out-mode parameters in scheme recursive function - recursion

Reader beware: Clueless about functional programming and even more clueless about Scheme.
I have a recursive function in Scheme. In the non-base-case portion, the function calls itself twice, comparing the two calls in an if statement. I need to return the result that is greater. So... what I'm currently doing is:
(if (> (recursive-call a b-1) (recursive-call a-1 b))
(recursive-call a b-1)
(recursive-call a-1 b))
Which obviously requires that I make 3 recursive calls instead of 2.
Is there a way to reference the value of the recursive calls from the if statement? I am not allowed to define additional functions or use let. I'm thinking it has to do with out-mode parameters but don't know how to use, assign, or access the value of an out-mode parameter. When I asked the professor, I was pointed to parameter passing methods in functional languages as well as the general process of a function return. It wasn't helpful in the least. I can't post the full code as it's an assignment for a class. Any chance this is enough for someone to point me in the right direction?
Note: The only constructs we're allowed are null?, car, cdr, else, lcm, +, >, if, parameters to the recursive function (which must be a list and numbers only), integer literals, and parenthesis. No use of max, define, or let, unfortunately.

Note: b-1 and a-1 are names for variables. If you wanted a subtraction you'd use (- a 1). I'll use (- a 1) in my answer, but if it really was a variable you can just replace it.
The obvious way to do this particular logic without restrictions is:
;; return the largest of the two
(max (recursive-call a (- b 1))
(recursive-call (- a 1) b))
The standard Scheme way would be to bind values you use more than once in variables using let so that you don't do the computation more than you need to:
;; cache computed values in local bindings
(let ((a (recursive-call a (- b 1)))
(b (recursive-call (- a 1) b)))
(if (> a b) a b))
Since you are restricted to not use either of those you can rewrite the let version to its primitive form. A let can be rewritten like this:
(let ((ba va) (bb vb))
...)
; ===
((lambda (ba bb)
...)
va
vb)
I guess you should be able to figure it out from here.

Related

What are the merits of letrec as a programming language feature

I've looked at everything I can find about letrec, and I still don't understand what it brings to a language as a feature. It seems like everything expressible with letrec could just as easily be written as a recursive function. But are there any reasons to expose letrec as a feature of a programming language, if the language already supports recursive functions? Why do several languages expose both?
I get that letrec might be used to implement other features including recursive functions, but that's not relevant to why it should itself be a feature. I've also read that some people find it more readable than recursive functions in some lisps, but again this is not relevant, because the designer of the language can make an effort to make recursive functions readable enough to not need another feature. Finally, I've been told that letrec makes it possible to express some kinds of recursive values more succinctly, but I have yet to find a motivating example.
TL;DR: define is letrec. This is what enables us to write recursive defintions in the first place.
Consider
let fact = fun (n => (n==0 -> 1 ; n * fact (n-1)))
To what entity does the name fact inside the body of this definiton refer? With let foo = val, val is defined in terms of already known entities, so it can't refer to foo which is not defined yet. In terms of scope this can be said (and usually is) that the RHS of the let equation is defined in the outer scope.
The only way for the inner fact to actually point at the one being defined, is to use letrec, where the entity being defined is allowed to refer to the scope in which it is being defined. So while causing evaluation of an entity while its definition is in progress is an error, storing a reference to its (future, at this point in time) value is fine -- in the case of using letrec that is.
The define you refer to, is just letrec under another name. In Scheme as well.
Without the ability of an entity being defined to refer to itself, i.e. in languages with non-recursive let, to have recursion one has to resort to the use of arcane devices such as the y-combinator. Which is cumbersome and usually inefficient. Another way is the definitions like
let fact = (fun (f => f f)) (fun (r => n => (n==0 -> 1 ; n * r r (n-1))))
So letrec brings to the table the efficiency of implementation, and convenience for a programmer.
The quesion then becomes, why expose the non-recursive let? Haskell indeed does not. Scheme has both letrec and let. One reason might be for completeness. Another might be a simpler implementation for let, with less self-referential run-time structures in memory making it easier on the garbage collector.
You ask for a motivational example. Consider defining Fibonacci numbers as a self-referential lazy list:
letrec fibs = {0} + {1} + add fibs (tail fibs)
With non-recursive let another copy of the list fibs will be defined, to be used as the input to the element-wise addition function add. Which will cause the definition of another copy of fibs for this one to be defined in its terms. And so on; accessing the nth Fibonacci number will cause a chain of n-1 lists to be created and maintained at run-time! Not a pretty picture.
And that's assuming the same fibs was used for tail fibs as well. If not, all bets are off.
What is needed is that fibs uses itself, refers to itself, so only one copy of the list is maintained.
NB: Although this is not a Scheme specific problem I'm using Scheme to demonstrate the differences. Hope you can read a little lisp code
A letrec is just a special let where the bindings themselves are defined before the expressions that represent their values are evaluated. Imagine this:
(define (fib n)
(let ((fib (lambda (n a b)
(if (zero? n)
a
(fib (- n 1) b (+ a b))))))
(fib n))
This code fails since while fib does exist in the body of the let it does exist in the closure it defines since the binding didn't exist when the lambda was evaluated. To fix this letrec comes to the rescue:
(define (fib n)
(letrec ((fib (lambda (n a b)
(if (zero? n)
a
(fib (- n 1) b (+ a b))))))
(fib n))
That letrec is just syntax that does something like this:
(define (fib n)
(let ((fib 'undefined))
(let ((tmp (lambda (n a b)
(if (zero? n)
a
(fib (- n 1) b (+ a b))))))
(set! fib tmp))
(fib n)))
So here you clearly see fib exists when the lambda gets evaluated and the binding is later set to the closure itself. The binding is the same, only it's pointer has changed. It's circular reference 101..
So what happens when you make a global function? Clearly if it is to recurse it needs to exist before the lambda is evaluated or the environment has to be mutated. It needs to fix the same problem here too.
In a functional language implementation where mutation is not ok you can solve this problem with a Y (or Z) combinator.
If you are interested in how languages are implemented I suggest you start at Matt Mights articles.

Using Default Optional argument and recur together in Clojure

I am able to set a default argument and do a regular recursion with it, but for some reason I cannot do with recur for tail optimization... I keep getting an java.lang.UnsupportedOperationException: nth not supported on this type: Long error.
For example, for a Tail Call Factorial, here is what works, but isn't optimized for tail call recursion and will fail for large recursion stacks.
(defn foo [n & [optional]]
(if (= n 0) (or optional 1)
(foo (dec n) (*' (or optional 1) n))))
And I call this by (foo 3)
And when I try this to get TCO, I get the unsupported operation error...
(defn foo [n & [optional]]
(if (= n 0) (or optional 1)
(recur (dec n) (*' (or optional 1) n))))
And I call this one the same way (foo 3)
Why is this difference causing an error? How exactly would I be able to do TCO with optional default arguments?
Thank you!
EDIT:
and when I try to take out the (or optional 1) in the recursion call and make it just optional , i get a null exception error... Which makes sense.
This also does not get fixed when I try to remove the ' from *' in the recursion call
EDIT: I would also prefer to do this without loop as well
It is a known issue:
Recur doesn't re-enter the function, it just goes back to the top (the vararging doesn't happen again) ... recur with a collection and you will be fine.
I personally feel it should either be mentioned in the recur docstring, or at least appear in the doc. Takes a bit of digging to understand what's happening (I had to check Clojure compiler source along with the compiled classes.)
Why is this difference causing an error?
In short, it's trying to destructure a Long, which it can't
Straight foo call
Takes n arguments
Automatically puts everything after the first argument (n) into a seq behind the scenes, which can be destructured
recur call to foo
Takes exactly 2 arguments
First argument: n
Second argument: Something seqable with the rest of the arguments
How exactly would I be able to do TCO with optional default arguments?
Simply wrap the second argument to recur like so:
(defn foo [n & [optional]]
(if (= n 0) (or optional 1)
(recur (dec n) [(*' (or optional 1) n)])))
(foo 3)
;;=> 6
Recommendations
Although he didn't answer your questions, #DanielCompton's recommendation is the way to go to completely avoid the problem in the first place in a clearer and more efficient way
You can give a function multiple different arities. This might be what you're after?
(defn foo
([n]
(foo n 1))
([n optional]
(if (= n 0)
(or optional 1)
(recur (dec n) (*' (or optional 1) n)))))
I don't quite understand why there is an error, but recur wouldn't normally be used in a function with optional arguments.
Edit: after reading the other answer links, I understand the problem now. recur doesn't destructure the rest args like it does when you call the function. If you recur with a collection as the second arg, it will work, but it is probably still better to be explicit with two different arities:
(defn foo [n & [optional]]
(if (= n 0)
(or optional 1)
(recur (dec n) [(*' (or optional 1) n)])))

How to test if two functions are the same?

I found a code snippet somewhere online:
(letrec
([id (lambda (v) v)]
[ctx0 (lambda (v) `(k ,v))]
.....
.....
(if (memq ctx (list ctx0 id)) <---- condition always return false
.....
where ctx is also a function:
However I could never make the test-statement return true.
Then I have the following test:
(define ctx0 (lambda (v) `(k ,v)))
(define ctx1 (lambda (v) `(k ,v)))
(eq? ctx0 ctx1)
=> #f
(eqv? ctx0 ctx1)
=> #f
(equal? ctx0 ctx1)
=> #f
Which make me suspect that two function are always different since they have different memory location.
But if functions can be compared against other functions, how can I test if two function are the same? and what if they have different variable name? for example:
(lambda (x) (+ x 1)) and (lambda (y) (+ y 1))
P.S. I use DrRacket to test the code.
You can’t. Functions are treated as opaque values: they are only compared by identity, nothing more. This is by design.
But why? Couldn’t languages implement meaningful ways to compare functions that might sometimes be useful? Well, not really, but sometimes it’s hard to see why without elaboration. Let’s consider your example from your question—these two functions seem equivalent:
(define ctx0 (lambda (v) `(k ,v)))
(define ctx1 (lambda (v) `(k ,v)))
And indeed, they are. But what would comparing these functions for equality accomplish? After all, we could just as easily implement another function:
(define ctx2 (lambda (w) `(k ,w)))
This function is, for all intents and purposes, identical to the previous two, but it would fail a naïve equality check!
In order to decide whether or not two values are equivalent, we must define some algorithm that defines equality. Given the examples I’ve provided thus far, such an algorithm seems obvious: two functions should be considered equal if (and only if) they are α-equivalent. With this in hand, we can now meaningfully check if two functions are equal!
...right?
(define ctx3 (lambda (v) (list 'k v)))
Uh, oh. This function does exactly the same thing, but it’s not implemented exactly the same way, so it fails our equality check. Surely, though, we can fix this. Quasiquotation and using the list constructor are pretty much the same, so we can define them to be equivalent in most circumstances.
(define ctx4 (lambda (v) (reverse (list v 'k))))
Gah! That’s also operationally equivalent, but it still fails our equivalence algorithm. How can we possibly make this work?
Turns out we can’t, really. Functions are units of abstraction—by their nature, we are not supposed to need to know how they are implemented, only what they do. This means that function equality can really only be correctly defined in terms of operational equivalence; that is, the implementation doesn’t matter, only the behavior does.
This is an undecidable problem in any nontrivial language. It’s impossible to determine if any two functions are operationally equivalent because, if we could, we could solve the halting problem.
Programming languages could theoretically provide a best-effort algorithm to determine function equivalency, perhaps using α-equivalency or some other sort of metric. Unfortunately, this really wouldn’t be useful—depending on the implementation of a function rather than its behavior to determine the semantics of a program breaks a fundamental law of functional abstraction, and as such any program that depended on such a system would be an antipattern.
Function equality is a very tempting problem to want to solve when the simple cases seem so easy, but most languages take the right approach and don’t even try. That’s not to say it isn’t a useful idea: if it were possible, it would be incredibly useful! But since it isn’t, you’ll have to use a different tool for the job.
Semantically, two function f and g are equal if they agree for every input, i.e. if for all x, we have (= (f x) (g x)). Of course, there's no way to test that for every possible value of x.
If all you want to do is be reasonably confident that (lambda (x) (+ x 1)) and (lambda (y) (+ y 1)) are the same, then you might try asserting that
(map (lambda (x) (+ x 1)) [(-5) (-4) (-3) (-2) (-1) 0 1 2 3 4 5])
and
(map (lambda (y) (+ y 1)) [(-5) (-4) (-3) (-2) (-1) 0 1 2 3 4 5])
are the same in your unit tests.

Why is lambda not a function

For Racket programming language, why is lambda not considered a function?
For example, it can't be defined as a higher order function like this.
(define (my-lambda args body)
(lambda args body))
There's a key distinction that your question is missing:
lambda is syntax.
Procedures are values.
A lambda form is a form of expression whose value is a procedure. The question whether "lambda is a function" starts off with a type error, so to speak, because lambdas and procedures don't live in the same world.
But let's set that aside. The other way to look at this is by thinking of it in terms of evaluation rules. The default Scheme evaluation rule, for the application of a procedure to arguments, can be expressed in pseudo-code like this:
(define (eval-application expr env)
(let ((values
;; Evaluate each subexpression in the same environment as the
;; enclosing expression, and collect the result values.
(map (lambda (subexpr) (eval subexpr env))
expr)))
;; Apply the first value (which must be a procedure) to the
;; other ones in the results.
(apply (car values) (cdr values))))
In English:
Evaluate all of the subexpressions in the same environment as the "parent".
apply the first result (which must have evaluated to a procedure) to the list of the rest.
And now, another reason lambda can't be a procedure is that this evaluation rule doesn't work for lambda expressions. In particular, the point of lambda is to not evaluate its body right away! This, in particular, is what afflicts your my-lambda—if you try to use it this way:
(my-lambda (x) (+ x x))
...the (x) in the middle must be immediately evaluated as an invocation of a procedure named x in the environment where the whole expression appears. The (+ x x) must also be immediately evaluated.
So lambda requires its own evaluation rule. As Basile's answer points out, this is normally implemented as a primitive in the Scheme system implementation, but we can sketch it in pseudocode with something like this:
;;;
;;; Evaluate an expression of this form, returning a procedure:
;;;
;;; (lambda <formals> <body> ...)
;;;
(define (eval-lambda expr env)
(let ((formals (second expr))
(body (cddr expr)))
;; We don't evaluate `body` right away, we return a procedure.
(lambda args
;; `formals` is never evaluated, since it's not really an
;; expression on its own, but rather a subpart that cannot
;; be severed from its enclosing `lambda`. Or if we want to
;; say it all fancy, the `formals` is *syncategorematic*...
(let ((bindings (make-bindings formals args)))
;; When the procedure we return is called, *then* we evaluate
;; the `body`--but in an extended environment that binds its
;; formal parameters to the arguments supplied in that call.
(eval `(begin ,#body) (extend-environment env bindings))))))
;;;
;;; "Tie" each formal parameter of the procedure to the corresponding
;;; argument values supplied in a given call. Returns the bindings
;;; as an association list.
;;;
(define (make-bindings formals args)
(cond ((symbol? formals)
`((,formals . args)))
((pair? formals)
`((,(car formals) . ,(car args))
,#(make-bindings (cdr formals) (cdr args))))))
To understand this pseudocode, the time-tested thing is to study one of the many Scheme books that demonstrate how to build a meta-circular interpreter (a Scheme interpreter written in Scheme). See for example this section of Structure and Interpretation of Computer programs.
lambda needs to be a core language feature (like if, let, define are) in Scheme because it is constructing a closure so needs to manage the set of closed or free variables (and somehow put their binding in the closure).
For example:
(define (translate d) (lambda (x) (+ d x)))
When you invoke or evaluate (translate 3) the d is 3 so the dynamically constructed closure should remember that d is bound to 3. BTW, you generally want the result of (translate 3) and of (translate 7) be two different closures sharing some common code (but having different bindings for d).
Read also about λ-calculus.
Explaining that all in details requires an entire book. Fortunately, C. Queinnec has written it, so read his Lisp In Small Pieces book.
(If you read French, you could read the latest French version of that book)
See also the Kernel programming language.
Read also wikipage about evaluation strategy.
PS. You could, and some Lisp implementations (notably MELT and probably SBCL) do that, define lambda as some macro -e.g. which would expand to building some closure in an implementation specific way (but lambda cannot be defined as a function).
A function call (e0 e1 e2) is evaluated like this
e0 is evaluated, the result is (hopefully) a function f
e1 is evaluated, the result is a value v1
e2 is evaluated, the result is a value v2
The function body of f is evaluated in an environment in which
the formal parameters are bound to the values v1 and v2.
Note that all expressions e0, e1, and, e2 are evaluated before the body of the function is activated.
This means that a function call like (foo #t 2 (/ 3 0)) will result in an error when (/ 3 0) is evaluated - before control is handed over to the body of foo.
Now consider the special form lambda. In (lambda (x) (+ x 1)) this creates a function of one variable x which when called with a value v will compute (+ v 1).
If in contrast lambda were a function, then the expressions (x) and (+ x 1) are evaluated before the body of lambda is activated. And now (x) will most likely produce an error - since (x) means call the function x with no arguments.
In short: Function calls will always evaluate all arguments, before the control is passed to the function body. If some expressions are not to be evaluated a special form is needed.
Here lambda is a form, that don't evaluate all subforms - so lambda needs to be a special form.
In Scheme lingo we use the term procedure instead of function throughout the standard report. Thus since this is about scheme dialects I'll use the term procedure.
In eager languages like standard #!racket and #!r6rs procedures get their arguments evaluated before the body is evaluated with the new lexical environment. Thus since if and lambda has special evaluation rules than for procedures special forms and macros are the way to introduce new syntax.
In a lazy language like #!lazy racket evaluation is by need and thus many forms that are implemented as macros/special forms in an eager language can be implemented as procedure. eg. you can make if as a procedure using cond but you cannot make cond using if because the terms themselves would be evaluated as forms on access and eg (cond (#t 'true-value)) would fail since #t is not a procedure. lambda has similar issue with the argument list.

Why is cond a special form in Scheme, rather than a function?

(defun triangle-using-cond (number)
(cond
((<= number 0) 0) ; 1st
((= number 1) 1) ; 2nd
((> number 1) ; 3rd
;; 4th
(+ number
(triangle-using-cond (1- number))))))
Things that I know about Cond
It allows multiple test and alternative expressions
It has pre-specified evaluation order. For instance, the first condition will always evaluated whether it is right or not
One thing that I cannot distinguish is that what makes cond different from a function!
A function call (e0 e1 e2) is evaluated like this
1. e0 is evaluated, the result is (hopefully) a function f
2. e1 is evaluated, the result is a value v1
3. e2 is evaluated, the result is a value v2
4. The function body of `f` is evaluated in an environment in which
the formal parameters are bound to the values `v1` and `v2`.
Note that all expressions e0, e1, and, e2 are evaluated before the body of the function is activated.
This means that a function call like (foo #t 2 (/ 3 0)) will result in an error when (/ 3 0) is evaluated - before control is handed over to the body of foo.
Now consider the special form if. In (if #t 2 (/ 3 0)) the expressions #t is evaluated and since the value non-false, the second expression 2 is evaluated and the resulting value is 2. Here (/ 3 0) is never evaluated.
If in contrast if were a function, then the expressions #t, 2, and, (/ 3 0) are evaluated before the body of is activated. And now (/ 3 0) will produce an error - even though the value of that expressions is not needed.
In short: Function calls will always evaluate all arguments, before the control is passed to the function body. If some expressions are not to be evaluated a special form is needed.
Here if and cond are examples of forms, that don't evaluate all subexpressions - so they they need to be special forms.
If cond were not a special form then the expression:
((> number 1) ;;3rd
(+ number (triangle-using-cond (1- number))))
would cause either:
an infinite loop because triangle-using-cond would keep calling itself recursively via the tail call (triangle-using-cond (1- number)).
or, the last expression would try to apply the value #f or #t as a function (which in a type-2 Lisp such as ANSI Common Lisp is possible, but not possible in a type-1 Lisp such as Racket or Scheme) and produce an error.
What makes cond a special form is that its arguments are evaluated lazily whereas functions in Scheme or Common Lisp evaluate their arguments eagerly.
As already answered, all arguments to a call to some function f are evaluated before the result of applying f is computed. Does it however mean that cond, or if, or both should be special forms?
Well, first, if you have if, you can easily simulate a cond with nested tests. Conversely, if is just a degenerate form of cond. So you can say that it is sufficient to have one of them a special form. Let's choose if because it is simpler to specify.
So shall if be special?
It doesn't really need to...
If the underlying question is "is if expressible in terms of a smaller set of special forms?", then the answers is yes: just implement if in terms of functions:
(define true-fn (lambda (then else) (then)))
(define false-fn (lambda (then else) (else)))
Whenever you can return a boolean, you return one of the above function instead.
You could for example decide to bind #t and #f to those functions.
Notice how they call one of the two input parameters.
((pair? x) ;; returns either true-fn or false-fn
(lambda () (+ x 1))
(lambda () x))
...but why code in lambda calculus?
Evaluating code conditionally is really a fundamental operation of computing. Trying to find a minimal special forms where you cannot express that directly leads to a poorer programming language from the perspective of the programmer, however "clean" the core language is.
From a certain point of view, the if form (or cond) is necessary because without them it becomes really hard to express conditional execution in a way that a compiler/interpreter can handle efficiently.
This document referenced by uselpa discuss using closures to implement if, and concludes:
However, the syntactic inconvenience would be so great that even
Scheme defines if as a special form.

Resources