I am creating animated plotly graph for my assignment in r, where I am comparing several models with various number of observations. I would like to add annotation showing what is the RMSE of the current model - this means I would like to have text that changes together with slider. Is there any easy way how to do that?
Here is my dataset stored on GitHub. There already is created variable with RMSE: data
The base ggplot graphic is as follows:
library(tidyverse)
library(plotly)
p <- ggplot(values_predictions, aes(x = x)) +
geom_line(aes(y = preds_BLR, frame = n, colour = "BLR")) +
geom_line(aes(y = preds_RLS, frame = n, colour = "RLS")) +
geom_point(aes(x = x, y = target, frame = n, colour = "target"), alpha = 0.3) +
geom_line(aes(x = x, y = sin(2 * pi * x), colour = "sin(2*pi*x)"), alpha = 0.3) +
ggtitle("Comparison of performance) +
labs(y = "predictions and targets", colour = "colours")
This is converted to plotly, and I have added an animation to the Plotly graph:
plot <- ggplotly(p) %>%
animation_opts(easing = "linear",redraw = FALSE)
plot
Thanks!
You can add annotations to a ggplot graph using the annotate function: http://ggplot2.tidyverse.org/reference/annotate.html
df <- data.frame(x = rnorm(100, mean = 10), y = rnorm(100, mean = 10))
# Build model
fit <- lm(x ~ y, data = df)
# function finds RMSE
RMSE <- function(error) { sqrt(mean(error^2)) }
library(ggplot2)
ggplot(df, aes(x, y)) +
geom_point() +
annotate("text", x = Inf, y = Inf, hjust = 1.1, vjust = 2,
label = paste("RMSE", RMSE(fit$residuals)) )
There seems to be a bit of a problem converting between ggplot and plotly. However this workaround here shows a workaround which can be used:
ggplotly(plot) %>%
layout(annotations = list(x = 12, y = 13, text = paste("RMSE",
RMSE(fit$residuals)), showarrow = F))
Here's an example of adding data dependent text using the built in iris dataset with correlation as text to ggplotly.
library(plotly)
library(ggplot2)
library(dplyr)
mydata = iris %>% rename(variable1=Sepal.Length, variable2= Sepal.Width)
shift_right = 0.1 # number from 0-1 where higher = more right
shift_down = 0.02 # number from 0-1 where higher = more down
p = ggplot(mydata, aes(variable1,variable2))+
annotate(geom = "text",
label = paste0("Cor = ",as.character(round(cor.test(mydata$variable1,mydata$variable2)$estimate,2))),
x = min(mydata$variable1)+abs(shift_right*(min(mydata$variable1)-max(mydata$variable1))),
y = max(mydata$variable2)-abs(shift_down*(min(mydata$variable2)-max(mydata$variable2))), size=4)+
geom_point()
ggplotly(p) %>% style(hoverinfo = "none", traces = 1) # remove hover on text
Related
I am performing a mantel test using the function mantel.rtest from ade4 on two Euclidean distance matrices to get the correlation between them. Since I would like to show the resulting plot for different tests, I would like to know if it would be possible to plot the mantel result using ggplot2 instead of the basic function plot.
first, of all I have tried to convert r1 into data.frame but I get this error:
r2 <- as.data.frame(r1)
Error in as.data.frame.default(r1) :
cannot coerce class ‘c("mantelrtest", "randtest", "lightrandtest")’ to a data.fr
I am adding a reproducible example:
data(yanomama)
gen <- quasieuclid(as.dist(yanomama$gen))
geo <- quasieuclid(as.dist(yanomama$geo))
plot(r1 <- mantel.rtest(geo,gen), main = "Mantel's test")
r1
Thanks a lot!
The following function will draw a ggplot for your mantelrtest object:
ggplot_mantel <- function(mant, fill = "gray50") {
df <- data.frame(x = mant$plot$hist$mids,
y = mant$plot$hist$counts)
ggplot(df, aes(x, y)) +
geom_col(orientation = "x",
width = diff(mant$plot$hist$breaks)[1],
fill = fill, color = "gray30") +
labs(x = mant$plot$hist$xname, y = "Frequency") +
scale_x_continuous(limits = mant$plot$xlim) +
geom_segment(aes(x = mant$obs, xend = mant$obs, y = 0,
yend = 0.75 * max(y))) +
geom_point(aes(x = mant$obs, y = 0.75 * max(y)), size = 5,
shape = 18)
}
So, using your own example:
plot(r1)
ggplot_mantel(r1)
I am trying to use scale_alpha_continuous in ggplot on a log scale to generate a figure with lines whose transparency (and color) varies depending on a given value on a log scale, given the wide distribution.
Using the code below, I am able to change the color based on a log scale by adding trans="log" but how do I do the same for the transparency (alpha)?
p+scale_color_continuous(trans = "log",low="red", high="black")+ scale_alpha_continuous(range = c(0.1, 1))
Many thanks!
You can add trans = "log" to the scale_alpha_continuous() also.
library(ggplot2)
# here is some simulated data
set.seed(2020)
df <- data.frame(X = rnorm(100),
Y = runif(100),
Z = rexp(100, rate = 0.0000001))
# Original plot
df %>%
ggplot(aes(x = X, y = Y, color = Z, alpha = Z)) +
geom_point(size = 5)
# Log scales
df %>%
ggplot(aes(x = X, y = Y, color = Z, alpha = Z)) +
geom_point(size = 5) +
scale_alpha_continuous(trans = "log", breaks = c(4e5, 4e6, 4e7)) +
scale_color_continuous(trans = "log", breaks = c(4e5, 4e6, 4e7))
I'm trying to write my own Central Limit Theorem demonstration using ggplot2 and am unable to get my stat_function to display a changing normal distribution.
below is my code, I want the normal distribution in stat_function to transition through different states; specifically, I'm hoping for it to change the standard deviation to correspond with each value in dataset. Any help would be greatly appreciated.
#library defs
library(gganimate)
library(ggplot2)
library(transformr)
#initialization for distribution, rolls, and vectors
k = 2
meanr = 1/k
sdr = 1/k
br = sdr/10
rolls <- 200
avg <- 1
dataset <- 1
s <- 1
#loop through to create vectors of sample statistics from 200 samples of size i
#avg is sample average, s is standard deviations of sample means, and dataset is the indexes to run the transition states
for (i in c(1:40)){
for (j in 1:rolls){
avg <- c(avg,mean(rexp(i,k)))
}
dataset <- c(dataset, rep(i,rolls))
s <- c(s,rep(sdr/sqrt(i),rolls))
}
#remove initialized vector information as it was only created to start loops
avg <- avg[-1]
rn <- rn[-1]
dataset <- dataset[-1]
s <- s[-1]
#dataframe
a <- data.frame(avgf=avg, rnf = rn,datasetf = dataset,sf = s)
#plot histogram, density function, and normal distribution
ggplot(a,aes(x=avg,y=s))+
geom_histogram(aes(y = ..density..), binwidth = br,fill='beige',col='black')+
geom_line(aes(y = ..density..,colour = 'Empirical'),lwd=2, stat = 'density') +
stat_function(fun = dnorm, aes(colour = 'Normal', y = s),lwd=2,args=list(mean=meanr,sd = mean(s)))+
scale_y_continuous(labels = scales::percent_format()) +
scale_color_discrete(name = "Densities", labels = c("Empirical", "Normal"))+
labs(x = 'Sample Average',title = 'Sample Size: {closest_state}')+
transition_states(dataset,4,4)+ view_follow(fixed_x = TRUE)
I think it's difficult to use stat_function here because the dnorm function that you are passing includes a grouped variable (mean(s)). There is no way to indicate that you wish to group s by the dataset column, and the transition_states function doesn't filter the whole data frame. You could use transition_filter to filter the whole data frame, but this would be laborious.
It's not much work to just add a dnorm to your input data frame and plot it as a line, particularly since the rest of your code can be simplified substantially. Here's a fully reproducible example:
library(gganimate)
library(ggplot2)
library(transformr)
k <- 2
meanr <- sdr <- 1/k
br <- sdr/10
rolls <- 200
a <- do.call(rbind, lapply(1:40, function(i){
data.frame(avg = replicate(rolls, mean(rexp(i, k))),
dataset = rep(i, rolls),
x = seq(0, 2, length.out = rolls),
s = dnorm(seq(0, 2, length.out = rolls),
meanr, sdr/sqrt(i))) }))
ggplot(a, aes(x = avg, group = dataset)) +
geom_histogram(aes(y = ..density..), fill = 'beige',
colour = "black", binwidth = br) +
geom_line(aes(y = ..density.., colour = 'Empirical'),
lwd = 2, stat = 'density', alpha = 0.5) +
geom_line(aes(x = x, y = s, colour = "Normal"), size = 2, alpha = 0.5) +
scale_y_continuous(labels = scales::percent_format()) +
coord_cartesian(xlim = c(0, 2)) +
scale_color_discrete(name = "Densities", labels = c("Empirical", "Normal")) +
labs(x = 'Sample Average', title = 'Sample Size: {closest_state}') +
transition_states(dataset, 4, 4) +
view_follow(fixed_x = TRUE, fixed_y = TRUE)
I have recently came across a problem with ggplot2::geom_density that I am not able to solve. I am trying to visualise a density of some variable and compare it to a constant. To plot the density, I am using the ggplot2::geom_density. The variable for which I am plotting the density, however, happens to be a constant (this time):
df <- data.frame(matrix(1,ncol = 1, nrow = 100))
colnames(df) <- "dummy"
dfV <- data.frame(matrix(5,ncol = 1, nrow = 1))
colnames(dfV) <- "latent"
ggplot() +
geom_density(data = df, aes(x = dummy, colour = 's'),
fill = '#FF6666', alpha = 0.2, position = "identity") +
geom_vline(data = dfV, aes(xintercept = latent, color = 'ls'), size = 2)
This is OK and something I would expect. But, when I shift this distribution to the far right, I get a plot like this:
df <- data.frame(matrix(71,ncol = 1, nrow = 100))
colnames(df) <- "dummy"
dfV <- data.frame(matrix(75,ncol = 1, nrow = 1))
colnames(dfV) <- "latent"
ggplot() +
geom_density(data = df, aes(x = dummy, colour = 's'),
fill = '#FF6666', alpha = 0.2, position = "identity") +
geom_vline(data = dfV, aes(xintercept = latent, color = 'ls'), size = 2)
which probably means that the kernel estimation is still taking 0 as the centre of the distribution (right?).
Is there any way to circumvent this? I would like to see a plot like the one above, only the centre of the kerner density would be in 71 and the vline in 75.
Thanks
Well I am not sure what the code does, but I suspect the geom_density primitive was not designed for a case where the values are all the same, and it is making some assumptions about the distribution that are not what you expect. Here is some code and a plot that sheds some light:
# Generate 10 data sets with 100 constant values from 0 to 90
# and then merge them into a single dataframe
dfs <- list()
for (i in 1:10){
v <- 10*(i-1)
dfs[[i]] <- data.frame(dummy=rep(v,100),facet=v)
}
df <- do.call(rbind,dfs)
# facet plot them
ggplot() +
geom_density(data = df, aes(x = dummy, colour = 's'),
fill = '#FF6666', alpha = 0.5, position = "identity") +
facet_wrap( ~ facet,ncol=5 )
Yielding:
So it is not doing what you thought it was, but it is also probably not doing what you want. You could of course make it "translation-invariant" (almost) by adding some noise like this for example:
set.seed(1234)
noise <- +rnorm(100,0,1e-3)
dfs <- list()
for (i in 1:10){
v <- 10*(i-1)
dfs[[i]] <- data.frame(dummy=rep(v,100)+noise,facet=v)
}
df <- do.call(rbind,dfs)
ggplot() +
geom_density(data = df, aes(x = dummy, colour = 's'),
fill = '#FF6666', alpha = 0.5, position = "identity") +
facet_wrap( ~ facet,ncol=5 )
Yielding:
Note that there is apparently a random component to the geom_density function, and I can't see how to set the seed before each instance, so the estimated density is a bit different each time.
I'm trying to plot 2 sets of data points and a single line in R using ggplot.
The issue I'm having is with the legend.
As can be seen in the attached image, the legend applies the lines to all 3 data sets even though only one of them is plotted with a line.
I have melted the data into one long frame, but this still requires me to filter the data sets for each individual call to geom_line() and geom_path().
I want to graph the melted data, plotting a line based on one data set, and points on the remaining two, with a complete legend.
Here is the sample script I wrote to produce the plot:
xseq <- 1:100
x <- rnorm(n = 100, mean = 0.5, sd = 2)
x2 <- rnorm(n = 100, mean = 1, sd = 0.5)
x.lm <- lm(formula = x ~ xseq)
x.fit <- predict(x.lm, newdata = data.frame(xseq = 1:100), type = "response", se.fit = TRUE)
my_data <- data.frame(x = xseq, ypoints = x, ylines = x.fit$fit, ypoints2 = x2)
## Now try and plot it
melted_data <- melt(data = my_data, id.vars = "x")
p <- ggplot(data = melted_data, aes(x = x, y = value, color = variable, shape = variable, linetype = variable)) +
geom_point(data = filter(melted_data, variable == "ypoints")) +
geom_point(data = filter(melted_data, variable == "ypoints2")) +
geom_path(data = filter(melted_data, variable == "ylines"))
pushViewport(viewport(layout = grid.layout(1, 1))) # One on top of the other
print(p, vp = viewport(layout.pos.row = 1, layout.pos.col = 1))
You can set them manually like this:
We set linetype = "solid" for the first item and "blank" for others (no line).
Similarly for first item we set no shape (NA) and for others we will set whatever shape we need (I just put 7 and 8 there for an example). See e.g. http://www.r-bloggers.com/how-to-remember-point-shape-codes-in-r/ to help you to choose correct shapes for your needs.
If you are happy with dots then you can use my_shapes = c(NA,16,16) and scale_shape_manual(...) is not needed.
my_shapes = c(NA,7,8)
ggplot(data = melted_data, aes(x = x, y = value, color=variable, shape=variable )) +
geom_path(data = filter(melted_data, variable == "ylines") ) +
geom_point(data = filter(melted_data, variable %in% c("ypoints", "ypoints2"))) +
scale_colour_manual(values = c("red", "green", "blue"),
guide = guide_legend(override.aes = list(
linetype = c("solid", "blank","blank"),
shape = my_shapes))) +
scale_shape_manual(values = my_shapes)
But I am very curious if there is some more automated way. Hopefully someone can post better answer.
This post relied quite heavily on this answer: ggplot2: Different legend symbols for points and lines