I have following data. i want to first find out the most occurring digit on every place value. Obviously one place can have 10 possibilities from 0 to 9. Than i want an option where by i can choose 5 top occurrences or 6 or 7 or 8 top occurrences for e.g. if i choose 5 then the program should take the top 5 occurrences or if i choose 8 then program should leave out the least 2 occurring digits and take all others.
Data example:
076060
693022
585821
980575
438068
766214
051726
060417
822591
015507
635576
180231
212238
417651
631269
720767
348344
532148
748085
474026
380897
512421
749492
423616
950330
930079
097759
638901
319356
683308
818127
880675
256095
639187
339904
945437
799571
466063
428853
397799
782034
462486
739342
879023
419264
793319
603131
315791
351701
151747
365656
982700
348093
793392
946875
912108
070001
780515
222468
345439
234846
227112
757243
341747
480781
906624
868265
388572
947873
898895
452518
738580
217342
849951
437382
247068
743776
562584
636948
049434
139296
688436
443629
I want option of choosing 5, 6,7 or 8 top occurrences and 2 or 3 or 4number combination
Expected results, 2 number combination basis top 8 occurrences and so on.
01
02
03
04
05
06
08
09
21
22
23
24
25
26
28
29
31
32
33
34
35
36
38
39
41
42
43
44
45
46
48
49
61
62
63
64
65
66
68
69
71
72
73
74
75
76
78
79
81
82
83
84
85
86
88
89
91
92
93
94
95
96
98
99
Expected results, 3 number combination basis top 8 occurrences and so on.
010
012
013
015
016
017
018
019
020
022
023
025
026
027
028
029
030
032
033
035
036
037
038
039
040
042
043
045
046
047
048
049
050
052
053
055
056
057
058
059
060
062
063
065
066
067
068
069
080
082
083
085
086
087
088
089
090
092
093
095
096
097
098
099
210
212
213
215
216
217
218
219
220
222
223
225
226
227
228
229
230
232
233
235
236
237
238
239
240
242
243
245
246
247
248
249
250
252
253
255
256
257
258
259
260
262
263
265
266
267
268
269
280
282
283
285
286
287
288
289
290
292
293
295
296
297
298
299
310
312
313
315
316
317
318
319
320
322
323
325
326
327
328
329
330
332
333
335
336
337
338
339
340
342
343
345
346
347
348
349
350
352
353
355
356
357
358
359
360
362
363
365
366
367
368
369
380
382
383
385
386
387
388
389
390
392
393
395
396
397
398
399
410
412
413
415
416
417
418
419
420
422
423
425
426
427
428
429
430
432
433
435
436
437
438
439
440
442
443
445
446
447
448
449
450
452
453
455
456
457
458
459
460
462
463
465
466
467
468
469
480
482
483
485
486
487
488
489
490
492
493
495
496
497
498
499
610
612
613
615
616
617
618
619
620
622
623
625
626
627
628
629
630
632
633
635
636
637
638
639
640
642
643
645
646
647
648
649
650
652
653
655
656
657
658
659
660
662
663
665
666
667
668
669
680
682
683
685
686
687
688
689
690
692
693
695
696
697
698
699
710
712
713
715
716
717
718
719
720
722
723
725
726
727
728
729
730
732
733
735
736
737
738
739
740
742
743
745
746
747
748
749
750
752
753
755
756
757
758
759
760
762
763
765
766
767
768
769
780
782
783
785
786
787
788
789
790
792
793
795
796
797
798
799
810
812
813
815
816
817
818
819
820
822
823
825
826
827
828
829
830
832
833
835
836
837
838
839
840
842
843
845
846
847
848
849
850
852
853
855
856
857
858
859
860
862
863
865
866
867
868
869
880
882
883
885
886
887
888
889
890
892
893
895
896
897
898
899
910
912
913
915
916
917
918
919
920
922
923
925
926
927
928
929
930
932
933
935
936
937
938
939
940
942
943
945
946
947
948
949
950
952
953
955
956
957
958
959
960
962
963
965
966
967
968
969
980
982
983
985
986
987
988
989
990
992
993
995
996
997
998
999
code i have tried
getwd()
setwd("C:/Users/aziq/Desktop")
library(xlsx)
x <- read.xlsx("numbers.xlsx","Sheet1")
generate_combinations <- function(x, pos, n) {
#select first pos characters from each string
#split each character and create a matrix
mat <- do.call(rbind, strsplit(substr(x, 1, pos), ''))
#Find top n occurrence in each column of matrix
tmp <- apply(mat, 2, function(x) tail(names(sort(table(x))), n))
#Create all combinations of top occurrences.
do.call(expand.grid, asplit(tmp, 2))
}
generate_combinations(x, 2, 8)
nrow(generate_combinations(x, 2, 8))
Error it is showing
Error in asplit(tmp, 2) : dim(x) must have a positive length
Dput results:
> dput(x)
structure(list(X076060 = c("693022", "585821", "980575", "438068",
"766214", "051726", "060417", "822591", "015507", "635576", "180231",
"212238", "417651", "631269", "720767", "348344", "532148", "748085",
"474026", "380897", "512421", "749492", "423616", "950330", "930079",
"097759", "638901", "319356", "683308", "818127", "880675", "256095",
"639187", "339904", "945437", "799571", "466063", "428853", "397799",
"782034", "462486", "739342", "879023", "419264", "793319", "603131",
"315791", "351701", "151747", "365656", "982700", "348093", "793392",
"946875", "912108", "070001", "780515", "222468", "345439", "234846",
"227112", "757243", "341747", "480781", "906624", "868265", "388572",
"947873", "898895", "452518", "738580", "217342", "849951", "437382",
"247068", "743776", "562584", "636948", "049434", "139296", "688436",
"443629")), class = "data.frame", row.names = c(NA, -82L))
We can write a function :
generate_combinations <- function(x, pos, n) {
if(pos == 1) {
return(data.frame(Var1 = names(sort(table(substr(x, 1, pos)),
= decreasing = TRUE)[1:n])))
}
#select first pos characters from each string
#split each character and create a matrix
mat <- do.call(rbind, strsplit(substr(x, 1, pos), ''))
#Find top n occurrence in each column of matrix
tmp <- apply(mat, 2, function(x) tail(names(sort(table(x))), n))
#Create all combinations of top occurrences.
do.call(expand.grid, asplit(tmp, 2))
}
generate_combinations(x, 2, 8)
# Var1 Var2
#1 0 2
#2 2 2
#3 8 2
#4 6 2
#5 9 2
#6 3 2
#7 4 2
#8 7 2
#9 0 5
#10 2 5
#...
#...
nrow(generate_combinations(x, 2, 8))
#[1] 64
nrow(generate_combinations(x, 3, 8))
#[1] 512
data
x <- c("076060", "693022", "585821", "980575", "438068", "766214",
"051726", "060417", "822591", "015507", "635576", "180231", "212238",
"417651", "631269", "720767", "348344", "532148", "748085", "474026",
"380897", "512421", "749492", "423616", "950330", "930079", "097759",
"638901", "319356", "683308", "818127", "880675", "256095", "639187",
"339904", "945437", "799571", "466063", "428853", "397799", "782034",
"462486", "739342", "879023", "419264", "793319", "603131", "315791",
"351701", "151747", "365656", "982700", "348093", "793392", "946875",
"912108", "070001", "780515", "222468", "345439", "234846", "227112",
"757243", "341747", "480781", "906624", "868265", "388572", "947873",
"898895", "452518", "738580", "217342", "849951", "437382", "247068",
"743776", "562584", "636948", "049434", "139296", "688436", "443629")
I'm trying to use a 20Hz low pass filter on data in R, but when I use the filtfilt function, the plot is different from the matlab.
I'm using the following code in R:
fc<-20
fs<-100
Wn<-pi*fc/(2*fs)
testar<- butter(5, Wn, type="low")
L2<- signal::filtfilt(testar,Tabela$posicao)
plot(Tabela$tempo, L2, type = "l", col="red")
The matlab code is:
fc=20;
fs=100;
Wn=pi*fc/(2*fs);
[b,a] = butter(5,Wn,'low');
posfilt= filtfilt(b,a,Tabela.posicao);
The plot in matlab is:
The R one:
why the R one is presenting those variation in the begin and in the end of the graph?
Data can be produced as follows:
Tabela <- data.table::fread("
tempo posicao
0 870.22
1 870.27
2 870.33
3 870.39
4 870.46
5 870.52
6 870.57
7 870.61
8 870.63
9 870.65
10 870.66
11 870.68
12 870.7
13 870.73
14 870.76
15 870.79
16 870.81
17 870.82
18 870.83
19 870.83
20 870.83
21 870.84
22 870.85
23 870.85
24 870.85
25 870.83
26 870.79
27 870.74
28 870.69
29 870.63
30 870.59
31 870.57
32 870.56
33 870.55
34 870.53
35 870.51
36 870.46
37 870.42
38 870.37
39 870.33
40 870.31
41 870.3
42 870.3
43 870.31
44 870.31
45 870.31
46 870.33
47 870.36
48 870.42
49 870.52
50 870.64
51 870.77
52 870.87
53 870.92
54 870.91
55 870.82
56 870.68
57 870.51
58 870.37
59 870.27
60 870.25
61 870.29
62 870.38
63 870.5
64 870.61
65 870.69
66 870.74
67 870.76
68 870.76
69 870.75
70 870.74
71 870.74
72 870.76
73 870.78
74 870.81
75 870.86
76 870.93
77 871.02
78 871.12
79 871.23
80 871.33
81 871.42
82 871.47
83 871.5
84 871.52
85 871.52
86 871.54
87 871.57
88 871.62
89 871.67
90 871.71
91 871.73
92 871.72
93 871.68
94 871.64
95 871.59
96 871.58
97 871.59
98 871.62
99 871.66
100 871.7
101 871.7
102 871.69
103 871.65
104 871.6
105 871.56
106 871.54
107 871.52
108 871.52
109 871.5
110 871.48
111 871.43
112 871.38
113 871.31
114 871.24
115 871.17
116 871.12
117 871.07
118 871.02
119 870.99
120 870.97
121 870.97
122 870.98
123 871.00
124 871.02
125 871.04
126 871.04
127 871.02
128 870.97
129 870.91
130 870.84
131 870.78
132 870.74
133 870.72
134 870.72
135 870.72
136 870.72
137 870.71
138 870.69
139 870.68
140 870.69
141 870.72
142 870.77
143 870.84
144 870.92
145 871.01
146 871.1
147 871.19
148 871.28
149 871.36
150 871.43
151 871.49
152 871.55
153 871.6
154 871.67
155 871.74
156 871.84
157 871.95
158 872.07
159 872.2
160 872.31
161 872.42
162 872.51
163 872.59
164 872.66
165 872.75
166 872.86
167 873.02
168 873.22
169 873.48
170 873.8
171 874.16
172 874.55
173 874.99
174 875.49
175 876.06
176 876.72
177 877.48
178 878.36
179 879.33
180 880.41
181 881.59
182 882.87
183 884.24
184 885.71
185 887.29
186 888.96
187 890.73
188 892.61
189 894.57
190 896.63
191 898.77
192 900.99
193 903.28
194 905.63
195 908.02
196 910.44
197 912.88
198 915.33
199 917.79
200 920.25
201 922.71
202 925.15
203 927.57
204 929.96
205 932.3
206 934.59
207 936.82
208 938.99
209 941.09
210 943.14
211 945.12
212 947.05
213 948.89
214 950.62
215 952.2
216 953.62
217 954.86
218 955.94
219 956.86
220 957.65
221 958.33
222 958.9
223 959.4
224 959.83
225 960.2
226 960.53
227 960.82
228 961.09
229 961.35
230 961.58
231 961.81
232 962.02
233 962.23
234 962.45
235 962.7
236 962.98
237 963.32
238 963.7
239 964.13
240 964.6
241 965.09
242 965.59
243 966.09
244 966.59
245 967.1
246 967.62
247 968.15
248 968.69
249 969.25
250 969.81
251 970.36
252 970.89
253 971.4
254 971.89
255 972.33
256 972.73
257 973.08
258 973.38
259 973.63
260 973.85
261 974.05
262 974.25
263 974.44
264 974.63
265 974.8
266 974.96
267 975.1
268 975.24
269 975.37
270 975.5
271 975.64
272 975.8
273 975.96
274 976.13
275 976.32
276 976.52
277 976.74
278 976.97
279 977.21
280 977.44
281 977.66
282 977.84
283 977.97
284 978.05
285 978.06
286 978.01
287 977.9
288 977.74
289 977.53
290 977.28
291 976.99
292 976.67
293 976.34
294 976.01
295 975.68
296 975.35
297 975.02
298 974.68
299 974.31
300 973.91
301 973.48
302 973.04
303 972.58
304 972.14
305 971.71
306 971.32
307 970.97
308 970.67
309 970.41
310 970.2
311 970.02
312 969.89
313 969.78
314 969.72
315 969.68
316 969.67
317 969.67
318 969.67
319 969.67
320 969.67
321 969.68
322 969.69
323 969.73
324 969.79
325 969.88
326 969.98
327 970.08
328 970.17
329 970.24
330 970.28
331 970.29
332 970.27
333 970.22
334 970.15
335 970.07
336 969.98
337 969.89
338 969.81
339 969.74
340 969.68
341 969.63
342 969.6
343 969.57
344 969.56
345 969.55
346 969.57
347 969.6
348 969.65
349 969.73
350 969.81
351 969.89
352 969.96
353 970.01
354 970.05
355 970.06
356 970.07
357 970.08
358 970.09
359 970.09
360 970.09
361 970.08
362 970.06
363 970.04
364 970.00
365 969.96
366 969.94
367 969.93
368 969.95
369 970.00
370 970.08
371 970.17
372 970.27
373 970.35
374 970.42
375 970.48
376 970.53
377 970.58
378 970.64
379 970.73
380 970.85
381 970.98
382 971.14
383 971.3
384 971.45
385 971.58
386 971.69
387 971.76
388 971.79
389 971.8
390 971.78
391 971.75
392 971.71
393 971.66
394 971.61
395 971.55
396 971.48
397 971.39
398 971.3
399 971.2
400 971.1
401 971.00
402 970.9
403 970.82
404 970.76
405 970.73
406 970.72
407 970.73
408 970.77
409 970.83
410 970.9
411 970.98
412 971.06
413 971.16
414 971.27
415 971.4
416 971.53
417 971.67
418 971.81
419 971.94
420 972.06
421 972.17
422 972.25
423 972.33
424 972.38
425 972.42
426 972.45
427 972.45
428 972.44
429 972.42
430 972.38
431 972.34
432 972.29
433 972.24
434 972.2
435 972.16
436 972.12
437 972.1
438 972.08
439 972.07
440 972.07
441 972.07
442 972.07
443 972.08
444 972.09
445 972.12
446 972.18
447 972.26
448 972.37
449 972.49
450 972.61
451 972.7
452 972.78
453 972.82
454 972.83
455 972.82
456 972.79
457 972.76
458 972.71
459 972.65
460 972.57
461 972.49
462 972.39
463 972.29
464 972.19
465 972.11
466 972.07
467 972.05
468 972.07
469 972.1
470 972.14
471 972.17
472 972.19
473 972.2
474 972.21
475 972.22
476 972.25
477 972.29
478 972.36
479 972.44
480 972.52
481 972.61
482 972.68
483 972.74
484 972.78
485 972.81
486 972.83
487 972.85
488 972.86
489 972.88
490 972.9
491 972.92
492 972.95
493 972.97
494 972.99
495 973.00
496 972.99
497 972.97
498 972.93
499 972.88
500 972.83
501 972.78
502 972.73
503 972.69
504 972.66
505 972.64
506 972.64
507 972.66
508 972.7
509 972.76
510 972.83
511 972.92
512 973.02
513 973.13
514 973.25
515 973.39
516 973.56
517 973.74
518 973.94
519 974.14
520 974.34
521 974.52
522 974.68
523 974.82
524 974.94
525 975.06
526 975.18
527 975.3
528 975.43
529 975.58
530 975.73
531 975.88
532 976.02
533 976.15
534 976.27
535 976.4
536 976.53
537 976.67
538 976.82
539 976.99
540 977.17
541 977.35
542 977.53
543 977.71
544 977.88
545 978.03
546 978.18
547 978.31
548 978.44
549 978.55
550 978.63
551 978.69
552 978.72
553 978.73
554 978.73
555 978.72
556 978.71
557 978.69
558 978.67
559 978.62
560 978.54
561 978.41
562 978.22
563 977.96
564 977.62
565 977.19
566 976.67
567 976.05
568 975.32
569 974.47
570 973.48
571 972.34
572 971.03
573 969.52
574 967.79
575 965.83
576 963.64
577 961.2
578 958.52
579 955.62
580 952.5
581 949.16
582 945.6
583 941.83
584 937.85
585 933.68
586 929.33
587 924.8
588 920.12
589 915.3
590 910.35
591 905.29
592 900.13
593 894.88
594 889.56
595 884.18
596 878.76
597 873.31
598 867.84
599 862.37
600 856.93
601 851.52
602 846.16
603 840.86
604 835.64
605 830.48
606 825.41
607 820.4
608 815.46
609 810.57
610 805.74
611 800.96
612 796.25
613 791.59
614 786.99
615 782.46
616 777.99
617 773.57
618 769.2
619 764.89
620 760.64
621 756.45
622 752.32
623 748.25
624 744.24
625 740.31
626 736.46
627 732.69
628 729.03
629 725.5
630 722.1
631 718.83
632 715.7
633 712.68
634 709.77
635 706.96
636 704.25
637 701.63
638 699.13
639 696.75
640 694.49
641 692.36
642 690.34
643 688.42
644 686.6
645 684.85
646 683.17
647 681.56
648 680.01
649 678.52
650 677.1
651 675.75
652 674.49
653 673.3
654 672.19
655 671.15
656 670.16
657 669.22
658 668.33
659 667.5
660 666.74
661 666.05
662 665.42
663 664.85
664 664.32
665 663.82
666 663.35
667 662.93
668 662.57
669 662.27
670 662.05
671 661.89
672 661.77
673 661.69
674 661.62
675 661.56
676 661.5
677 661.44
678 661.38
679 661.34
680 661.29
681 661.25
682 661.2
683 661.13
684 661.05
685 660.95
686 660.83
687 660.7
688 660.57
689 660.43
690 660.28
691 660.13
692 659.96
693 659.78
694 659.6
695 659.43
696 659.29
697 659.2
698 659.16
699 659.19
700 659.28
701 659.43
702 659.65
703 659.96
704 660.37
705 660.9
706 661.54
707 662.31
708 663.19
709 664.2
710 665.33
711 666.58
712 667.94
713 669.43
714 671.02
715 672.73
716 674.55
717 676.46
718 678.46
719 680.55
720 682.73
721 685.00
722 687.36
723 689.81
724 692.34
725 694.92
726 697.54
727 700.15
728 702.73
729 705.28
730 707.79
731 710.27
732 712.76
733 715.26
734 717.8
735 720.38
736 722.98
737 725.6
738 728.21
739 730.81
740 733.39
741 735.96
742 738.5
743 741.02
744 743.52
745 746.00
746 748.45
747 750.87
748 753.25
749 755.58
750 757.87
751 760.12
752 762.34
753 764.53
754 766.71
755 768.86
756 770.99
757 773.09
758 775.16
759 777.2
760 779.23
761 781.24
762 783.25
763 785.26
764 787.28
765 789.3
766 791.31
767 793.33
768 795.34
769 797.35
770 799.35
771 801.34
772 803.33
773 805.31
774 807.29
775 809.26
776 811.21
777 813.16
778 815.09
779 817.03
780 818.96
781 820.91
782 822.88
783 824.85
784 826.82
785 828.78
786 830.73
787 832.67
788 834.59
789 836.5
790 838.41
791 840.33
792 842.27
793 844.23
794 846.2
795 848.18
796 850.15
797 852.1
798 854.02
799 855.93
800 857.84
801 859.76
802 861.71
803 863.69
804 865.69
805 867.72
806 869.75
807 871.79
808 873.83
809 875.88
810 877.94
811 880.02
812 882.12
813 884.25
814 886.41
815 888.59
816 890.78
817 892.97
818 895.18
819 897.39
820 899.61
821 901.85
822 904.11
823 906.38
824 908.67
825 910.97
826 913.29
827 915.61
828 917.94
829 920.28
830 922.63
831 925.00
832 927.38
833 929.79
834 932.22
835 934.68
836 937.17
837 939.67
838 942.17
839 944.67
840 947.15
841 949.62
842 952.08
843 954.51
844 956.94
845 959.36
846 961.75
847 964.12
848 966.45
849 968.73
850 970.94
851 973.07
852 975.12
853 977.08
854 978.94
855 980.7
856 982.34
857 983.86
858 985.26
859 986.52
860 987.65
861 988.64
862 989.49
863 990.2
864 990.76
865 991.16
866 991.42
867 991.52
868 991.48
869 991.3
870 991.01
871 990.63
872 990.18
873 989.67
874 989.13
875 988.56
876 987.98
877 987.39
878 986.79
879 986.2
880 985.61
881 985.04
882 984.52
883 984.05
884 983.65
885 983.32
886 983.07
887 982.88
888 982.74
889 982.64
890 982.55
891 982.47
892 982.38
893 982.28
894 982.15
895 981.98
896 981.78
897 981.54
898 981.26
899 980.94
900 980.61
901 980.28
902 979.94
903 979.61
904 979.29
905 978.98
906 978.68
907 978.39
908 978.11
909 977.85
910 977.6
911 977.37
912 977.16
913 976.94
914 976.72
915 976.5
916 976.27
917 976.06
918 975.85
919 975.67
920 975.5
921 975.36
922 975.22
923 975.08
924 974.93
925 974.76
926 974.57
927 974.35
928 974.1
929 973.85
930 973.6
931 973.36
932 973.13
933 972.93
934 972.74
935 972.55
936 972.37
937 972.19
938 972.00
939 971.8
940 971.6
941 971.39
942 971.18
943 970.97
944 970.76
945 970.56
946 970.37
947 970.19
948 970.02
949 969.86
950 969.72
951 969.6
952 969.5
953 969.42
954 969.36
955 969.33
956 969.29
957 969.27
958 969.23
959 969.19
960 969.14
961 969.09
962 969.04
963 968.99
964 968.94
965 968.88
966 968.82
967 968.74
968 968.64
969 968.54
970 968.42
971 968.3
972 968.19
973 968.08
974 967.98
975 967.86
976 967.74
977 967.59
978 967.42
979 967.24
980 967.04
981 966.85
982 966.67
983 966.5
984 966.35
985 966.2
986 966.06
987 965.92
988 965.77
989 965.61
990 965.44
991 965.25
992 965.05
993 964.82
994 964.58
995 964.32
996 964.05
997 963.78
998 963.52
999 963.28
1000 963.06
1001 962.85
1002 962.65
1003 962.44
1004 962.18
1005 961.87
1006 961.49
1007 961.03
1008 960.49
1009 959.91
1010 959.32
1011 958.75
1012 958.23
1013 957.77
1014 957.33
1015 956.9
1016 956.43
1017 955.87
1018 955.19
1019 954.37
1020 953.43
1021 952.39
1022 951.28
1023 950.13
1024 948.96
1025 947.74
1026 946.48
1027 945.15
1028 943.74
1029 942.26
1030 940.72
1031 939.11
1032 937.45
1033 935.74
1034 933.95
1035 932.07
1036 930.11
1037 928.06
1038 925.97
1039 923.92
1040 921.98
1041 920.24
1042 918.75
1043 917.51
1044 916.51
1045 915.7
1046 915.04
1047 914.51
1048 914.1
1049 913.76
1050 913.44
1051 913.05
1052 912.52
1053 911.79
1054 910.86
1055 909.74
1056 908.49
1057 907.19
1058 905.91
1059 904.73
1060 903.71
1061 902.89
1062 902.28
1063 901.88
1064 901.66
1065 901.59
1066 901.65
1067 901.81
1068 902.03
1069 902.3
1070 902.56
1071 902.79
1072 902.96
1073 903.06
1074 903.09
1075 903.06
1076 902.97
1077 902.85
1078 902.7
1079 902.53
1080 902.36
1081 902.21
1082 902.07
1083 901.95
1084 901.83
1085 901.67
1086 901.46
1087 901.17
1088 900.77
1089 900.26
1090 899.61
1091 898.81
1092 897.85
1093 896.73
1094 895.47
1095 894.12
1096 892.74
1097 891.4
1098 890.16
1099 889.04
1100 888.02
1101 887.1
1102 886.26
1103 885.5
1104 884.81
1105 884.15
1106 883.45
1107 882.61
1108 881.56
1109 880.29
1110 878.88
1111 877.44
1112 876.11
1113 875.01
1114 874.2
1115 873.65
1116 873.28
1117 872.99
1118 872.69
1119 872.36
1120 872.02
1121 871.74
1122 871.56
1123 871.5
1124 871.53
1125 871.6
1126 871.62
1127 871.58
1128 871.45
1129 871.26
1130 871.06
1131 870.9
1132 870.81
1133 870.82
1134 870.92
1135 871.06
1136 871.21
1137 871.32
1138 871.36
1139 871.33
1140 871.24
1141 871.14
1142 871.08
1143 871.08
1144 871.15
1145 871.28
1146 871.43
1147 871.56
1148 871.62
1149 871.6
1150 871.51
1151 871.37
1152 871.2
1153 871.04
1154 870.89
1155 870.77
1156 870.66
1157 870.55
1158 870.44
1159 870.32
1160 870.22
1161 870.13
1162 870.08
1163 870.06
1164 870.07
1165 870.09
1166 870.12
1167 870.14
1168 870.13
1169 870.11
1170 870.08
1171 870.05
1172 870.03
1173 870.03
1174 870.04
1175 870.04
1176 870.03
1177 869.99
1178 869.93
1179 869.87
1180 869.83
1181 869.81
1182 869.83
1183 869.88
1184 869.94
1185 870.00
1186 870.03
1187 870.03
1188 870.02
1189 870.00
1190 870.00
1191 870.00
1192 870.03
1193 870.06
1194 870.1
1195 870.14
1196 870.17
1197 870.2
1198 870.24
1199 870.28
1200 870.33
1201 870.37
1202 870.39
1203 870.39
1204 870.36
1205 870.31
1206 870.24
1207 870.18
1208 870.13
1209 870.09
1210 870.05
1211 870.01
1212 869.95
1213 869.88
1214 869.81
1215 869.75
1216 869.72
1217 869.73
1218 869.77
1219 869.85
1220 869.93
1221 870.01
1222 870.06
1223 870.1
1224 870.11
1225 870.11
1226 870.11
1227 870.11
1228 870.11
1229 870.12
1230 870.14
1231 870.16")
I have hunch that the difference is in how each version handles end-effect transients.
Your signal has a large DC-offset (~875). If you think of the signal as being zero 0 before and after the recording. The jump at the start of the signal gets processed by the filter and is seen as an artifact or end-effect. These end-effects are what you see in the R version of the filtered signal.
From the R documentation from filtfilt this version is old and likely doesn't minimize the end transients (R 'filtfilt' docs). On the other hand the MATLAB version of filtfilt does; Quoting from the MATLAB documentation:
"filtfilt minimizes start-up and ending transients by matching initial conditions. Do not use 'filtfilt' with differentiator and Hilbert FIR filters, because the operation of these filters depends heavily on their phase response." FILTFILT Documentation
As mentioned by Azim, the default implementation of signal::filtfilt() does not include any steps to remove end-effect transients. However, a very simple function that pads the series with a reversed values before/after and then subsets the result to the original range of interest can solve this problem.
EndEffect <- function(filt,x) {
signal::filtfilt(filt,c(rev(x),x,rev(x)))[(length(x) + 1):(2 * length(x))]
}
L2<- EndEffect(testar,Tabela$posicao)
plot(Tabela$tempo, L2, type = "l", col="red")
I have a dataframe, each variable has different length (shorter variables have NA values).
V1 V2 V3 V4 V5 V6 V7 V8 V9
1 581 466 528 424 491 500 652 219 520
2 655 320 532 350 508 498 660 85 473
3 479 349 510 150 490 499 611 598 459
4 855 585 471 92 508 499 557 668 493
5 318 538 506 113 492 499 347 291 483
6 581 329 502 265 509 502 301 293 511
7 741 359 536 399 498 500 565 690 506
8 257 475 521 296 498 502 316 53 536
9 759 434 538 447 490 500 614 449 524
10 525 527 506 174 499 500 649 395 456
11 621 670 489 756 497 498 401 443 465
12 789 307 504 808 501 498 499 63 533
13 368 392 515 940 496 501 638 909 514
14 242 549 480 380 503 501 489 347 465
15 432 405 451 914 493 501 319 324 541
16 608 609 514 441 497 499 572 932 473
17 301 691 548 783 497 502 458 301 482
18 792 638 493 964 505 498 378 692 500
19 727 377 536 974 491 499 301 957 524
20 597 463 518 418 491 499 626 245 504
21 700 407 549 375 501 501 351 706 495
22 705 661 493 798 492 501 660 694 494
23 454 426 523 28 504 498 362 797 471
24 432 627 452 550 491 500 474 50 500
25 124 338 501 779 499 502 684 316 514
26 826 683 477 751 492 502 632 308 524
27 218 631 500 296 502 498 693 169 515
28 460 652 502 306 505 498 666 988 459
29 683 621 521 956 498 501 404 218 497
30 316 372 516 524 500 499 405 54 461
31 503 370 520 429 500 502 510 579 493
32 357 369 521 480 495 501 410 667 470
33 451 617 524 191 493 498 535 668 450
34 335 498 522 713 493 498 566 67 520
35 473 421 479 834 497 499 696 670 541
36 447 360 451 708 492 501 528 744 538
37 137 490 490 740 508 500 630 590 469
38 228 455 488 91 500 501 426 477 472
39 873 555 456 520 510 500 662 154 536
40 564 364 532 236 504 498 338 497 516
41 216 480 460 498 503 502 605 566 520
42 389 572 532 943 501 499 572 150 539
43 490 531 536 941 501 502 653 557 508
44 772 421 536 693 507 498 447 861 451
45 390 403 454 985 509 498 695 859 516
46 264 369 550 962 494 498 684 317 504
47 269 667 508 199 490 501 690 757 481
48 877 616 484 516 495 501 300 636 472
49 755 534 511 882 510 499 547 530 479
50 447 455 490 91 504 501 572 NA 539
51 137 555 488 520 503 500 653 NA NA
52 228 364 456 236 501 498 447 NA NA
53 873 480 532 498 501 502 NA NA NA
54 564 NA 460 943 507 499 NA NA NA
55 216 NA 532 941 509 NA NA NA NA
56 389 NA 490 693 NA NA NA NA NA
57 490 NA 488 985 NA NA NA NA NA
58 772 NA 456 NA NA NA NA NA NA
59 390 NA 532 NA NA NA NA NA NA
60 264 NA 460 NA NA NA NA NA NA
61 269 NA 532 NA NA NA NA NA NA
62 877 NA NA NA NA NA NA NA NA
63 755 NA NA NA NA NA NA NA NA
I'm running operations on each variable.
First, I cut the dataframe in single vectors in ascending order for each variable:
a1=dat0[order(dat0$V1),"V1"]
a2=dat0[order(dat0$V2),"V2"]
a3=dat0[order(dat0$V3),"V3"]
a4=dat0[order(dat0$V4),"V4"]
a5=dat0[order(dat0$V5),"V5"]
a6=dat0[order(dat0$V6),"V6"]
a7=dat0[order(dat0$V7),"V7"]
a8=dat0[order(dat0$V8),"V8"]
a9=dat0[order(dat0$V9),"V9"]
Next, I remove the NA.
a1=a1[!is.na(a1)]
a2=a2[!is.na(a2)]
a3=a3[!is.na(a3)]
a4=a4[!is.na(a4)]
a5=a5[!is.na(a5)]
a6=a6[!is.na(a6)]
a7=a7[!is.na(a7)]
a8=a8[!is.na(a8)]
a9=a9[!is.na(a9)]
Finally, I calculate the average of the 25% lowest values of each variable (below the code for only the first variable)
le.1=seq(1:length(a1))
fr.1=le.1/length(a1)
df.1=data.frame(a1,le.1,fr.1)
lq.1=df.1[fr.1<=0.25,]
lqavg.1=mean(lq.1$a1)
The final results I get are:
lqavg.1 lqavg.2 lqavg.3 lqavg.4 lqavg.5 lqavg.6 lqavg.7 lqavg.8 lqavg.9
1 224.6667 351.5385 463.1333 175.5714 491.3846 498 347.9231 127.25 462.3333
The goal is writing a for loop or finding a function to do this without writing the code for each variable.
With the functions kindly suggested by Barker, I get:
> apply(dat0, 2, function(x) mean(x[x <= quantile(x, 0.25, na.rm = TRUE)], na.rm = TRUE))
V1 V2 V3 V4 V5 V6 V7 V8 V9
230.3750 353.3571 467.2778 184.2667 491.5000 498.0000 347.9231 139.8462 463.0769
> apply(dat0, 2, function(x) mean(x[x < quantile(x, 0.25, na.rm = TRUE)], na.rm = TRUE))
V1 V2 V3 V4 V5 V6 V7 V8 V9
230.3750 351.5385 463.1333 175.5714 491.5000 498.0000 347.9231 127.2500 463.0769
Any help is appreciated!
Thanks!
This is ridiculous. Here's how to translate your code to use sapply:
sapply(dat0, function(x) {
x = x[order(x)]
x = x[!is.na(x)]
x = x[(1:length(x)) / length(x) <= 0.25]
return(mean(x))
})
# V1 V2 V3 V4 V5 V6 V7 V8 V9
# 224.6667 351.5385 463.1333 175.5714 491.3846 498.0000 347.9231 127.2500 462.3333
This follows the exact same steps as your code, (order, remove missing values, take 25% of remaining values based on length, find the average). It's output matches yours. sapply will call a function on every column of a data frame. Here we make an anonymous function that does what we want to the column it's being called on.