This question already has answers here:
How to reshape data from long to wide format
(14 answers)
Closed 5 years ago.
I'm trying to change a dataframe in R to group multiple rows by a measurement. The table has a location (km), a size (mm) a count of things in that size bin, a site and year. I want to take the sizes, make a column from each one (2, 4 and 6 in this example), and place the corresponding count into each the row for that location, site and year.
It seems like a combination of transposing and grouping, but I can't figure out a way to accomplish this in R. I've looked at t(), dcast() and aggregate(), but those aren't really close at all.
So I would go from something like this:
df <- data.frame(km=c(rep(32,3),rep(50,3)), mm=rep(c(2,4,6),2), count=sample(1:25,6), site=rep("A", 6), year=rep(2013, 6))
km mm count site year
1 32 2 18 A 2013
2 32 4 2 A 2013
3 32 6 12 A 2013
4 50 2 3 A 2013
5 50 4 17 A 2013
6 50 6 21 A 2013
To this:
km site year mm_2 mm_4 mm_6
1 32 A 2013 18 2 12
2 50 A 2013 3 17 21
Edit: I tried the solution in a suggested duplicate, but I did not work for me, not really sure why. The answer below worked better.
As suggested in the comment above, we can use the sep argument in spread:
library(tidyr)
spread(df, mm, count, sep = "_")
km site year mm_2 mm_4 mm_6
1 32 A 2013 4 20 1
2 50 A 2013 15 14 22
As you mentioned dcast(), here is a method using it.
set.seed(1)
df <- data.frame(km=c(rep(32,3),rep(50,3)),
mm=rep(c(2,4,6),2),
count=sample(1:25,6),
site=rep("A", 6),
year=rep(2013, 6))
library(reshape2)
dcast(df, ... ~ mm, value.var="count")
# km site year 2 4 6
# 1 32 A 2013 13 10 20
# 2 50 A 2013 3 17 1
And if you want a bit of a challenge you can try the base function reshape().
df2 <- reshape(df, v.names="count", idvar="km", timevar="mm", ids="mm", direction="wide")
colnames(df2) <- sub("count.", "mm_", colnames(df2))
df2
# km site year mm_2 mm_4 mm_6
# 1 32 A 2013 13 10 20
# 4 50 A 2013 3 17 1
Related
I haven't coded for several months and now am stuck with the following issue.
I have the following dataset:
Year World_export China_exp World_import China_imp
1 1992 3445.534 27.7310 3402.505 6.2220
2 1993 1940.061 27.8800 2474.038 18.3560
3 1994 2458.337 39.6970 2978.314 3.3270
4 1995 4641.168 15.9790 5504.787 18.0130
5 1996 5680.688 74.1650 6939.291 25.1870
6 1997 7206.604 70.2440 8639.422 31.9030
7 1998 7069.725 99.6510 8530.293 41.5030
8 1999 5916.077 169.4593 6673.743 37.8139
9 2000 7331.588 136.2180 8646.253 47.3789
10 2001 7471.374 143.0542 8292.893 41.2899
11 2002 8074.975 217.4286 9092.341 46.4730
12 2003 9956.433 162.2522 11558.007 71.7753
13 2004 13751.671 282.8678 16345.452 157.0768
14 2005 15976.238 430.8655 16708.094 284.1065
15 2006 19728.935 398.6704 22344.856 553.6356
16 2007 24275.244 484.5276 28693.113 815.7914
17 2008 32570.781 613.3714 39381.251 1414.8120
18 2009 21282.228 173.9463 28563.576 1081.3720
19 2010 25283.462 475.7635 34884.450 1684.0839
20 2011 41418.670 636.5881 45759.051 2193.8573
21 2012 46027.529 432.6025 46404.382 2373.4535
22 2013 37132.301 460.7133 43022.550 2829.3705
23 2014 36046.461 640.2552 40502.268 2373.2351
24 2015 26618.982 781.0016 30264.299 2401.1907
25 2016 23537.354 472.7022 27609.884 2129.4806
What I need is simple: to compute growth rates of each variable, that is, find difference between two elements, divide it by first element and multiply by 100.
I'm trying to write a script, that ends up with error message:
trade_Ch %>%
mutate (
World_exp_grate = sapply(2:nrow(trade_Ch),function(i)((World_export[i]-World_export[i-1])/World_export[i-1]))
)
Error in mutate_impl(.data, dots) : Column World_exp_grate must
be length 25 (the number of rows) or one, not 24
although this piece of code gives me right values:
x <- sapply(2:nrow(trade_Ch),function(i)((trade_Ch$World_export[i]-trade_Ch$World_export[i-1])/trade_Ch$World_export[i-1]))
How can I correctly embedd the code into my MUTATE part from dplyr package?
OR
Is there is another elegant way to solve this issue?
library(dplyr)
df %>%
mutate_each(funs(chg = ((.-lag(.))/lag(.))*100), World_export:China_imp)
trade_Ch %>%
mutate(world_exp_grate = 100*(World_export - lag(World_export))/lag(World_export))
The problem is that you cannot calculate the World_exp_grate for your first row. Therefore you have to set it to NA.
One variant to solve this is
trade_Ch %>%
mutate (World_export_lag = lag(World_export),
World_exp_grate = (World_export - World_export_lag)/World_export_lag)) %>%
select(-World_export_lag)
lag shifts the vector by one position.
lag(1:5)
# [1] NA 1 2 3 4
I am very new to R so I am not sure how basic my question is, but I am stuck at the following point.
I have data that has a panel structure, similar to this
Country Year Outcome Country-characteristic
A 1990 10 40
A 1991 12 40
A 1992 14 40
B 1991 10 60
B 1992 12 60
For some reason I need to put this in a cross-sectional structure such I get averages over all years for each country, that is in the end, it should look like,
Country Outcome Country-Characteristic
A 12 40
B 11 60
Has anybody faced a similar problem? I was playing with lapply(table$country, table$outcome, mean) but that did not work as I wanted it.
Two tips: 1- When you ask a question, you should provide a reproducible example for the data too (as I did with read.table below). 2- It's not a good idea to use "-" in column names. You should use "_" instead.
You can get a summary using the dplyr package:
df1 <- read.table(text="Country Year Outcome Countrycharacteristic
A 1990 10 40
A 1991 12 40
A 1992 14 40
B 1991 10 60
B 1992 12 60", header=TRUE, stringsAsFactors=FALSE)
library(dplyr)
df1 %>%
group_by(Country) %>%
summarize(Outcome=mean(Outcome),Countrycharacteristic=mean(Countrycharacteristic))
# A tibble: 2 x 3
Country Outcome Countrycharacteristic
<chr> <dbl> <dbl>
1 A 12 40
2 B 11 60
We can do this in base R with aggregate
aggregate(.~Country, df1[-2], mean)
# Country Outcome Countrycharacteristic
#1 A 12 40
#2 B 11 60
I have the following dataframe
y<-data.frame(c(2007,2008,2009,2009,2010,2010),c(10,13,10,11,9,10),c(5,6,5,7,4,7))
colnames(y)<-c("year","a","b")
I want to have a final data.frame that adds together within the same year the values in "y$a" in the new "a" column and the values in "y$b" in the new "b" column so that it looks like this"
year a b
2007 10 5
2008 13 6
2009 21 12
2010 19 11
The following loop has done it for me,
years<- as.numeric(levels(factor(y$year)))
add.a<- numeric(length(y[,1]))
add.b<- numeric(length(y[,1]))
for(i in years){
ind<- which(y$year==i)
add.a[ind]<- sum(as.numeric(as.character(y[ind,"a"])))
add.b[ind]<- sum(as.numeric(as.character(y[ind,"b"])))
}
y.final<-data.frame(y$year,add.a,add.b)
colnames(y.final)<-c("year","a","b")
y.final<-subset(y.final,!duplicated(y.final$year))
but I just think there must be a faster command. Any ideas?
Kindest regards,
Marco
The aggregate function is a good choice for this sort of operation, type ?aggregate for more information about it.
aggregate(cbind(a,b) ~ year, data = y, sum)
# year a b
#1 2007 10 5
#2 2008 13 6
#3 2009 21 12
#4 2010 19 11
I have a data frame of time series data in a 'long' format where there is 1 row/observation per day. I would like to transform this data into a 'wide' format. Each row/observation should have the time series value for the current date and the previous 2 days.
To provide a concrete example, I will use the Air Quality data available in R. This is what my input data frame looks like.
> input <- airquality[1:4,c("Month", "Day", "Ozone")]
> input
Month Day Ozone
1 5 1 41
2 5 2 36
3 5 3 12
4 5 4 18
I would like to transform this input so that it looks like the following.
output <- data.frame(Month = 5, Day = 1:4, Ozone=c(41,36,12,18), Ozone.Prev.1=c(NA,41,36,12), Ozone.Prev.2=c(NA,NA,41,36))
> output
Month Day Ozone Ozone.Prev.1 Ozone.Prev.2
1 5 1 41 NA NA
2 5 2 36 41 NA
3 5 3 12 36 41
4 5 4 18 12 36
Any suggestions on a nice, clean way to do this? Many thanks in advance.
You can use the lag function from zoo, but the following small function get's the trick done without using additional packages:
shift_vector = function(vec, n) c(rep(NA, n), head(vec, -n))
output = transform(input, prev_1 = shift_vector(Ozone, 1),
prev_2 = shift_vector(Ozone, 2))
output
Month Day Ozone prev_1 prev_2
1 5 1 41 NA NA
2 5 2 36 41 NA
3 5 3 12 36 41
4 5 4 18 12 36
This question already has answers here:
Reshape data from wide to long? [duplicate]
(3 answers)
Closed 9 years ago.
I have a table with header like this
Id x.1960 x.1970 x.1980 x.1990 x.2000 y.1960 y.1970 y.1980 y.1990 y.2000
I want to pivot this table as
Id time x y
What is the best way to do this in Excel or R?
Something like this using base R reshape:
Get some data first
test <- read.table(text="Id x.1960 x.1970 x.1980 x.1990 x.2000 y.1960 y.1970 y.1980 y.1990 y.2000
a 1 2 3 4 5 6 7 8 9 10
b 10 20 30 40 50 60 70 80 90 100",header=TRUE)
Then reshape:
reshape(
test,
idvar="Id",
varying=list(2:6,7:11),
direction="long",
v.names=c("x","y"),
times=seq(1960,2000,10)
)
Or let reshape guess the names automatically based on the . separator:
reshape(
test,
idvar="Id",
varying=-1,
direction="long",
sep="."
)
Resulting in:
Id time x y
a.1960 a 1960 1 6
b.1960 b 1960 10 60
a.1970 a 1970 2 7
b.1970 b 1970 20 70
a.1980 a 1980 3 8
b.1980 b 1980 30 80
a.1990 a 1990 4 9
b.1990 b 1990 40 90
a.2000 a 2000 5 10
b.2000 b 2000 50 100