for your time. Have a nice day.
I'm not sure what you expected with
clean_data <- lapply(data_in, data_in[[id]][comp,])
The second parameter to lapply should be a proper function to which each member of the data_in list will be passed one at a time. Your expression data_in[[id]][comp,] is not a function. I'm not sure where you expected id to come from, but lapply does not create magic variables for you like that. Also, at this point comp is now a list itself of indices. You are making no attempt to iterate over this list in sync with your data_in list. If you wanted to do it in two separate steps, a more appropriate approach would be
comp <- lapply(data_in, complete.cases)
clean_data <- Map(function(d,c) {d[c,]}, data_in, comp)
Here we use Map to iterate over the data_in and comp lists simultaneously. They each get passed in to the function as a parameter and we can do the proper extraction that way. Otherwise, if we wanted to do it in one step, we could do
clean_data <- lapply(data_in, function(x) x[complete.cases(x),])
welcome to SO, please provide some working code next time
here is how i would do it with na.omit (since complete.cases only returns a logical)
(dat.l <- list(dat1 = data.frame(x = 1:2, y = c(1, NA)),
dat2 = data.frame(x = 1:3, y = c(1, NA, 3))))
# $dat1
# x y
# 1 1 1
# 2 2 NA
#
# $dat2
# x y
# 1 1 1
# 2 2 NA
# 3 3 3
Map(na.omit, dat.l)
# $dat1
# x y
# 1 1 1
#
# $dat2
# x y
# 1 1 1
# 3 3 3
Do you mean like the below?
> lst
$a
a
1 1
2 2
3 NA
4 3
5 4
$b
b
1 1
2 NA
3 2
4 3
5 4
$d
d e
1 NA 1
2 NA 2
3 3 3
4 4 NA
5 5 NA
> f <- function(x) x[complete.cases(x),]
> lapply(lst, f)
$a
[1] 1 2 3 4
$b
[1] 1 2 3 4
$d
d e
3 3 3
file_name[complete.cases(file_name), ]
complete.cases() returns only a logical value. This should do the job and returns only the rows with no NA values.

Choose some items in a dataframe and change them

I have a data frame with some information. Some data is NA. Something like:
id fact sex
1 1 3 M
2 2 6 F
3 3 NA <NA>
4 4 8 F
5 5 2 F
6 6 2 M
7 7 NA <NA>
8 8 1 F
9 9 10 M
10 10 10 M
I have to change fact by some rule(e.x. multiply by 3 elements, that have (data == "M")).
I tried survey$fact[survey$sex== "M"] <- survey$fact[survey$sex== "M"] * 3, but I have some error because of NA.
I know I can check if element is NA with is.na(x), and add this condition in [...], but I hope that exists more beautiful solution
I really like ifelse, it always seems to have the desired behaviour with respect to NA values for me.
survey$fact <- ifelse(survey$sex == "M", survey$fact * 3, survey$fact)
?ifelse shows that the first argument is the test, the second the value assigned if the test is true and the final argument the value if false. If you assign the original data.frame column as the false return value, it will assign rows for which the test fails without modifying them.
This is an extension of what you asked, to show that you can also test for NA values.
survey$fact <- ifelse(is.na(survey$sex), survey$fact * 2, survey$fact)
I also like that it's very readable.
which can filter those NAs:
survey$fact[which(survey$sex == "M")] <- survey$fact[which(survey$sex== "M")] * 3
There are many ways you can make that a little cleaner, e.g.:
males <- which(survey$sex == "M")
survey$fact[males] <- 3 * survey$fact[males]
or
survey <- within(survey, fact[males] <- 3 * fact[males])

R: How can I sum across variables, within cases, while counting NA as zero

Fake data for illustration:
df <- data.frame(a=c(1,2,3,4,5), b=(c(2,2,2,2,NA)),
c=c(NA,2,3,4,5)))
This would get me the answer I want IF it weren't for the NA values:
df$count <- with(df, (a==1) + (b==2) + (c==3))
Also, would there be an even more elegant way if I was only interested in, e.g. variables==2?
df$count <- with(df, (a==2) + (b==2) + (c==2))
Many thanks!
The following works for your specific example, but I have a suspicion that your real use case is more complicated:
df$count <- apply(df,1,function(x){sum(x == 1:3,na.rm = TRUE)})
> df
a b c count
1 1 2 NA 2
2 2 2 2 1
3 3 2 3 2
4 4 2 4 1
5 5 NA 5 0
but this general approach should work. For instance, your second example would be something like this:
df$count <- apply(df,1,function(x){sum(x == 2,na.rm = TRUE)})
or more generally you could allow yourself to pass in a variable for the comparison:
df$count <- apply(df,1,function(x,compare){sum(x == compare,na.rm = TRUE)},compare = 1:3)
Another way is to subtract your target vector from each row of your data.frame, negate and then do rowSums with na.rm=TRUE:
target <- 1:3
rowSums(!(df-rep(target,each=nrow(df))),na.rm=TRUE)
[1] 2 1 2 1 0
target <- rep(2,3)
rowSums(!(df-rep(target,each=nrow(df))),na.rm=TRUE)
[1] 1 3 1 1 0

Calculate cumulative sums of certain values

Assume you have a data frame like this:
df <- data.frame(Nums = c(1,2,3,4,5,6,7,8,9,10), Cum.sums = NA)
> df
Nums Cum.sums
1 1 NA
2 2 NA
3 3 NA
4 4 NA
5 5 NA
6 6 NA
7 7 NA
8 8 NA
9 9 NA
10 10 NA
and you want an output like this:
Nums Cum.sums
1 1 0
2 2 0
3 3 0
4 4 3
5 5 5
6 6 7
7 7 9
8 8 11
9 9 13
10 10 15
The 4. element of the column Cum.sum is the sum of 1 and 2, the 5. element of the Column Cum.sum is the sum of 2 and 3 and so on...
This means, I would like to build the cumulative sum of the first row and save it in the second row. However I don't want the normal cumulative sum but the sum of the element 2 rows above the current row plus the element 3 rows above the current row.
I allready tried to play a little bit around with the sum and cumsum function but I failed.
Any ideas?
Thanks!
You could use the embed function to create the appropriate lags, rowSums to sum, then lag appropriately (I used head).
df$Cum.sums[-(1:3)] <- head(rowSums(embed(df$Nums,2)),-2)
You don't need any special function, just use normal vector operations (these solutions are all equivalent):
df$Cum.sums[-(1:3)] <- head(df$Nums, -3) + head(df$Nums[-1], -2)
or
with(df, Cum.sums[-(1:3)] <- head(Nums, -3) + head(Nums[-1], -2))
or
df$Cum.sums[-(1:3)] <- df$Nums[1:(nrow(df)-3)] + df$Nums[2:(nrow(df)-2)]
I believe the first 3 sums SHOULD be NA, not 0, but if you prefer zeroes, you can initialize the sums first:
df$Cum.sums <- 0
Another solution, elegant and general, using matrix multiplication - and so very inefficient for large data. So it's not much practical, though a nice excercise:
len <- nrow(df)
sr <- 2 # number of rows to sum
lag <- 3
mat <- matrix(
head(c(
rep(0, lag * len),
rep(rep(1:0, c(sr, len - sr + 1)), len)
), len * len),
nrow = 10, byrow = TRUE
)
mat %*% df$Nums

Resources