is there a way of paning the bubble in the current view when there are regions which are outside the mapview?
E.g. https://dev2.gruppenunterkuenfte.de/nordrhein-westfalen__r187.html?vs=1
You can click on a bubble at the edge and you see them outside.
Using google: https://www.gruppenunterkuenfte.de/nordrhein-westfalen__r187.html?vs=1
will pan automatically in the full view ...
Regards
Chris
Might not be available out of the box, but something as follows could be done to check when opening the bubble and move the map center.
var checkBubble = function(evt) {
setTimeout(function() {
if(infoBubble && infoBubble.getState() == "open"){
var border = 50;
var objRect = infoBubble.getContentElement().parentElement.getBoundingClientRect();
var objStyleRight = Math.abs(parseInt(infoBubble.getContentElement().parentElement.style.right));
objStyleRight = objStyleRight ? objStyleRight : 0;
var mapRect = map.getElement().getBoundingClientRect();
var shiftX = 0;
var shiftY = 0;
// check, if infobubble isn't too far to up
if ((objRect.top-border) < mapRect.top) {
shiftY = (mapRect.top - (objRect.top-border));
}
// check, if infobubble isn't too far to the left
var objLeft = (objRect.left - objStyleRight);
if ((objLeft-border) < mapRect.left) {
shiftX = (mapRect.left - (objLeft-border));
} // check, if infobubble isn't too far to the right
else if ((objRect.right+border) > mapRect.right) {
shiftX = -(objRect.right - (mapRect.right-border));
}
if ((shiftX == 0) && (shiftY == 0)) {
return;
}
var currScreenCenter = map.geoToScreen(map.getCenter());
var newY = (currScreenCenter.y - shiftY);
var newX = (currScreenCenter.x - shiftX);
var newGeoCenter = map.screenToGeo(newX, newY);
map.setCenter(newGeoCenter, true);
}
}, 20);
}
map.addEventListener("mapviewchange",checkBubble);
Thanks a lot works great! I extend to the case that the bubble is outside at the bottom:
...
// check, if infobubble isn't too far to up
if ((objRect.top-border) < mapRect.top) {
shiftY = (mapRect.top - (objRect.top-border));
} else {
if ((objRect.bottom+border) > mapRect.bottom) {
shiftY = -(objRect.bottom - (mapRect.bottom-border));
}
}
...
Regards
Chris
I have a lot of css filter classes that can be applied to an image using the the CSS filter. My goal is to convert the image with the filter applied to dataURL.
To do so, I'm placing the image into a canvas then saving the image after I applied the filter. Here's an example
const img = this.img // my <img />
const canvas = document.createElement('canvas')
const context = canvas.getContext('2d')
context.filter = 'grayscale(2)'
context.drawImage(img, 0, 0)
const finalImg = canvas.toDataURL()
While this works fine applying a single filter, I have more than 30 filters made in my css class, and I would like to know if there's a way to apply a css class to a canvas object. Worst case scenario is for me to convert all of my filters into an array of string objects, but I'm just very curious. Thanks!
Link for reference to canvas context: https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
You can simply read the value returned by getComputedStyle(canvasElement).filter and use it as your context's filter.
var img=new Image();img.crossOrigin=1;img.onload=draw;
img.src="https://upload.wikimedia.org/wikipedia/commons/5/55/John_William_Waterhouse_A_Mermaid.jpg";
function draw() {
canvas.width = this.width/4; canvas.height = this.height/4;
var ctx = canvas.getContext('2d');
ctx.font = '15px sans-serif';
ctx.fillStyle = 'white';
for(var i=1; i<5; i++) {
// set the class
canvas.className = 'filter' + i;
// retrieve the filter value
ctx.filter = getComputedStyle(canvas).getPropertyValue('filter');
ctx.drawImage(img, 0,0, img.width/4, img.height/4);
ctx.filter = 'none';
ctx.fillText('filter' + i, 20, 20);
// export
canvas.toBlob(saveAsIMG);
}
ctx.drawImage(img, 0,0, img.width/4, img.height/4);
ctx.fillText('canvas - no filter', 20, 20);
}
function saveAsIMG(blob) {
var img = new Image();
img.onload = function(){URL.revokeObjectURL(img.src);};
img.src = URL.createObjectURL(blob);
document.body.appendChild(img);
}
.filter1 {
filter: blur(5px);
}
.filter2 {
filter: grayscale(60%) brightness(120%);
}
.filter3 {
filter: invert(70%);
}
.filter4 {
filter: none;
}
<canvas id="canvas"></canvas>
I need to view the segments and handles of the path that defines a SymbolItem. It is a related issue to this one but in reverse (I want the behavior displayed on that jsfiddle).
As per the following example, I can view the bounding box of the SymbolItem, but I cannot select the path itself in order to view its segments/handles. What am I missing?
function onMouseDown(event) {
project.activeLayer.selected = false;
// Check whether there is something on that position already. If there isn't:
// Add a circle centered around the position of the mouse:
if (event.item === null) {
var circle = new Path.Circle(new Point(0, 0), 10);
circle.fillColor = '#' + Math.floor(Math.random() * 16777215).toString(16);
var circleSymbol = new SymbolDefinition(circle);
multiply(circleSymbol, event.point);
}
// If there is an item at that position, select the item.
else {
event.item.selected = true;
}
}
function multiply(item, location) {
for (var i = 0; i < 10; i++) {
var next = item.place(location);
next.position.x = next.position.x + 20 * i;
}
}
Using SymbolDefinition/SymbolItem prevent you from changing properties of each symbol items.
The only thing you can do in this case is select all symbols which share a common definition.
To achieve what you want, you have to use Path directly.
Here is a sketch showing the solution.
function onMouseDown(event) {
project.activeLayer.selected = false;
if (event.item === null) {
var circle = new Path.Circle(new Point(0, 0), 10);
circle.fillColor = Color.random();
// just pass the circle instead of making a symbol definition
multiply(circle, event.point);
}
else {
event.item.selected = true;
}
}
function multiply(item, location) {
for (var i = 0; i < 10; i++) {
// use passed item for first iteration, then use a clone
var next = i === 0 ? item : item.clone();
next.position = location + [20 * i, 0];
}
}
Let me first clarify the problem statement. Check out this tweet:
https://twitter.com/jungledragon/status/926894337761345538
Next, click the image itself within the tweet. In the light box that appears, the menu bar below it takes on a meaningful color that is based on the actual pixels in the image itself. Even in this stress test, this is a difficult image given all the light pixels, does it do a fine job in picking an overall color that 1) represents the content of the image 2) is dark/contrasty enough to place white text on it:
I was simultaneously implementing a similar system before I even knew Twitter had this. Check out a preview below:
The examples in the screenshot are optimistic, as there are plenty of situations where the background is too light. Even in seemingly positive examples as seen in my screenshot, most of the time it does not pass the AA or AAA contrast check.
My current approach:
One-time per image, a JS runs that calculates the average color of
all pixels in the image. Note that the average color is not
necessarily a meaningful color, such as in the edge case of the
spider where the average would be close to white.
I store the RGB value in the database
Upon rendering the page (server-side) I dynamically set the
background color of the image's caption using a formula
My formula is to convert the RGB to HSL, and then to manipulate in particular the S and L values. Given them a notch, using min/max values to set a treshold. I've tried countless combinations.
Yet it seems like a never-ending struggle because color darkness and contrast are subject to human perception.
Hence my curiosity on how Twitter seems to have nailed this, in particular two aspects:
Finding a meaningful subject color (not the same as average or dominant color)
Toning that meaningful color in a way that it remains recognizable (hue) yet is contrasty enough to place light text on it, whilst passing at least the AA contrast check.
I've searched around, but cannot find any information on their implementation. Anybody aware of they do it? Or other proven methods to solve this puzzle end-to-end?
I took a peek at Twitter's markup to see what I could find, and, after running a bit of code in the browser's console, it seems like Twitter takes a color average over a flat distribution of pixels in the images and scales each of the RGB channels to values of 64 and below. This provides a pretty fast way to create a high-contrast background for light text while still retaining a reasonable color match. From what I can tell, Twitter doesn't perform any advanced subject-color-detection, but I can't say for sure.
Here's a quick-and-dirty demo I made to validate this theory. The top and left borders that appear around the images initially display the color Twitter uses. After running the snippet, a bottom and right border appears with the calculated color. Requires 9+ for IE users.
function processImage(img)
{
var imageCanvas = new ImageCanvas(img);
var tally = new PixelTally();
for (var y = 0; y < imageCanvas.height; y += config.interval) {
for (var x = 0; x < imageCanvas.width; x += config.interval) {
tally.record(imageCanvas.getPixelColor(x, y));
}
}
var average = new ColorAverage(tally);
img.style.borderRightColor = average.toRGBStyleString();
img.style.borderBottomColor = average.toRGBStyleString();
}
function ImageCanvas(img)
{
var canvas = document.createElement('canvas');
this.context2d = canvas.getContext('2d');
this.width = canvas.width = img.naturalWidth;
this.height = canvas.height = img.naturalHeight;
this.context2d.drawImage(img, 0, 0, this.width, this.height);
this.getPixelColor = function (x, y) {
var pixel = this.context2d.getImageData(x, y, 1, 1).data;
return { red: pixel[0], green: pixel[1], blue: pixel[2] };
}
}
function PixelTally()
{
this.totalPixelCount = 0;
this.colorPixelCount = 0;
this.red = 0;
this.green = 0;
this.blue = 0;
this.luminosity = 0;
this.record = function (colors) {
this.luminosity += this.calculateLuminosity(colors);
this.totalPixelCount++;
if (this.isGreyscale(colors)) {
return;
}
this.red += colors.red;
this.green += colors.green;
this.blue += colors.blue;
this.colorPixelCount++;
};
this.getAverage = function (colorName) {
return this[colorName] / this.colorPixelCount;
};
this.getLuminosityAverage = function () {
return this.luminosity / this.totalPixelCount;
}
this.getNormalizingDenominator = function () {
return Math.max(this.red, this.green, this.blue) / this.colorPixelCount;
};
this.calculateLuminosity = function (colors) {
return (colors.red + colors.green + colors.blue) / 3;
};
this.isGreyscale = function (colors) {
return Math.abs(colors.red - colors.green) < config.greyscaleDistance
&& Math.abs(colors.red - colors.blue) < config.greyscaleDistance;
};
}
function ColorAverage(tally)
{
var lightness = config.lightness;
var normal = tally.getNormalizingDenominator();
var luminosityAverage = tally.getLuminosityAverage();
// We won't scale the channels up to 64 for darker images:
if (luminosityAverage < lightness) {
lightness = luminosityAverage;
}
this.red = (tally.getAverage('red') / normal) * lightness
this.green = (tally.getAverage('green') / normal) * lightness
this.blue = (tally.getAverage('blue') / normal) * lightness
this.toRGBStyleString = function () {
return 'rgb('
+ Math.round(this.red) + ','
+ Math.round(this.green) + ','
+ Math.round(this.blue) + ')';
};
}
function Configuration()
{
this.lightness = 64;
this.interval = 100;
this.greyscaleDistance = 15;
}
var config = new Configuration();
var indicator = document.getElementById('indicator');
document.addEventListener('DOMContentLoaded', function () {
document.forms[0].addEventListener('submit', function (event) {
event.preventDefault();
config.lightness = Number(this.elements['lightness'].value);
config.interval = Number(this.elements['interval'].value);
config.greyscaleDistance = Number(this.elements['greyscale'].value);
indicator.style.visibility = 'visible';
setTimeout(function () {
processImage(document.getElementById('image1'));
processImage(document.getElementById('image2'));
processImage(document.getElementById('image3'));
processImage(document.getElementById('image4'));
processImage(document.getElementById('image5'));
indicator.style.visibility = 'hidden';
}, 50);
});
});
label { display: block; }
img { border-width: 20px; border-style: solid; width: 200px; height: 200px; }
#image1 { border-color: rgb(64, 54, 47) white white rgb(64, 54, 47); }
#image2 { border-color: rgb(46, 64, 17) white white rgb(46, 64, 17); }
#image3 { border-color: rgb(64, 59, 46) white white rgb(64, 59, 46); }
#image4 { border-color: rgb(36, 38, 20) white white rgb(36, 38, 20); }
#image5 { border-color: rgb(45, 53, 64) white white rgb(45, 53, 64); }
#indicator { visibility: hidden; }
<form id="configuration_form">
<p>
<label>Lightness:
<input name="lightness" type="number" min="1" max="255" value="64">
</label>
<label>Pixel Sample Interval:
<input name="interval" type="number" min="1" max="255" value="100">
(Lower values are slower)
</label>
<label>Greyscale Distance:
<input name="greyscale" type="number" min="1" max="255" value="15">
</label>
<button type="submit">Run</button> (Wait for images to load first!)
</p>
<p id="indicator">Running...this may take a few moments.</p>
</form>
<p>
<img id="image1" crossorigin="Anonymous" src="https://pbs.twimg.com/media/DNz9fNqWAAAtoGu.jpg:large">
<img id="image2" crossorigin="Anonymous" src="https://pbs.twimg.com/media/DOdX8AGXUAAYYmq.jpg:large">
<img id="image3" crossorigin="Anonymous" src="https://pbs.twimg.com/media/DOYp0HQX4AEWcnI.jpg:large">
<img id="image4" crossorigin="Anonymous" src="https://pbs.twimg.com/media/DOQm1NzXkAEwxG7.jpg:large">
<img id="image5" crossorigin="Anonymous" src="https://pbs.twimg.com/media/DN6gVnpXUAIxlxw.jpg:large">
</p>
The code ignores white, black, and grey-ish pixels when determining the dominant color from the image which gives us a more vivid saturation despite reducing the brightness of the color. The computed color is pretty close to the original color from Twitter for most of the images.
We can improve this experiment by changing which parts of the image we calculate the average color from. The example above selects pixels uniformly across the whole image, but we can try using only pixels near the edges of the image—so the color blends more seamlessly—or we can try averaging color values from the center of the image to highlight the subject. I'll expand on the code and update this answer later when I have some more time.
Something like the example below might be found helpful for what you want to accomplish.
function getAverageColourAsRGB(img) {
var canvas = document.createElement('canvas'),
context = canvas.getContext && canvas.getContext('2d'),
rgb = {
r: 102,
g: 102,
b: 102
},
pixelInterval = 5,
count = 0,
i = -4,
data, length;
if (!context) {
return rgb;
}
var height = canvas.height = img.naturalHeight || img.offsetHeight || img.height,
width = canvas.width = img.naturalWidth || img.offsetWidth || img.width;
context.drawImage(img, 0, 0);
try {
data = context.getImageData(0, 0, width, height);
} catch (e) {
console.error(e);
return rgb;
}
data = data.data;
length = data.length;
while ((i += pixelInterval * 4) < length) {
count++;
rgb.r += data[i];
rgb.g += data[i + 1];
rgb.b += data[i + 2];
}
rgb.r = Math.floor(rgb.r / count);
rgb.g = Math.floor(rgb.g / count);
rgb.b = Math.floor(rgb.b / count);
return rgb;
}
function getContrastYIQ(r, g, b) {
var yiq = ((r * 299) + (g * 587) + (b * 114)) / 1000;
return (yiq >= 128) ? '#000' : '#FFF';
}
function rgb2hex(rgb) {
rgb = rgb.match(/^rgba?[\s+]?\([\s+]?(\d+)[\s+]?,[\s+]?(\d+)[\s+]?,[\s+]?(\d+)[\s+]?/i);
return (rgb && rgb.length === 4) ? "#" +
("0" + parseInt(rgb[1], 10).toString(16)).slice(-2) +
("0" + parseInt(rgb[2], 10).toString(16)).slice(-2) +
("0" + parseInt(rgb[3], 10).toString(16)).slice(-2) : '';
}
function convertHex(hex) {
hex = hex.replace('#', '');
if (hex.length === 3) {
hex = hex + hex;
}
r = parseInt(hex.substring(0, 2), 16);
g = parseInt(hex.substring(2, 4), 16);
b = parseInt(hex.substring(4, 6), 16);
return [r, g, b];
}
function colorSubH(colorA, colorB) {
rgbA = convertHex(colorA);
rgbB = convertHex(colorB);
c = [];
for (i = 0; i < rgbA.length; i++) {
c.push(parseInt((rgbA[i] + rgbB[i]) / 2));
}
return rgb2hex("rgb(" + c.join(",") + ")");
}
var myImg = document.getElementById("img1");
var color = getAverageColourAsRGB(myImg);
var colorArray = [color.r, color.g, color.b];
var bgColor = rgb2hex("rgb(" + colorArray.join(","));
var txtColor = getContrastYIQ(color.r, color.g, color.b)
var subHColor = colorSubH(txtColor, bgColor);
var footer = document.getElementsByClassName("imgFooter")[0];
footer.style.backgroundColor = bgColor;
footer.style.color = txtColor;
var span = footer.querySelector("span");
span.style.color = subHColor;
.main {
width: 25rem;
height: 100%;
}
img {
width: 100%;
height: auto;
margin-bottom: 0;
}
.main .imgFooter {
position: relative;
height: 2rem;
display: block;
color: #000;
width: 23rem;
bottom: 0;
margin-top: -4rem;
padding: 1rem;
}
<div class="main">
<img id="img1" src=""
/>
<div class="imgFooter">
Header
<br>
<span>
Sub-header
</span>
</div>
</div>
</div>
I have a div with absolute positioning set to allow vertical scrolling. My app includes drag & drop facilities that rely on me determining the coordinates of elements when events are fired.
The offsets I use to calculate elements positions (i.e. element.offsetLeft & element.offsetTop) only relate to original position of the element and do not account for changes in position that result from the user having scrolled. I figured I could add in a correction if I could calculate the distance scrolled but I can't see any way to do that (unlike with window scrolling).
Would really appreciate any suggestions.
Take a look at the scrollTop and scrollLeft properties of the div container.
Here's a cross-browser solution that finds an element's position taking into account scrolling div/s and window scroll:
var isIE = navigator.appName.indexOf('Microsoft Internet Explorer') != -1;
function findElementPosition(_el){
var curleft = 0;
var curtop = 0;
var curtopscroll = 0;
var curleftscroll = 0;
if (_el.offsetParent){
curleft = _el.offsetLeft;
curtop = _el.offsetTop;
/* get element scroll position */
var elScroll = _el;
while (elScroll = elScroll.parentNode) {
curtopscroll = elScroll.scrollTop ? elScroll.scrollTop : 0;
curleftscroll = elScroll.scrollLeft ? elScroll.scrollLeft : 0;
curleft -= curleftscroll;
curtop -= curtopscroll;
}
/* get element offset postion */
while (_el = _el.offsetParent) {
curleft += _el.offsetLeft;
curtop += _el.offsetTop;
}
}
/* get window scroll position */
var offsetX = isIE ? document.body.scrollLeft : window.pageXOffset;
var offsetY = isIE ? document.body.scrollTop : window.pageYOffset;
return [curtop + offsetY,curleft + offsetX];
}
This is what I'm implementing as a correction in case anyone's interested.
Thanks guys.
/*
Find a html element's position.
Adapted from Peter-Paul Koch of QuirksMode at http://www.quirksmode.org/js/findpos.html
*/
function findPos(obj)
{
var curleft = 0;
var curtop = 0;
var curxscroll = 0;
var curyscroll =0;
while(obj && obj.offsetParent)
{
curyscroll = obj.offsetParent.scrollTop || 0;
curxscroll = obj.offsetParent.scrollLeft || 0;
curleft += obj.offsetLeft - curxscroll;
curtop += obj.offsetTop - curyscroll;
obj = obj.offsetParent;
}
return [curleft,curtop];
}