MethodError, despite being (somehow) defined - julia

I am trying to do something like this:
function outer(x::Array{Float64}, y::Array{Float64}=nothing)
if (y == nothing)
function inner(y::Array{Float64})
return x .* y
end
return inner
else
return x .+ y
end
end
outer([2.], [3.]) # to return 5, works
outer([2.])([3.]) # to return 6, fails.
outer([2.], [3.]) works just fine.
The problem is that outer([2.])([3.]) raises a MethodError stating:
MethodError: no method matching outer(::Array{Float64,1}, ::Void)
Closest candidates are:
outer(::Array{Float64,N} where N) at In[1]:2
outer(::Array{Float64,N} where N, ::Array{Float64,N} where N) at In[1]:2
Stacktrace:
[1] outer(::Array{Float64,1}) at ./In[1]:2
[2] include_string(::String, ::String) at ./loading.jl:522
The weird bit is that under Closest candidates, the single-argument outer(::Array{Float64,N} where N) is the first candidate. So why does it not work with the single argument?
Note: outer([2.], )([3.]), outer([2.], nothing)([3.]), outer([2.], [nothing])([3.]) all produce the same (similar) error.
This can be reproduced using a single argument function too:
function outer(y::Array{Float64}=nothing)
if (y == nothing)
function inner(y::Array{Float64})
return y .* y
end
return inner
else
return y .+ y
end
end
outer([2.])
1-element Array{Float64,1}:
4.0
outer()([3.])
MethodError: no method matching outer(::Void)
Closest candidates are:
outer() at In[6]:2
outer(::Array{Float64,N} where N) at In[6]:2
outer(::Array{Float64,N} where N, ::Array{Float64,N} where N) at In[1]:2
Stacktrace:
[1] outer() at ./In[6]:2
[2] include_string(::String, ::String) at ./loading.jl:522
And again, there is a zero-argument function outer() listed first in the Closest candidates list!
Basically, the above example is a MWE representing a log-sum/likelihood evaluation, where x is the data and y is the parameter of a model. I am trying to return a function in the parameter of the model to optimise using MLE, or return the log-sum if the parameter is passed.
In this analogy, outer computes log-sum, given data and parameter, or returns inner as a function of the parameter, which can be optimised.

You can reproduce this with simply:
f(x::Float64=nothing) = x
f()
When you add = nothing that sets nothing as a default argument. And also adds f() as a method. But when you call f() then julia will try to run f(nothing) as nothing is your default argument. That will then error as nothing is of type Void and you asserted that the argument must be Float64.
For example you could (but shouldn't) use f(x::Union{Float64,Void}=nothing) = x to get around this. But it'd be much better to use a Nullable which is exactly for interacting with a value that may or may not exist.
Read more about Nullables here or type ?Nullable in the REPL.
Edit by OP
MWE:
function outer(x::Array{Float64}, y=Nullable{Array{Float64}}())
if isnull(y)
function inner(y::Array{Float64})
return x .* y
end
return inner
else
return x .+ y
end
end
outer([2.])([3.]) # Produces 6,
outer([2.], [3.]) # Produces 5.
Works as expected.

Readability counts so maybe you have to reconsider define 2 methods explicitly (and simple as it is in Julian way):
outer(x::Array{Float64}, y::Array{Float64}) = x .+ y
outer(x::Array{Float64}) = y -> x .* y

Related

Julia JuMP making sure nonlinear objective function has correct function signatures so that autodifferentiate works properly?

so I wrote a minimum example to show what I'm trying to do. Basically I want to solve a optimization problem with multiple variables. When I try to do this in JuMP I was having issues with my function obj not being able to take a forwardDiff object.
I looked here: and it seemed to do with the function signature :Restricting function signatures while using ForwardDiff in Julia . I did this in my obj function, and for insurance did it in my sub-function as well, but I still get the error
LoadError: MethodError: no method matching Float64(::ForwardDiff.Dual{ForwardDiff.Tag{JuMP.var"#110#112"{typeof(my_fun)},Float64},Float64,2})
Closest candidates are:
Float64(::Real, ::RoundingMode) where T<:AbstractFloat at rounding.jl:200
Float64(::T) where T<:Number at boot.jl:715
Float64(::Int8) at float.jl:60
This still does not work. I feel like I have the bulk of the code correct, just some weird of type thing going on that I have to clear up so autodifferentiate works...
Any suggestions?
using JuMP
using Ipopt
using LinearAlgebra
function obj(x::Array{<:Real,1})
println(x)
x1 = x[1]
x2 = x[2]
eye= Matrix{Float64}(I, 4, 4)
obj_val = tr(eye-kron(mat_fun(x1),mat_fun(x2)))
println(obj_val)
return obj_val
end
function mat_fun(var::T) where {T<:Real}
eye= Matrix{Float64}(I, 2, 2)
eye[2,2]=var
return eye
end
m = Model(Ipopt.Optimizer)
my_fun(x...) = obj(collect(x))
#variable(m, 0<=x[1:2]<=2.0*pi)
register(m, :my_fun, 2, my_fun; autodiff = true)
#NLobjective(m, Min, my_fun(x...))
optimize!(m)
# retrieve the objective value, corresponding x values and the status
println(JuMP.value.(x))
println(JuMP.objective_value(m))
println(JuMP.termination_status(m))
Use instead
function obj(x::Vector{T}) where {T}
println(x)
x1 = x[1]
x2 = x[2]
eye= Matrix{T}(I, 4, 4)
obj_val = tr(eye-kron(mat_fun(x1),mat_fun(x2)))
println(obj_val)
return obj_val
end
function mat_fun(var::T) where {T}
eye= Matrix{T}(I, 2, 2)
eye[2,2]=var
return eye
end
Essentially, anywhere you see Float64, replace it by the type in the incoming argument.
I found the problem:
in my mat_fun the type of the return had to be "Real" in order for it to propgate through. Before it was Float64, which was not consistent with the fact I guess all types have to be Real with the autodifferentiate. Even though a Float64 is clearly Real, it looks like the inheritence isn't perserved i.e you have to make sure everything that is returned and inputed are type Real.
using JuMP
using Ipopt
using LinearAlgebra
function obj(x::AbstractVector{T}) where {T<:Real}
println(x)
x1 = x[1]
x2 = x[2]
eye= Matrix{Float64}(I, 4, 4)
obj_val = tr(eye-kron(mat_fun(x1),mat_fun(x2)))
#println(obj_val)
return obj_val
end
function mat_fun(var::T) where {T<:Real}
eye= zeros(Real,(2,2))
eye[2,2]=var
return eye
end
m = Model(Ipopt.Optimizer)
my_fun(x...) = obj(collect(x))
#variable(m, 0<=x[1:2]<=2.0*pi)
register(m, :my_fun, 2, my_fun; autodiff = true)
#NLobjective(m, Min, my_fun(x...))
optimize!(m)
# retrieve the objective value, corresponding x values and the status
println(JuMP.value.(x))
println(JuMP.objective_value(m))
println(JuMP.termination_status(m))

N long tuple as optional argument

I would like to have an N long tuple as an optional argument of a function but I do not know how to provide a N long default value:
function create_grid(d::Int64, n::Tuple{Vararg{Int64, N}}; xmin::Tuple{Vararg{Float64, N}}) where N
I understand xmin should be declared with a default value such as xmin::Tuple{Vararg{Float64, N}}::0., but this is evidently wrong as it is defaulting to a Float instead of Tuple. How can I state I want a N long tuple as optional argument defaulting to (eg.) 0. for all the elements if the argument is not provided explicitly?
Here it is - you just provide the default as a one element tuple:
function somefun(d::Int64, n::Tuple{Vararg{Int64, N}}; xmin::Tuple{Vararg{Float64, N}}=(0.0,)) where N
println("d=$d n=$n xmin=$xmin")
end
To understand how it works just note that:
Tuple{Vararg{Int, 2}} == typeof((2,2))
#and
Tuple{Vararg{Int, 1}} == typeof((2,))
so you needed 1-element tuple as a default.
Let's test it:
julia> somefun(4,(4,))
d=4 n=(4,) xmin=(0.0,)
This works as expected.
Finally, note that providing a 2-element tuple as the second argument without the third one will throw an error because the sizes do not match:
julia> somefun(4,(4,5))
ERROR: MethodError: no method matching #somefun#1(::Tuple{Float64}, ::typeof(somefun), ::Int64, ::Tuple{Int64,Int64})
If you want to workaround this you need another constructor:
function somefun(d::Int64, n::Tuple{Vararg{Int64, N}}; xmin::Tuple{Vararg{Float64, N}}= tuple(zeros(length(n))...)) where N
println("d=$d n=$n xmin=$xmin")
end
Testing:
julia> somefun(4,(4,5))
d=4 n=(4, 5) xmin=(0.0, 0.0)

Restricting function signatures while using ForwardDiff in Julia

I am trying to use ForwardDiff in a library where almost all functions are restricted to only take in Floats. I want to generalise these function signatures so that ForwardDiff can be used while still being restrictive enough so functions only take numeric values and not things like Dates. I have alot of functions with the same name but different types (ie functions that take in "time" as either a float or a Date with the same function name) and do not want to remove the type qualifiers throughout.
Minimal Working Example
using ForwardDiff
x = [1.0, 2.0, 3.0, 4.0 ,5.0]
typeof(x) # Array{Float64,1}
function G(x::Array{Real,1})
return sum(exp.(x))
end
function grad_F(x::Array)
return ForwardDiff.gradient(G, x)
end
G(x) # Method Error
grad_F(x) # Method error
function G(x::Array{Float64,1})
return sum(exp.(x))
end
G(x) # This works
grad_F(x) # This has a method error
function G(x)
return sum(exp.(x))
end
G(x) # This works
grad_F(x) # This works
# But now I cannot restrict the function G to only take numeric arrays and not for instance arrays of Dates.
Is there are a way to restict functions to only take numeric values (Ints and Floats) and whatever dual number structs that ForwardDiff uses but not allow Symbols, Dates, etc.
ForwardDiff.Dual is a subtype of the abstract type Real. The issue you have, however, is that Julia's type parameters are invariant, not covariant. The following, then, returns false.
# check if `Array{Float64, 1}` is a subtype of `Array{Real, 1}`
julia> Array{Float64, 1} <: Array{Real, 1}
false
That makes your function definition
function G(x::Array{Real,1})
return sum(exp.(x))
end
incorrect (not suitable for your use). That's why you get the following error.
julia> G(x)
ERROR: MethodError: no method matching G(::Array{Float64,1})
The correct definition should rather be
function G(x::Array{<:Real,1})
return sum(exp.(x))
end
or if you somehow need an easy access to the concrete element type of the array
function G(x::Array{T,1}) where {T<:Real}
return sum(exp.(x))
end
The same goes for your grad_F function.
You might find it useful to read the relevant section of the Julia documentation for types.
You might also want to type annotate your functions for AbstractArray{<:Real,1} type rather than Array{<:Real, 1} so that your functions can work other types of arrays, like StaticArrays, OffsetArrays etc., without a need for redefinitions.
This would accept any kind of array parameterized by any kind of number:
function foo(xs::AbstractArray{<:Number})
#show typeof(xs)
end
or:
function foo(xs::AbstractArray{T}) where T<:Number
#show typeof(xs)
end
In case you need to refer to the type parameter T inside the body function.
x1 = [1.0, 2.0, 3.0, 4.0 ,5.0]
x2 = [1, 2, 3,4, 5]
x3 = 1:5
x4 = 1.0:5.0
x5 = [1//2, 1//4, 1//8]
xss = [x1, x2, x3, x4, x5]
function foo(xs::AbstractArray{T}) where T<:Number
#show xs typeof(xs) T
println()
end
for xs in xss
foo(xs)
end
Outputs:
xs = [1.0, 2.0, 3.0, 4.0, 5.0]
typeof(xs) = Array{Float64,1}
T = Float64
xs = [1, 2, 3, 4, 5]
typeof(xs) = Array{Int64,1}
T = Int64
xs = 1:5
typeof(xs) = UnitRange{Int64}
T = Int64
xs = 1.0:1.0:5.0
typeof(xs) = StepRangeLen{Float64,Base.TwicePrecision{Float64},Base.TwicePrecision{Float64}}
T = Float64
xs = Rational{Int64}[1//2, 1//4, 1//8]
typeof(xs) = Array{Rational{Int64},1}
T = Rational{Int64}
You can run the example code here: https://repl.it/#SalchiPapa/Restricting-function-signatures-in-Julia

Evaluate expression with local variables

I'm writing a genetic program in order to test the fitness of randomly generated expressions. Shown here is the function to generate the expression as well a the main function. DIV and GT are defined elsewhere in the code:
function create_single_full_tree(depth, fs, ts)
"""
Creates a single AST with full depth
Inputs
depth Current depth of tree. Initially called from main() with max depth
fs Function Set - Array of allowed functions
ts Terminal Set - Array of allowed terminal values
Output
Full AST of typeof()==Expr
"""
# If we are at the bottom
if depth == 1
# End of tree, return function with two terminal nodes
return Expr(:call, fs[rand(1:length(fs))], ts[rand(1:length(ts))], ts[rand(1:length(ts))])
else
# Not end of expression, recurively go back through and create functions for each new node
return Expr(:call, fs[rand(1:length(fs))], create_single_full_tree(depth-1, fs, ts), create_single_full_tree(depth-1, fs, ts))
end
end
function main()
"""
Main function
"""
# Define functional and terminal sets
fs = [:+, :-, :DIV, :GT]
ts = [:x, :v, -1]
# Create the tree
ast = create_single_full_tree(4, fs, ts)
#println(typeof(ast))
#println(ast)
#println(dump(ast))
x = 1
v = 1
eval(ast) # Error out unless x and v are globals
end
main()
I am generating a random expression based on certain allowed functions and variables. As seen in the code, the expression can only have symbols x and v, as well as the value -1. I will need to test the expression with a variety of x and v values; here I am just using x=1 and v=1 to test the code.
The expression is being returned correctly, however, eval() can only be used with global variables, so it will error out when run unless I declare x and v to be global (ERROR: LoadError: UndefVarError: x not defined). I would like to avoid globals if possible. Is there a better way to generate and evaluate these generated expressions with locally defined variables?
Here is an example for generating an (anonymous) function. The result of eval can be called as a function and your variable can be passed as parameters:
myfun = eval(Expr(:->,:x, Expr(:block, Expr(:call,:*,3,:x) )))
myfun(14)
# returns 42
The dump function is very useful to inspect the expression that the parsers has created. For two input arguments you would use a tuple for example as args[1]:
julia> dump(parse("(x,y) -> 3x + y"))
Expr
head: Symbol ->
args: Array{Any}((2,))
1: Expr
head: Symbol tuple
args: Array{Any}((2,))
1: Symbol x
2: Symbol y
typ: Any
2: Expr
[...]
Does this help?
In the Metaprogramming part of the Julia documentation, there is a sentence under the eval() and effects section which says
Every module has its own eval() function that evaluates expressions in its global scope.
Similarly, the REPL help ?eval will give you, on Julia 0.6.2, the following help:
Evaluate an expression in the given module and return the result. Every Module (except those defined with baremodule) has its own 1-argument definition of eval, which evaluates expressions in that module.
I assume, you are working in the Main module in your example. That's why you need to have the globals defined there. For your problem, you can use macros and interpolate the values of x and y directly inside the macro.
A minimal working example would be:
macro eval_line(a, b, x)
isa(a, Real) || (warn("$a is not a real number."); return :(throw(DomainError())))
isa(b, Real) || (warn("$b is not a real number."); return :(throw(DomainError())))
return :($a * $x + $b) # interpolate the variables
end
Here, #eval_line macro does the following:
Main> #macroexpand #eval_line(5, 6, 2)
:(5 * 2 + 6)
As you can see, the values of macro's arguments are interpolated inside the macro and the expression is given to the user accordingly. When the user does not behave,
Main> #macroexpand #eval_line([1,2,3], 7, 8)
WARNING: [1, 2, 3] is not a real number.
:((Main.throw)((Main.DomainError)()))
a user-friendly warning message is provided to the user at parse-time, and a DomainError is thrown at run-time.
Of course, you can do these things within your functions, again by interpolating the variables --- you do not need to use macros. However, what you would like to achieve in the end is to combine eval with the output of a function that returns Expr. This is what the macro functionality is for. Finally, you would simply call your macros with an # sign preceding the macro name:
Main> #eval_line(5, 6, 2)
16
Main> #eval_line([1,2,3], 7, 8)
WARNING: [1, 2, 3] is not a real number.
ERROR: DomainError:
Stacktrace:
[1] eval(::Module, ::Any) at ./boot.jl:235
EDIT 1. You can take this one step further, and create functions accordingly:
macro define_lines(linedefs)
for (name, a, b) in eval(linedefs)
ex = quote
function $(Symbol(name))(x) # interpolate name
return $a * x + $b # interpolate a and b here
end
end
eval(ex) # evaluate the function definition expression in the module
end
end
Then, you can call this macro to create different line definitions in the form of functions to be called later on:
#define_lines([
("identity_line", 1, 0);
("null_line", 0, 0);
("unit_shift", 0, 1)
])
identity_line(5) # returns 5
null_line(5) # returns 0
unit_shift(5) # returns 1
EDIT 2. You can, I guess, achieve what you would like to achieve by using a macro similar to that below:
macro random_oper(depth, fs, ts)
operations = eval(fs)
oper = operations[rand(1:length(operations))]
terminals = eval(ts)
ts = terminals[rand(1:length(terminals), 2)]
ex = :($oper($ts...))
for d in 2:depth
oper = operations[rand(1:length(operations))]
t = terminals[rand(1:length(terminals))]
ex = :($oper($ex, $t))
end
return ex
end
which will give the following, for instance:
Main> #macroexpand #random_oper(1, [+, -, /], [1,2,3])
:((-)([3, 3]...))
Main> #macroexpand #random_oper(2, [+, -, /], [1,2,3])
:((+)((-)([2, 3]...), 3))
Thanks Arda for the thorough response! This helped, but part of me thinks there may be a better way to do this as it seems too roundabout. Since I am writing a genetic program, I will need to create 500 of these ASTs, all with random functions and terminals from a set of allowed functions and terminals (fs and ts in the code). I will also need to test each function with 20 different values of x and v.
In order to accomplish this with the information you have given, I have come up with the following macro:
macro create_function(defs)
for name in eval(defs)
ex = quote
function $(Symbol(name))(x,v)
fs = [:+, :-, :DIV, :GT]
ts = [x,v,-1]
return create_single_full_tree(4, fs, ts)
end
end
eval(ex)
end
end
I can then supply a list of 500 random function names in my main() function, such as ["func1, func2, func3,.....". Which I can eval with any x and v values in my main function. This has solved my issue, however, this seems to be a very roundabout way of doing this, and may make it difficult to evolve each AST with each iteration.

Check if a function has keywords arguments in Julia

Is there a way to check if a function has keywords arguments in Julia? I am looking for something like has_kwargs(fun::Function) that would return true if fun has a method with keyword arguments.
The high level idea is to build a function:
function master_fun(foo::Any, fun::Function, ar::Tuple, kw::Tuple)
if has_kwargs(fun)
fun(ar... ; kw...)
else
fun(ar...)
end
end
Basically, #Michael K. Borregaard's suggestion to use try-catch is correct and officially works.
Looking into the unofficial implementation details, I came up with the followng:
haskw(f,tup) = isdefined(typeof(f).name.mt,:kwsorter) &&
length(methods(typeof(f).name.mt.kwsorter,(Vector{Any},typeof(f),tup...)))>0
This function first looks if there is any keyword processing on any method of the generic function, and if so, looks at the specific tuple of types.
For example:
julia> f(x::Int) = 1
f (generic function with 1 method)
julia> f(x::String ; y="value") = 2
f (generic function with 2 methods)
julia> haskw(f,(Int,))
false
julia> haskw(f,(String,))
true
This should be tested for the specific application, as it probably doesn't work when non-leaf types are involved. As Michael commented, in the question's context the statement would be:
if haskw(fun, typeof.(ar))
...
I don't think you can guarantee that a given function has keyword arguments. Check
f(;x = 3) = println(x)
f(x) = println(2x)
f(3)
#6
f(x = 3)
#3
f(3, x = 3)
#ERROR: MethodError: no method matching f(::Int64; x=3)
#Closest candidates are:
# f(::Any) at REPL[2]:1 got unsupported keyword argument "x"
# f(; x) at REPL[1]:1
So, does the f function have keywords? You can only check for a given method. Note that, in your example above, you'd normally just do
function master_fun(foo, fun::Function, ar::Tuple, kw....)
fun(ar... ; kw...)
end
which should work, and if keywords are passed to a function that does not take them you'd just leave the error reporting to fun. If that is not acceptable you could try to wrap the fun(ar...; kw...) in a try-catch block.

Resources