How can I prove irreflexivity of an inductively defined relation in Isabelle? - isabelle

Consider as an example the following definition of inequality of natural numbers in Isabelle:
inductive unequal :: "nat ⇒ nat ⇒ bool" where
zero_suc: "unequal 0 (Suc _)" |
suc_zero: "unequal (Suc _) 0" |
suc_suc: "unequal n m ⟹ unequal (Suc n) (Suc m)"
I want to prove irreflexivity of unequal, that is, ¬ unequal n n. For illustration purposes let me first prove the contrived lemma ¬ unequal (n + m) (n + m):
lemma "¬ unequal (n + m) (n + m)"
proof
assume "unequal (n + m) (n + m)"
then show False
proof (induction "n + m" "n + m" arbitrary: n m)
case zero_suc
then show False by simp
next
case suc_zero
then show False by simp
next
case suc_suc
then show False by presburger
qed
qed
In the first two cases, False must be deduced from the assumptions 0 = n + m and Suc _ = n + m, which is trivial.
I would expect that the proof of ¬ unequal n n can be done in an analogous way, that is, according to the following pattern:
lemma "¬ unequal n n"
proof
assume "unequal n n"
then show False
proof (induction n n arbitrary: n)
case zero_suc
then show False sorry
next
case suc_zero
then show False sorry
next
case suc_suc
then show False sorry
qed
qed
In particular, I would expect that in the first two cases, I get the assumptions 0 = n and Suc _ = n. However, I get no assumptions at all, meaning that I am asked to prove False from nothing. Why is this and how can I conduct the proof of inequality?

You are inducting over unequal. Instead, you should induct over n, like this:
lemma "¬ (unequal n n)"
proof (induct n)
case 0
then show ?case sorry
next
case (Suc n)
then show ?case sorry
qed
Then we can use Sledgehammer on each of the subgoals marked with sorry. Sledgehammer (with CVC4) recommends us to complete the proof as follows:
lemma "¬ (unequal n n)"
proof (induct n)
case 0
then show ?case using unequal.cases by blast
next
case (Suc n)
then show ?case using unequal.cases by blast
qed

The induction method handles variable instantiations and non-variable instantiations differently. A non-variable instantiation t is a shorthand for x ≡ t where x is a fresh variable. As a result, induction is done on x, and the context additionally contains the definition x ≡ t.
Therefore, (induction "n + m" "n + m" arbitrary: n m) in the first proof is equivalent to (induction k ≡ "n + m" l ≡ "n + m" arbitrary: n m) with the effect described above. To get this effect for the second proof, you have to replace (induction n n arbitrary: n) with (induction k ≡ n l ≡ n arbitrary: n). The assumptions will actually become so simple that the pre-simplifier, which is run by the induction method, can derive False from them. As a result, there will be no cases left to prove, and you can replace the whole inner proof–qed block with by (induction k ≡ n l ≡ n arbitrary: n).

Related

How to proceed in Isabelle when the goal has implications and existentials?

I'm trying to write a proof in the Isabelle "structured style" and I'm not sure how to specify the value of existential variables. Specifically, I'm trying to expand the sorrys in this proof:
lemma division_theorem: "lt Zero n ⟹ ∃ q r. lt r n ∧ m = add (mul q n) r"
proof (induct m)
case Zero
then show ?case
by (metis add_zero_right mul.simps(1))
next
case (Suc m)
then show ?case
proof (cases "Suc r = n")
case True
then show ?thesis sorry
next
case False
then show ?thesis sorry
qed
qed
Zero, add, and mul are defined on a nat-like class that I made just for the purposes of writing simple number theory proofs, hopefully that is intuitive. I have done this in the "apply" style, so I'm familiar with how the proof is supposed to go, I'm just not understanding how to turn it into "structured" style.
So the goals generated by these cases are:
1. (lt Zero n ⟹ ∃q r. lt r n ∧ m = add (mul q n) r) ⟹
lt Zero n ⟹ cnat.Suc r = n ⟹ ∃q r. lt r n ∧ cnat.Suc m = add (mul q n) r
2. (lt Zero n ⟹ ∃q r. lt r n ∧ m = add (mul q n) r) ⟹
lt Zero n ⟹ cnat.Suc r ≠ n ⟹ ∃q r. lt r n ∧ cnat.Suc m = add (mul q n) r
At a high level, for that first goal, I want to grab the q and r from the first existential, specify q' = Suc q and r' = Zero for the second existential, and let sledgehammer bash out precisely what mix of arithmetic lemmas to use to prove that it works. And then do that same for q' = q and r' = Suc r for the second case.
How can I do this? I have tried various mixes of obtain, rule exI, but I feel like I'm not understanding some basic mechanism here. Using the apply style this works when I apply subgoal_tac but it seems like that is unlikely to be the ideal method of solution here.
As you can see in the two goals generated by the command cases "Suc r = n", the occurrences of variable r in both the expressions cnat.Suc r = n and cnat.Suc r ≠ n are actually free and thus not related to the existentially quantified formula whatsoever. In order to "grab" the q and r from the induction hypothesis you need to use the obtain command. As a side remark, I suggest to use the induction method instead of the induct method so you can refer to the induction hypothesis as Suc.IH instead of Suc.hyps. Once you "grab" q and r from the induction hypothesis, you just need to prove that
lt r' n, and that
Suc m = add (mul q' n) r'
with q' and r' as defined for each of your two cases. Here is a (slightly incomplete) proof of your division theorem:
lemma division_theorem: "lt Zero n ⟹ ∃ q r. lt r n ∧ m = add (mul q n) r"
proof (induction m)
case Zero
then show ?case
by (metis add_zero_right mul.simps(1))
next
case (Suc m)
(* "Grab" q and r from IH *)
from ‹lt Zero n› and Suc.IH obtain q and r where "lt r n ∧ m = add (mul q n) r"
by blast
show ?case
proof (cases "Suc r = n")
case True
(* In this case, we use q' = Suc q and r' = Zero as witnesses *)
from ‹Suc r = n› and ‹lt r n ∧ m = add (mul q n) r› have "Suc m = add (mul (Suc q) n) Zero"
using add_comm by auto
with ‹lt Zero n› show ?thesis
by blast
next
case False
(* In this case, we use q' = q and r' = Suc r as witnesses *)
from ‹lt r n ∧ m = add (mul q n) r› have "Suc m = add (mul q n) (Suc r)"
by simp
moreover have "lt (Suc r) n"
sorry (* left as exercise :) *)
ultimately show ?thesis
by blast
qed
qed

Isabelle structure proof

There is a set of some structures. I'm trying to prove that the cardinality of the set equals some number. Full theory is too long to post here. So here is a simplified one just to show the idea.
Let the objects (which I need to count) are sets containing natural numbers from 1 to n. The idea of the proof is as follows. I define a function which transforms sets to lists of 0 and 1. Here is the function and its inverse:
fun set_to_bitmap :: "nat set ⇒ nat ⇒ nat ⇒ nat list" where
"set_to_bitmap xs x 0 = []"
| "set_to_bitmap xs x (Suc n) =
(if x ∈ xs then Suc 0 else 0) # set_to_bitmap xs (Suc x) n"
fun bitmap_to_set :: "nat list ⇒ nat ⇒ nat set" where
"bitmap_to_set [] n = {}"
| "bitmap_to_set (x#xs) n =
(if x = Suc 0 then {n} else {}) ∪ bitmap_to_set xs (Suc n)"
value "set_to_bitmap {1,3,7,8} 1 8"
value "bitmap_to_set (set_to_bitmap {1,3,7,8} 1 8) 1"
Then I plan to prove that 1) a number of 0/1 lists with length n equals 2^^n,
2) the functions are bijections,
3) so the cardinality of the original set is 2^^n too.
Here are some auxiliary definitions and lemmas, which seems useful:
definition "valid_set xs n ≡ (∀a. a ∈ xs ⟶ 0 < a ∧ a ≤ n)"
definition "valid_bitmap ps n ≡ length ps = n ∧ set ps ⊆ {0, Suc 0}"
lemma length_set_to_bitmap:
"valid_set xs n ⟹
x = Suc 0 ⟹
length (set_to_bitmap xs x n) = n"
apply (induct xs x n rule: set_to_bitmap.induct)
apply simp
sorry
lemma bitmap_members:
"valid_set xs n ⟹
x = Suc 0 ⟹
set_to_bitmap xs x n = ps ⟹
set ps ⊆ {0, Suc 0}"
apply (induct xs x n arbitrary: ps rule: set_to_bitmap.induct)
apply simp
sorry
lemma valid_set_to_valid_bitmap:
"valid_set xs n ⟹
x = Suc 0 ⟹
set_to_bitmap xs x n = ps ⟹
valid_bitmap ps n"
unfolding valid_bitmap_def
using bitmap_members length_set_to_bitmap by auto
lemma valid_bitmap_to_valid_set:
"valid_bitmap ps n ⟹
x = Suc 0 ⟹
bitmap_to_set ps x = xs ⟹
valid_set xs n"
sorry
lemma set_to_bitmap_inj:
"valid_set xs n ⟹
valid_set xy n ⟹
x = Suc 0 ⟹
set_to_bitmap xs x n = ps ⟹
set_to_bitmap ys x n = qs ⟹
ps = qs ⟹
xs = ys"
sorry
lemma set_to_bitmap_surj:
"valid_bitmap ps n ⟹
x = Suc 0 ⟹
∃xs. set_to_bitmap xs x n = ps"
sorry
lemma bitmap_to_set_to_bitmap_id:
"valid_set xs n ⟹
x = Suc 0 ⟹
bitmap_to_set (set_to_bitmap xs x n) x = xs"
sorry
lemma set_to_bitmap_to_set_id:
"valid_bitmap ps n ⟹
x = Suc 0 ⟹
set_to_bitmap (bitmap_to_set ps x) x n = ps"
sorry
Here is a final lemma:
lemma valid_set_size:
"card {xs. valid_set xs n} = 2 ^^ n"
Does this approach seem valid? Are there any examples of such a proof? Could you suggest an idea on how to prove the lemmas? I'm stuck because the induction with set_to_bitmap.induct seems to be not applicable here.
In principle, that kind of approach does work: if you have a function f from a set A to a set B and an inverse function to it, you can prove bij_betw f A B (read: f is a bijection from A to B), and that then implies card A = card B.
However, there are a few comments that I have:
You should use bool lists instead of nat lists if you can only have 0 or 1 in them anyway.
It is usually better to use existing library functions than to define new ones yourself. Your two functions could be defined using library functions like this:
set_to_bitmap :: nat ⇒ nat ⇒ nat set ⇒ bool list
set_to_bitmap x n A = map (λi. i ∈ A) [x..<x+n]
bitmap_to_set :: nat ⇒ bool list ⇒ nat set
bitmap_to_set n xs = (λi. i + n) ` {i. i < length xs ∧ xs ! i}```
Side note: I would use upper-case letters for sets, not something like xs (which is usually used for lists).
Perhaps this is because you simplified your problem, but in its present form, valid_set A n is simply the same as A ⊆ {1..n} and the {A. valid_set A n} is simply Pow {1..n}. The cardinality of that is easy to show with results from the library:
lemma "card (Pow {1..(n::nat)}) = 2 ^ n"
by (simp add: card_Pow)`
As for your original questions: Your first few lemmas are provable, but for the induction to go through, you have to get rid of some of the unneeded assumptions first. The x = Suc 0 is the worst one – there is no way you can use induction if you have that as an assumption, because as soon as you do one induction step, you increase x by 1 and so you won't be able to apply your induction hypothesis. The following versions of your first three lemmas go through easily:
lemma length_set_to_bitmap:
"length (set_to_bitmap xs x n) = n"
by (induct xs x n rule: set_to_bitmap.induct) auto
lemma bitmap_members:
"set (set_to_bitmap xs x n) ⊆ {0, Suc 0}"
by (induct xs x n rule: set_to_bitmap.induct) auto
lemma valid_set_to_valid_bitmap: "valid_bitmap (set_to_bitmap xs x n) n"
unfolding valid_bitmap_def
using bitmap_members length_set_to_bitmap by auto
I also recommend not adding "abbreviations" like ps = set_to_bitmap xs x n as an assumption. It doesn't break anything, but it tends to complicate things needlessly.
The next lemma is a bit trickier. Due to your recursive definitions, you have to generalise the lemma first (valid_bitmap requires the set to be in the range from 1 to n, but once you make one induction step it has to be from 2 to n). The following works:
lemma valid_bitmap_to_valid_set_aux:
"bitmap_to_set ps x ⊆ {x..<x + length ps}"
by (induction ps x rule: bitmap_to_set.induct)
(auto simp: valid_bitmap_def valid_set_def)
lemma valid_bitmap_to_valid_set:
"valid_bitmap ps n ⟹ valid_set (bitmap_to_set ps 1) n"
using valid_bitmap_to_valid_set_aux unfolding valid_bitmap_def valid_set_def
by force
Injectivity and surjectivity (which is your ultimate goal) should follow from the fact that the two are inverse functions. Proving that will probably be doable with induction, but will require a few generalisations and auxiliary lemmas. It should be easier if you stick to the non-recursive definition using library functions that I sketched above.

Using `defines` with induction

Consider following lemma which should be easily provable:
lemma
fixes n m::nat
defines "m ≡ n - 1"
shows "m ≤ n"
proof(induction n)
case 0
then show ?case unfolding m_def
(* Why does «n» appear here? *)
next
case (Suc n)
then show ?case sorry
qed
However after unfolding m, the goal becomes n - 1 ≤ 0 instead of 0 - 1 ≤ 0 rendering the goal unprovable since n = 2 is a counterexample.
Is this a bug in Isabelle? How can I unfold the definition correctly?
I think a useful explanation could be the following: Recall the definition of nat.induct, namely
?P 0 ⟹ (⋀n. ?P n ⟹ ?P (Suc n)) ⟹ ?P ?n
and note that ?n means that n is implicitly universally quantified, that is, the previous definition is equivalent to
⋀n. ?P 0 ⟹ (⋀n. ?P n ⟹ ?P (Suc n)) ⟹ ?P n
Now, when applying nat.induct to your example, clearly the first subgoal to prove is ?P 0, i.e., m ≤ 0. However, in that context, n is still an arbitrary but fixed nat, in particular it does not hold that n = 0, and that is the reason why after unfolding the definition of m you get n - 1 ≤ 0 as the new subgoal. With respect to your specific question, the problem is that you cannot prove your result by induction on n (but you can easily prove it using unfolding m_def by simp).
As Javier pointed out, the n defined in the lemma head is different from the n created by induction. In other words, any facts from "outside" that reference n are not directly usable within the proof (induction n) environment.
However, Isabelle does offer a way to "inject" such facts, by piping them into induction:
lemma
fixes n m::nat
defines "m ≡ n - 1"
shows "m ≤ n"
using m_def (* this allows induction to use this fact *)
proof(induction n)
case 0
then show ?case by simp
next
case (Suc n)
then show ?case by simp
qed
using assms will work just as well in this case.
Note that direcly referring to m_def is no longer necessary, since a version of it is included for each case (in 0.hyps and Suc.hyps; use print_cases inside the proof for more information).

Proof by induction with three base cases (Isabelle)

I want to be able to prove a statement by induction on n (of type nat). It consists of a conditional whose antecedent is only true for n >= 2. A conditional whose antecedent is false is always true. So I'd like to prove the cases n=0, n=1 and n=2 all separately from the main inductive step. Is it possible to do a proof by induction with three base cases like the following:
lemma "P (n::nat) --> Q"
proof (induct n)
case 0
show ?case sorry
next
case 1
show ?case sorry
next
case 2
show ?case sorry
next
case (Suc n)
show ?case sorry
qed
As it stands, this doesn't seem to work. I could prove "P (n+2) --> Q" by induction instead, but it wouldn't be as strong a statement. I'm considering a case split into "n=0","n=1" and "n>=2", and proving only the last case by induction.
The cleanest way is probably to prove a custom induction rule for the kind of induction that you want, like this:
lemma nat_0_1_2_induct [case_names 0 1 2 step]:
assumes "P 0" "P 1" "P 2" "⋀n. n ≥ 2 ⟹ P n ⟹ P (Suc n)"
shows "P n"
proof (induction n rule: less_induct)
case (less n)
show ?case using assms(4)[OF _ less.IH[of "n - 1"]]
by (cases "n ≤ 2") (insert assms(1-3), auto simp: eval_nat_numeral le_Suc_eq)
qed
lemma "P (n::nat) ⟶ Q"
proof (induction n rule: nat_0_1_2_induct)
In theory, the induction_schema method is also very useful to prove such custom induction rules, but in this case, it doesn't help a lot:
lemma nat_0_1_2_induct [case_names 0 1 2 step]:
"P 0 ⟹ P 1 ⟹ P 2 ⟹ (⋀n. n ≥ 2 ⟹ P n ⟹ P (Suc n)) ⟹ P n"
proof (induction_schema, goal_cases complete wf terminate)
case (complete P n)
thus ?case by (cases n) force+
next
show "wf (Wellfounded.measure id)" by (rule wf_measure)
qed simp_all
You could also use less_induct directly and then do a case distinction within the induction step for the base cases.

Free type variables in proof by induction

While trying to prove lemmas about functions in continuation-passing style by induction I have come across a problem with free type variables. In my induction hypothesis, the continuation is a schematic variable but its type involves a free type variable. As a result Isabelle is not able to unify the type variable with a concrete type when I try to apply the i.h. I have cooked up this minimal example:
fun add_k :: "nat ⇒ nat ⇒ (nat ⇒ 'a) ⇒ 'a" where
"add_k 0 m k = k m" |
"add_k (Suc n) m k = add_k n m (λn'. k (Suc n'))"
lemma add_k_cps: "∀k. add_k n m k = k (add_k n m id)"
proof(rule, induction n)
case 0 show ?case by simp
next
case (Suc n)
have "add_k (Suc n) m k = add_k n m (λn'. k (Suc n'))" by simp
also have "… = k (Suc (add_k n m id))"
using Suc[where k="(λn'. k (Suc n'))"] by metis
also have "… = k (add_k n m (λn'. Suc n'))"
using Suc[where k="(λn'. Suc n')"] sorry (* Type unification failed *)
also have "… = k (add_k (Suc n) m id)" by simp
finally show ?case .
qed
In the "sorry step", the explicit instantiation of the schematic variable ?k fails with
Type unification failed
Failed to meet type constraint:
Term: Suc :: nat ⇒ nat
Type: nat ⇒ 'a
since 'a is free and not schematic. Without the instantiation the simplifier fails anyway and I couldn't find other methods that would work.
Since I cannot quantify over types, I don't see any way how to make 'a schematic inside the proof. When a term variable becomes schematic locally inside a proof, why isn't this the case with variables in its type too? After the lemma has been proved, they become schematic at the theory level anyway. This seems quite limiting. Could an option to do this be implemented in the future or is there some inherent limitation? Alternatively, is there an approach to avoid this problem and still keeping the continuation schematically polymorphic in the proven lemma?
Free type variables become schematic in a theorem when the theorem is exported from the block in which the type variables have been fixed. In particular, you cannot quantify over type variables in a block and then instantiate the type variable within the block, as you are trying to do in your induction. Arbitrary quantification over types leads to inconsistencies in HOL, so there is little hope that this could be changed.
Fortunately, there is a way to prove your lemma in CPS style without type quantification. The problem is that your statement is not general enough, because it contains id. If you generalise it, then the proof works:
lemma add_k_cps: "add_k n m (k ∘ f) = k (add_k n m f)"
proof(induction n arbitrary: f)
case 0 show ?case by simp
next
case (Suc n)
have "add_k (Suc n) m (k ∘ f) = add_k n m (k ∘ (λn'. f (Suc n')))" by(simp add: o_def)
also have "… = k (add_k n m (λn'. f (Suc n')))"
using Suc.IH[where f="(λn'. f (Suc n'))"] by metis
also have "… = k (add_k (Suc n) m f)" by simp
finally show ?case .
qed
You get your original theorem back, if you choose f = id.
This is an inherent limitation how induction works in HOL. Induction is a rule in HOL, so it is not possible to generalize any types in the induction hypothesis.
A specialized solution for your problem is to first prove
lemma add_k_cps_nat: "add_k n m k = k (n + m)"
by (induction n arbitrary: m k) auto
and then prove add_k_cps.
A general approach is: prove instances for fixed types first, for which the induction works. In the example case is is an induction by nat. And then derive a proof generalized in the type itself.

Resources