why use square root of epsilon as the small number - epsilon

This question may be independent of the language, but I saw this post using R mentions using square root of epsilon as the small number:
is.wholenumber <-
function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol
Why there's a square root ^0.5? Any help's appreciated.

This is not really an R specific question. However, this post provides some answers to your question. Basically, it is a good rule of thumb to avoid loss of precision.

Related

How to use Simulated Annealing in R (GenSA) for a function with discrete variables with a few options without pattern?

I want to use Simulated Annealing. My objective function exist of multiple variables, for some of them there are only a few options possible. I saw the same question on Stack here:
How to use simulated annealing for a function with discrete paremeters?, but there was no answer but a reference to: How to put mathematical constraints with GenSA function in R.
I don't understand how to apply the advice from the second link to my situation (but I think the answer can be found there).
For example:
v <- c(50, 50, 25, 25)
lower <- c(0,0,0,20)
upper <- c(100,100,50,40)
out <- GenSA(v, lower = lower, upper = upper, fn = efficientFunction)
Assume that the fourth parameter, v[4], only can be in {20,25,30,35,40}. They suggested the use of Lagrange multipliers, hence, I was thinking of something like: lambda * ceil(v[4] / 5). Is this a good idea ?
But what can I do it the sample space of a variable does not have a nice pattern, for example third parameter, v[3], only can be in {0,21,33,89,100}. I don't understand why a Lagrange multiplier can help in this situation. Do I need to make the form of my parameters different that they follow a pattern or is there another option?
In case Lagrange multipliers are the only option, I'll end up with with 8 of these formulations in my objective. It seems to me that there is another option, but I don't know how!
With kind regards and thanks in advance,
Roos
With SA, you could start with a very simple neighbourhood sheme,
pick 1 of the parameters, and change it by selecting a new valid setting, 1 above, or 1 below the current one (we assume that they have a order, like I feel is your case).
There are no Lagrange multipliers involved in SA as I know. But there are many variations and maybe some with Constrainsts or other make use of them.

What is the fastest way to find the value of x for the given statement ?

All I know is that a single integer will surely accept it.
The equation is like :
Ax^5 + Bx^3 + Cx^2 = D
I tried to brute force value of x , but was getting TLE , can I use an optimised binary search as I know only one root will be real?
You may want to search for Newton-Raphson's method which is known to quickly converge to solution with just a few iterations.
You're just asking to find the zeros of a function when you've been guaranteed that there's no more than one zero. To put it concretely, let's assume you have the following equation:
-15x^5 + 12x^3 - 203x^2 = -2.193113e+12
You could use the root-finding function from your favorite statistical software package to find the root. For instance, here's how you would do it with uniroot in R:
uniroot(function(x) -15*x^5 + 12*x^3 - 203*x^2 + 2.193113e+12, c(-1000, 1000))$root
# [1] 171
You could try typing this into Wolfram Alpha.
Solve[3x^5+4 x^3+5x^2==148,x]

Equation of rbfKernel in kernlab is different from the standard?

I have observed that kernlab uses rbfkernel as,
rbf(x,y) = exp(-sigma * euclideanNorm(x-y)^2)
but according to this wiki link, the rbf kernel should be of the form
rbf(x,y) = exp(-euclideanNorm(x-y)^2/(2*sigma^2))
which is also more intuitive since two close samples with a large kernel sigma value will lead to a higher similarity matching.
I am not sure what e1071 svm uses (native code libsvm?)
I hope someone can enlighten me on why there is a difference ? I caught this because I was initially using e1071 but switched to ksvm but saw inconsistent results for the two.
A small example for comparison
set.seed(123)
x <- rnorm(3)
y <- rnorm(3)
sigma <- 100
rbf <- rbfdot(sigma=sigma)
rbf(x, y)
exp( -sum((x-y)^2)/(2*sigma^2) )
I would expect the kernel value to be close to 1 (since x,y come from sigma=1, while kernel sigma=100). This is observed only in the second case.
I came across that discrepancy too and I wound up digging into the source to figure out if there was a typo in the documentation or what was going on exactly since sigma in the context of Gaussians traditionally goes as the standard deviation in the denominator right?
Here's the relevant source
**kernlab\R\kernels.R**
## Define the kernel objects,
## functions with an additional slot for the kernel parameter list.
## kernel functions take two vector arguments and return a scalar (dot product)
rbfdot<- function(sigma=1)
{
rval <- function(x,y=NULL)
{
if(!is(x,"vector")) stop("x must be a vector")
if(!is(y,"vector")&&!is.null(y)) stop("y must a vector")
if (is(x,"vector") && is.null(y)){
return(1)
}
if (is(x,"vector") && is(y,"vector")){
if (!length(x)==length(y))
stop("number of dimension must be the same on both data points")
return(exp(sigma*(2*crossprod(x,y) - crossprod(x) - crossprod(y))))
# sigma/2 or sigma ??
}
}
return(new("rbfkernel",.Data=rval,kpar=list(sigma=sigma)))
}
You can observe from their comment on sigma/2 or sigma ?? that they may perhaps be a bit confused about the convention to adopt, the presence of /2 would be consistent with the standard deviation form /(2*sigma), but I had to speculate about this discovery.
Now another corroborating piece of evidence is in the help page for ? rbfdot which reads...
sigma The inverse kernel width used by the Gaussian the Laplacian,
the Bessel and the ANOVA kernel
And that is consistent with the form they use with sigma in the numerator, since in the denominator it would scale proportionately with the width of the Gaussian right. So it indeed looks like they settled on the convention that is described in the Wikipedia article as the gamma form, where they say
An equivalent, but simpler, definition involves a parameter gamma =
-1/(2*sigma^2)
So the difference just seems to be a matter of adopting different but equivalent conventions. One motivator for the particular convention (which someone may confirm in a comment) may arise from issues of code reuse and consistency, where as you see the parameter is used by three other kernel forms that may have their parameters more traditionally set in the numerator. I'm not sure on that point however since I've never used those alternate kernels and am unfamiliar with each.

How do I efficiently find the maximum value in an array containing values of a smooth function?

I have a function that takes a floating point number and returns a floating point number. It can be assumed that if you were to graph the output of this function it would be 'n' shaped, ie. there would be a single maximum point, and no other points on the function with a zero slope. We also know that input value that yields this maximum output will lie between two known points, perhaps 0.0 and 1.0.
I need to efficiently find the input value that yields the maximum output value to some degree of approximation, without doing an exhaustive search.
I'm looking for something similar to Newton's Method which finds the roots of a function, but since my function is opaque I can't get its derivative.
I would like to down-thumb all the other answers so far, for various reasons, but I won't.
An excellent and efficient method for minimizing (or maximizing) smooth functions when derivatives are not available is parabolic interpolation. It is common to write the algorithm so it temporarily switches to the golden-section search (Brent's minimizer) when parabolic interpolation does not progress as fast as golden-section would.
I wrote such an algorithm in C++. Any offers?
UPDATE: There is a C version of the Brent minimizer in GSL. The archives are here: ftp://ftp.club.cc.cmu.edu/gnu/gsl/ Note that it will be covered by some flavor of GNU "copyleft."
As I write this, the latest-and-greatest appears to be gsl-1.14.tar.gz. The minimizer is located in the file gsl-1.14/min/brent.c. It appears to have termination criteria similar to what I implemented. I have not studied how it decides to switch to golden section, but for the OP, that is probably moot.
UPDATE 2: I googled up a public domain java version, translated from FORTRAN. I cannot vouch for its quality. http://www1.fpl.fs.fed.us/Fmin.java I notice that the hard-coded machine efficiency ("machine precision" in the comments) is 1/2 the value for a typical PC today. Change the value of eps to 2.22045e-16.
Edit 2: The method described in Jive Dadson is a better way to go about this. I'm leaving my answer up since it's easier to implement, if speed isn't too much of an issue.
Use a form of binary search, combined with numeric derivative approximations.
Given the interval [a, b], let x = (a + b) /2
Let epsilon be something very small.
Is (f(x + epsilon) - f(x)) positive? If yes, the function is still growing at x, so you recursively search the interval [x, b]
Otherwise, search the interval [a, x].
There might be a problem if the max lies between x and x + epsilon, but you might give this a try.
Edit: The advantage to this approach is that it exploits the known properties of the function in question. That is, I assumed by "n"-shaped, you meant, increasing-max-decreasing. Here's some Python code I wrote to test the algorithm:
def f(x):
return -x * (x - 1.0)
def findMax(function, a, b, maxSlope):
x = (a + b) / 2.0
e = 0.0001
slope = (function(x + e) - function(x)) / e
if abs(slope) < maxSlope:
return x
if slope > 0:
return findMax(function, x, b, maxSlope)
else:
return findMax(function, a, x, maxSlope)
Typing findMax(f, 0, 3, 0.01) should return 0.504, as desired.
For optimizing a concave function, which is the type of function you are talking about, without evaluating the derivative I would use the secant method.
Given the two initial values x[0]=0.0 and x[1]=1.0 I would proceed to compute the next approximations as:
def next_x(x, xprev):
return x - f(x) * (x - xprev) / (f(x) - f(xprev))
and thus compute x[2], x[3], ... until the change in x becomes small enough.
Edit: As Jive explains, this solution is for root finding which is not the question posed. For optimization the proper solution is the Brent minimizer as explained in his answer.
The Levenberg-Marquardt algorithm is a Newton's method like optimizer. It has a C/C++ implementation levmar that doesn't require you to define the derivative function. Instead it will evaluate the objective function in the current neighborhood to move to the maximum.
BTW: this website appears to be updated since I last visited it, hope it's even the same one I remembered. Apparently it now also support other languages.
Given that it's only a function of a single variable and has one extremum in the interval, you don't really need Newton's method. Some sort of line search algorithm should suffice. This wikipedia article is actually not a bad starting point, if short on details. Note in particular that you could just use the method described under "direct search", starting with the end points of your interval as your two points.
I'm not sure if you'd consider that an "exhaustive search", but it should actually be pretty fast I think for this sort of function (that is, a continuous, smooth function with only one local extremum in the given interval).
You could reduce it to a simple linear fit on the delta's, finding the place where it crosses the x axis. Linear fit can be done very quickly.
Or just take 3 points (left/top/right) and fix the parabola.
It depends mostly on the nature of the underlying relation between x and y, I think.
edit this is in case you have an array of values like the question's title states. When you have a function take Newton-Raphson.

Fastest numerical solution of a real cubic polynomial?

R question: Looking for the fastest way to NUMERICALLY solve a bunch of arbitrary cubics known to have real coeffs and three real roots. The polyroot function in R is reported to use Jenkins-Traub's algorithm 419 for complex polynomials, but for real polynomials the authors refer to their earlier work. What are the faster options for a real cubic, or more generally for a real polynomial?
The numerical solution for doing this many times in a reliable, stable manner, involve: (1) Form the companion matrix, (2) find the eigenvalues of the companion matrix.
You may think this is a harder problem to solve than the original one, but this is how the solution is implemented in most production code (say, Matlab).
For the polynomial:
p(t) = c0 + c1 * t + c2 * t^2 + t^3
the companion matrix is:
[[0 0 -c0],[1 0 -c1],[0 1 -c2]]
Find the eigenvalues of such matrix; they correspond to the roots of the original polynomial.
For doing this very fast, download the singular value subroutines from LAPACK, compile them, and link them to your code. Do this in parallel if you have too many (say, about a million) sets of coefficients.
Notice that the coefficient of t^3 is one, if this is not the case in your polynomials, you will have to divide the whole thing by the coefficient and then proceed.
Good luck.
Edit: Numpy and octave also depend on this methodology for computing the roots of polynomials. See, for instance, this link.
The fastest known way (that I'm aware of) to find the real solutions a system of arbitrary polynomials in n variables is polyhedral homotopy. A detailed explanation is probably beyond a StackOverflow answer, but essentially it's a path algorithm that exploits the structure of each equation using toric geometries. Google will give you a number of papers.
Perhaps this question is better suited for mathoverflow?
Fleshing out Arietta's answer above:
> a <- c(1,3,-4)
> m <- matrix(c(0,0,-a[1],1,0,-a[2],0,1,-a[3]), byrow=T, nrow=3)
> roots <- eigen(m, symm=F, only.values=T)$values
Whether this is faster or slower than using the cubic solver in the GSL package (as suggested by knguyen above) is a matter of benchmarking it on your system.
Do you need all 3 roots or just one? If just one, I would think Newton's Method would work ok. If all 3 then it might be problematic in circumstances where two are close together.
1) Solve for the derivative polynomial P' to locate your three roots. See there to know how to do it properly. Call those roots a and b (with a < b)
2) For the middle root, use a few steps of bisection between a and b, and when you're close enough, finish with Newton's method.
3) For the min and max root, "hunt" the solution. For the max root:
Start with x0 = b, x1 = b + (b - a) * lambda, where lambda is a moderate number (say 1.6)
do x_n = b + (x_{n - 1} - a) * lambda until P(x_n) and P(b) have different signs
Perform bisection + newton between x_{n - 1} and x_n
The common methods are available: Newton's Method, Bisection Method, Secant, Fixed point iteration, etc. Google any one of them.
If you have a non-linear system on the other hand (e.g. a system on N polynomial eqn's in N unknowns), a method such as high-order Newton may be used.
Have you tried looking into the GSL package http://cran.r-project.org/web/packages/gsl/index.html?

Resources