Partially applied constant on left hand side of code equation - isabelle

I need to use nat_plus_commute.fold_set_fold_remdups code equation instead of Finite_Set.fold_def:
interpretation nat_plus_commute: comp_fun_commute "plus :: nat ⇒ nat ⇒ nat"
by standard auto
declare Finite_Set.fold_def [code del]
declare nat_plus_commute.fold_set_fold_remdups [code]
The problem is that the first equation is defined only for plus operation and so I get the following warning:
Partially applied constant "Groups.plus_class.plus" on left hand side of equation, in theorem:
Finite_Set.fold op + ?y (set ?xs) ≡ fold op + (remdups ?xs) ?y
As result the following statement
value "Finite_Set.fold plus 0 (set [1::nat, 2])"
returns the exception:
exception Fail raised (line 29 of "generated code"): Finite_Set.fold
Is it possible to use a specialized code equation for specific operations (plus) and types (nat)?

I am not quite sure want you want to achieve, but note that Finite_Set.fold is a low-level construct of which other operations with practically usable properties can only be derived with considerable effort, cf. theories src/HOL/Finite_Set.thy and src/HOL/Groups_Big.thy for a rough idea.
For summation on finite sets and lists, there are sum and sum_list which are already equipped with code equations.

Related

How to resolve Isabelle termination _dom error message (avoiding recursive definition of two-argument max)?

I am trying to define my own simple max function in Isabelle and prove its termination:
fun two_integer_max_case :: "nat ⇒ nat ⇒ nat" where
"two_integer_max_case a b = (case a > b of True ⇒ a | False ⇒ b)"
termination by auto
But there is un-handled goal in the termination proof:
proof (prove)
goal (1 subgoal):
1. All two_integer_max_case_dom
Ignoring duplicate rewrite rule:
two_integer_max_case ?a1 ?b1 ≡ case ?b1 < ?a1 of True ⇒ ?a1 | False ⇒ ?b1
Duplicate fact declaration "Max_Of_Two_Integers.two_integer_max_case.simps" vs. "Max_Of_Two_Integers.two_integer_max_case.simps"⌂
Failed to finish proof⌂:
goal (1 subgoal):
1. ⋀a b. two_integer_max_case_dom (a, b)
I am focused specifically on message:
Failed to finish proof⌂:
goal (1 subgoal):
1. ⋀a b. two_integer_max_case_dom (a, b)
What does it mean? What is required of me? This ..._dom condition. Where I can read about that?
I have read Chapters 3.5 of https://isabelle.in.tum.de/dist/Isabelle2021/doc/tutorial.pdf and now I am reading Chapter 8.1 of https://isabelle.in.tum.de/dist/Isabelle2021/doc/functions.pdf about domain predicates. Well, I hope that I manage find the solution.
I am aware that things would be easy (at least in the termination proof) if I had manage to come up with the recursive definition of my max function (two natural type arguments). But I have not managed to find such definition (I guess that there is some creative definition in the base theories already) and I am not sure whether I would be happy with recursive definition because my intention is to generate the Haskell or Scala code from this my function and I would prefer that this code would not be recursive but that it would use the standard less, equality operators of respective languages.
Well - it my be problem for the code synthesis with Isabelle generally - if Isabelle prefers recursive definitions of the algorithmic constructions for which industrial-programming-style (whatever it be) is not requiring recursion, then the generated code can be of less maintainability and human comprehension (still an issue before the AI has taken the field of program synthesis).
There is no need to prove termination when using fun, since this Isabelle-command only accepts a function definition if it can prove termination automatically. Hence your termination-command is not necessary at all and actually confuses the system, since it has already proven termination.
Only when using function instead of fun, then you need to prove termination manually afterwards.
Hope this helps, René

Isabelle Real Datatype - Malformed definition: Non-constructor pattern not allowed in sequential mode

I am creating a function of the form
y(t+h) = y(t) + h/y(t)
where y(0) = 1
fun y :: "real ⇒ real" where
"y 0 = Suc(0)"|
"y(t+h) = y(t) + h*(1/y(t))"
Unfortunately, I am getting an error
Malformed definition: Non-constructor pattern not allowed in sequential mode.
y 0 = real (Suc 0)
Googling showed me that I am not adhering to some constructor pattern of real datatype but I am not able to find what the pattern is and how I should change my function.
Real numbers are not an algebraic datatype, so you can't pattern match on them with fun. You have to use either ‘normal’ equational definitions or some of the more advanced features of the function package, but that also makes things more difficult since you have to prove some well-definedness properties yourself.
Also, the Suc 0 on the right-hand side is a natural number, not a real number. (just write 1 instead)
However, the biggest problem with your definition is that the way you have written it down is too informal. I don't understand what it means even informally.
What assumptions do you have about h?
For what t should that second equation be valid?
What happens when you put in a negative value for t? (the way you've written it: non-termination)
What happens when 0 < t < h?
Once you have a mathematically precise specification for the function you want to define, you can probably write it down without too much of a headache with the function command

Isabelle/HOL foundations

I have seen a lot of documentation about Isabelle's syntax and proof strategies. However, little have I found about its foundations. I have a few questions that I would be very grateful if someone could take the time to answer:
Why doesn't Isabelle/HOL admit functions that do not terminate? Many other languages such as Haskell do admit non-terminating functions.
What symbols are part of Isabelle's meta-language? I read that there are symbols in the meta-language for Universal Quantification (/\) and for implication (==>). However, these symbols have their counterpart in the object-level language (∀ and -->). I understand that --> is an object-level function of type bool => bool => bool. However, how are ∀ and ∃ defined? Are they object-level Boolean functions? If so, they are not computable (considering infinite domains). I noticed that I am able to write Boolean functions in therms of ∀ and ∃, but they are not computable. So what are ∀ and ∃? Are they part of the object-level? If so, how are they defined?
Are Isabelle theorems just Boolean expressions? Then Booleans are part of the meta-language?
As far as I know, Isabelle is a strict programming language. How can I use infinite objects? Let's say, infinite lists. Is it possible in Isabelle/HOL?
Sorry if these questions are very basic. I do not seem to find a good tutorial on Isabelle's meta-theory. I would love if someone could recommend me a good tutorial on these topics.
Thank you very much.
You can define non-terminating (i.e. partial) functions in Isabelle (cf. Function package manual (section 8)). However, partial functions are more difficult to reason about, because whenever you want to use its definition equations (the psimps rules, which replace the simps rules of a normal function), you have to show that the function terminates on that particular input first.
In general, things like non-definedness and non-termination are always problematic in a logic – consider, for instance, the function ‘definition’ f x = f x + 1. If we were to take this as an equation on ℤ (integers), we could subtract f x from both sides and get 0 = 1. In Haskell, this problem is ‘solved’ by saying that this is not an equation on ℤ, but rather on ℤ ∪ {⊥} (the integers plus bottom) and the non-terminating function f evaluates to ⊥, and ‘⊥ + 1 = ⊥’, so everything works out fine.
However, if every single expression in your logic could potentially evaluate to ⊥ instead of a ‘proper‘ value, reasoning in this logic will become very tedious. This is why Isabelle/HOL chooses to restrict itself to total functions; things like partiality have to be emulated with things like undefined (which is an arbitrary value that you know nothing about) or option types.
I'm not an expert on Isabelle/Pure (the meta logic), but the most important symbols are definitely
⋀ (the universal meta quantifier)
⟹ (meta implication)
≡ (meta equality)
&&& (meta conjunction, defined in terms of ⟹)
Pure.term, Pure.prop, Pure.type, Pure.dummy_pattern, Pure.sort_constraint, which fulfil certain internal functions that I don't know much about.
You can find some information on this in the Isabelle/Isar Reference Manual in section 2.1, and probably more elsewhere in the manual.
Everything else (that includes ∀ and ∃, which indeed operate on boolean expressions) is defined in the object logic (HOL, usually). You can find the definitions, of rather the axiomatisations, in ~~/src/HOL/HOL.thy (where ~~ denotes the Isabelle root directory):
All_def: "All P ≡ (P = (λx. True))"
Ex_def: "Ex P ≡ ∀Q. (∀x. P x ⟶ Q) ⟶ Q"
Also note that many, if not most Isabelle functions are typically not computable. Isabelle is not a programming language, although it does have a code generator that allows exporting Isabelle functions as code to programming languages as long as you can give code equations for all the functions involved.
3)
Isabelle theorems are a complex datatype (cf. ~~/src/Pure/thm.ML) containing a lot of information, but the most important part, of course, is the proposition. A proposition is something from Isabelle/Pure, which in fact only has propositions and functions. (and itself and dummy, but you can ignore those).
Propositions are not booleans – in fact, there isn't even a way to state that a proposition does not hold in Isabelle/Pure.
HOL then defines (or rather axiomatises) booleans and also axiomatises a coercion from booleans to propositions: Trueprop :: bool ⇒ prop
Isabelle is not a programming language, and apart from that, totality does not mean you have to restrict yourself to finite structures. Even in a total programming language, you can have infinite lists. (cf. Idris's codata)
Isabelle is a theorem prover, and logically, infinite objects can be treated by axiomatising them and then reasoning about them using the axioms and rules that you have.
For instance, HOL assumes the existence of an infinite type and defines the natural numbers on that. That already gives you access to functions nat ⇒ 'a, which are essentially infinite lists.
You can also define infinite lists and other infinite data structures as codatatypes with the (co-)datatype package, which is based on bounded natural functors.
Let me add some points to two of your questions.
1) Why doesn't Isabelle/HOL admit functions that do not terminate? Many other languages such as Haskell do admit non-terminating functions.
In short: Isabelle/HOL does not require termination, but totality (i.e., there is a specific result for each input to the function) of functions. Totality does not mean that a function is actually terminating when transcribed to a (functional) programming language or even that it is computable at all.
Therefore, talking about termination is somewhat misleading, even though it is encouraged by the fact that Isabelle/HOL's function package uses the keyword termination for proving some property P about which I will have to say a little more below.
On the one hand the term "termination" might sound more intuitive to a wider audience. On the other hand, a more precise description of P would be well-foundedness of the function's call graph.
Don't get me wrong, termination is not really a bad name for the property P, it is even justified by the fact that many techniques that are implemented in the function package are very close to termination techniques from term rewriting or functional programming (like the size-change principle, dependency pairs, lexicographic orders, etc.).
I'm just saying that it can be misleading. The answer to why that is the case also touches on question 4 of the OP.
4) As far as I know Isabelle is a strict programming language. How can I use infinite objects? Let's say, infinite lists. Is it possible in Isabelle/HOL?
Isabelle/HOL is not a programming language and it specifically does not have any evaluation strategy (we could alternatively say: it has any evaluation strategy you like).
And here is why the word termination is misleading (drum roll): if there is no evaluation strategy and we have termination of a function f, people might expect f to terminate independent of the used strategy. But this is not the case. A termination proof of a function rather ensures that f is well-defined. Even if f is computable a proof of P merely ensures that there is an evaluation strategy for which f terminates.
(As an aside: what I call "strategy" here, is typically influenced by so called cong-rules (i.e., congruence rules) in Isabelle/HOL.)
As an example, it is trivial to prove that the function (see Section 10.1 Congruence rules and evaluation order in the documentation of the function package):
fun f' :: "nat ⇒ bool"
where
"f' n ⟷ f' (n - 1) ∨ n = 0"
terminates (in the sense defined by termination) after adding the cong-rule:
lemma [fundef_cong]:
"Q = Q' ⟹ (¬ Q' ⟹ P = P') ⟹ (P ∨ Q) = (P' ∨ Q')"
by auto
Which essentially states that logical-or should be "evaluated" from right to left. However, if you write the same function e.g. in OCaml it causes a stack overflow ...
EDIT: this answer is not really correct, check out Lars' comment below.
Unfortunately I don't have enough reputation to post this as a comment, so here is my go at an answer (please bear in mind I am no expert in Isabelle, but I also had similar questions once):
1) The idea is to prove statements about the defined functions. I am not sure how familiar you are with Computability Theory, but think about the Halting Problem and the fact most undeciability problems stem from it (such as Acceptance Problem). Imagine defining a function which you can't prove it terminates. How could you then still prove it returns the number 42 when given input "ABC" and it doesn't go in an infinite loop?
If instead you limit yourself to terminating functions, you can prove much more about them, essentially making a trade-off (or at least this is how I see it).
These ideas stem from Constructivism and Intuitionism and I recommend you check out Robert Harper's very interesting lecture series: https://www.youtube.com/watch?v=9SnefrwBIDc&list=PLGCr8P_YncjXRzdGq2SjKv5F2J8HUFeqN on Type Theory
You should check out especially the part about the absence of the Law of Excluded middle: http://youtu.be/3JHTb6b1to8?t=15m34s
2) See Manuel's answer.
3,4) Again see Manuel's answer keeping in mind Intuitionistic logic: "the fundamental entity is not the boolean, but rather the proof that something is true".
For me it took a long time to get adjusted to this way of thinking and I'm still not sure I understand it. I think the key though is to understand it is a more-or-less completely different way of thinking.

What is a Quotient type pattern in Isabelle?

What is a "Quotient type pattern" in Isabelle?
I couldn't find any explanation over the internet.
It would be better if you would quote a little from where you saw the phrase. I know of "pattern matching," and I know of "quotient type," but I don't know of "quotient type pattern."
I prefer not to ask for clarification, and then wait, so I pick two of the three words, "quotient type." If I'm on the wrong track, it's still a worthy subject, and a big and important part of Isabelle/HOL.
There is the quotient_type keyword, and it allows you to define a new type with an equivalence relation.
It is part of the quotient package, described starting on page 248 of isar-ref.pdf. There happens to be a Wiki page, Quotient_type.
A more involved description is given by Brian Hufmann and Ondřej Kunčar. Go to Kunčar's web page and look at the two PDFs titled Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL, which are not exactly the same.
It happens to be that lifting and quotient types are heavily related, and not easy to understand, which is why I try to study a little here and there, like right now, to get a better understanding of it all.
Integers and Rationals in HOL Are Quotient Types, I Pick One as an Example, Integers
You can start by looking Int.thy.
For a quotient type, you need an equivalence relation, which defines a set, and intrel is what is used to define that set for type int.
definition intrel :: "(nat * nat) => (nat * nat) => bool" where
"intrel = (%(x, y) (u, v). x + v = u + y)"
This is the classic definition of the integers, based on the natural numbers. Integers are ordered pairs of natural numbers (and sets as I describe below), and they're equal by that definition.
For example, informally, (2,3) = (4,5) because 2 + 5 = 4 + 3.
I'm boring you, and you're waiting for the good stuff. Here's part of it, the use of quotient_type:
quotient_type int = "nat * nat" / "intrel"
morphisms Rep_Integ Abs_Integ
Those two morphisms come into play, if you want to strain your brain, and really understand what's going on, which I do. There are lots of functions and simp rules that quotient_type generates, and you have to do a lot of work to find it all, such as with the find_theorems command.
An Abs function abstracts an ordered pair to an int. Check these out:
lemma "Abs_Integ(1,0) = (1::int)"
by(metis one_int_def)
lemma "Abs_Integ(x,0) + Abs_Integ(y,0) ≥ (0::int)"
by(smt int_def)
They show that an int really is an ordered pair, under the hood of the engine.
Now I show the explicit types of those morphisms, along with Abs_int and Rep_int, which show int not only as an ordered pair, but as a set of ordered pairs.
term "Abs_int :: (nat * nat) set => int"
term "Abs_Integ :: (nat * nat) => int"
term "Rep_int :: int => (nat * nat) set"
term "Rep_Integ :: int => (nat * nat)"
I'm boring you again, but I have an emotional need to show some more examples. Two positive integers are equal if the components of the ordered pairs differ by one, such as these:
lemma "Abs_Integ(1,0) = Abs_Integ(3,2)"
by(smt nat.abs_eq split_conv)
lemma "Abs_Integ(4,3) = Abs_Integ(3,2)"
by(smt nat.abs_eq split_conv)
What would you expect if you added Abs_Integ(4,3) and Abs_Integ(3,2)? This:
lemma "Abs_Integ(2,3) + Abs_Integ(3,4) = Abs_Integ(2 + 3, 3 + 4)"
by(metis plus_int.abs_eq plus_int_def split_conv)
That plus_int in the proof is defined in Int.thy, on line 44.
lift_definition plus_int :: "int => int => int"
is "%(x, y) (u, v). (x + u, y + v)"
What is this lifting all about? That would put me at "days into" this explanation, and I'm only just starting to understand it a little.
The find_theorems shows there's lots of stuff hidden, as I said:
thm "plus_int.abs_eq"
find_theorems name: "Int.plus_int*"
More examples, but these are to emphasize that, under the hood of the engine, an int ties back into an equivalence class as a set, where I'm using intrel above to define the sets right:
term "Abs_int::(nat * nat) set => int"
term "Abs_int {(x,y). x + 3 = 2 + y}" (*(2,3)*)
term "Abs_int {(x,y). x + 4 = 3 + y}" (*(3,4)*)
lemma "Abs_int {(x,y). x + 3 = 2 + y} = Abs_int {(x,y). x + 100 = 99 + y}"
by(auto)
That auto proof was easy, but there's no magic coming through for me on this next one, even though it's simple.
lemma "Abs_int {(x,y). x + 3 = 2 + y} + Abs_int {(x,y). x + 4 = 3 + y}
= Abs_int {(x,y). x + 7 = 5 + y}"
apply(auto simp add: plus_int.abs_eq plus_int_def intrel_def)
oops
It could be that all I need to do is tap into something that's not a simp rule by default.
If quotient_type is not the "quotient type pattern" you're talking about, at least I got something out of it by seeing all what find_theorems returns about Int.plus_int* above.
What is a quotient type?
A quotient type is a way to define a new type in terms of an already existing type. That way, we don't have to axiomatize the new type. For example, one might find reasonable to use the naturals to build the integers, since they can be seen as "naturals+negatives". You may then want to use the integers to build the rationals, since they can be seen as "integers+quotients". And so on.
Quotient types use a given equivalence relation on the "lower type" to determine what equality means for the "higher type".
Being more precise: A quotient type is an abstract type for which equality is dictated by some equivalence relation on its underlying representation.
This definition might be too abstract at first, so we'll use the integers as a grounding example.
Example: Integers from Naturals
If one wants to define the integers, the most standard way is to use an ordered pair of natural numbers, such as (a,b), which intuitively represents "a-b". For example, the number represented by the pair (2,4) is -2, since intuitively 2-4 = -2. By the same logic, (0,2) also represents '-2', and so does (1,3) or (10,12), since 0-2 = 1-3 = 10-12 = -2.
We could then say that "two pairs (a,b) and (x,y) represent the same integer iff a - b = x - y". However, the minus operation can be weird in natural numbers (what is '2-3' in the naturals?). To avoid that weirdness, rewrite 'a - b = x - y' as 'a + y = x + b', now using only addition. So, two pairs (a,b) and (x,y) represent the same integer when 'a + y = x + b'. For example, (7,9) represents the same integer as (1,3), since '7 + 3 = 1 + 9'.
That leads to a quotient definition of integers: An integer is a type represented by an ordered pair of natural numbers. Two integers represented by (a,b) and (x,y) are equal if, and only if, a+y = x+b.
The integer type derives from the type "ordeded pair of natural numbers" which is its representation. We may call the integer itself an abstraction of that. The equality of integers is defined as whenever some underlying representations '(a,b)' and '(x,y)' follow the equivalence relation 'a+y = x+b'.
In that sense, the integer '-3' is represented by both '(0,3)' and '(2,5)', and we may show this by noticing that 0+5 = 3+2. On the other hand, '(0,3)' and '(6,10)' do not represent the same integer, since '0+10 ≠ 3+6'. This reflects the fact that '-3 ≠ -4'.
Technically speaking, the integer '-3' is not specifically '(0,3)', nor '(1,4)', nor '(10,13)', but the whole equivalence class. By that I mean that '-3' is the set containing all of its representations (i.e. -3 = { (0,3), (1,4), (2,5), (3,6), (4,7), ... }). '(0,3)' is called a representation for '-3', and '-3' is the abstraction of '(0,3)'.
Morphisms: Rep and Abs in Isabelle
Rep and Abs are ways for us to transition between the representations and the abstractions they represent. More precisely, they are mappings from an equivalence class to one of its representations, and vice-versa. We call them morphisms.
Rep takes an abstract object (an equivalence class), such as '-3', and transforms it into one of its representations, for example '(0,3)'. Abs does the opposite, taking a representation such as '(3,10)', and mapping it into its abstract object, which is '-7'. Int.thy (Isabelle's implementation of integers) defines these as Rep_Integ and Abs_Integ for integers.
Notice that the statement '(2,3) = (8,9)' is an absurd. Since these are ordered pairs, that would imply '2 = 8' and '3 = 9'. On the other hand the statement 'Abs_Integ(2,3) = Abs_Integ(8,9)' is very much true, as we are simply saying that the integer abstraction of '(2,3)' is the same as the integer abstraction '(8,9)', namely '-1'.
A more precise phrasing of 'Abs_Integ(2,3) = Abs_Integ(8,9)' is: "'(2,3)' and '(8,9)' belong in the same equivalence class under the integer relation". We usually call this class '-1'.
It's important to note that '-1' is just a convenient shorthand for "the equivalence class of (0,1)", in the same vein that '5' is just a shorthand for "the equivalence class of (5,0)" and '-15' is shorthand for "the equivalence class of '(0,15)'. We call '(0,1)', '(5,0)', and '(0,15) the canonical representations. So saying "Abs_Integ(2,3) = -1" is really just a nice abbreviation for "Abs_Integ(2,3) = Abs_Integ(0,1)" .
It's also worth noting that the mapping Rep is one-to-one. This means that Rep_Integ(-1) will always yield the same representation pair, usually the canonical '(0,1)'. The specific pair picked does not matter much, but it'll always pick the same one. That is useful to know, as it implies that the statement Rep_Integ(i) = Rep_Integ(i) is always true.
The quotient_type command in Isabelle
'quotient_type' creates a quotient type using the specified type and equivalence relation. So quotient_type int = "nat × nat" / "intrel" creates the quotient type int, as the equivalence classes of nat × nat under the relation intrel (where "intrel = (λ(a,b) (x,y). a+y = x+b)"). Section 11.9.1 of the manual details the specifics about the command.
It's worth noting that you actually have to prove that the relation provided (intrel) is an equivalence.
Here's a usage example from Int.thy, which defines the integers, it's morphisms, and proves that intrel is an equivalence relation:
(* Definition *)
quotient_type int = "nat × nat" / "intrel"
morphisms Rep_Integ Abs_Integ
(* Proof that 'intrel' is indeed an equivalence *)
proof (rule equivpI)
show "reflp intrel" by (auto simp: reflp_def)
show "symp intrel" by (auto simp: symp_def)
show "transp intrel" by (auto simp: transp_def)
qed
Definitions and Lemmas: The Lifting and Transfer packages
Now, the previous explanations suggest that Rep and Abs should appear everywhere, right? These transformations are crucial for proving properties about quotient types. However, they appear less than 10 times throughout the 2000 lines of Int.thy. Why?
lift_definition and the proof method transfer are the answer. They come from the Lifting and Transfer packages. These packages do a lot, but for our purposes, they do the job of concealing Rep and Abs from your definitions and theorems.
The gist when working with quotient types in Isabelle, is that you want to [1] define some operations, [2] prove some useful lemmas with the representation type, and then [3] completely forget about these representations, working only with the abstract type. When proving theorems about the abstract type, you should be using the previously shown properties and lemmas.
To get [1], lift_definition helps you to define the operations. In specific, it allows you to define a function with the representation type, and it automatically "lifts" it to the abstract type.
As an example, you can define addition on integers as such:
lift_definition int_plus:: "int ⇒ int ⇒ int"
is "λ(a,b)(c,d). (a+c, b+d)"
This definition is stated in terms of nat × nat ⇒ nat × nat ⇒ nat × nat, but 'lift_definition' will automatically "lift" it to int ⇒ int ⇒ int.
An important thing to note is that you have to prove the function still follows the equivalence relation after applied (i.e. if 'x ≃ y' then 'f x ≃ f y'). The definition above for example, will prompt you to prove that "if '(a,b) ≃ (x,y)' and '(c,d) ≃ (u,v)', then '(a+c,b+d) ≃ (x+u,y+v)'" (if it doesn't look like it, try using apply clarify).
One of the nice things about lift_definition is that it works in terms of the underlying representation only, so you don't have to worry about transitioning between abstractions and representations. Hence the lack of Rep_Integ and Abs_Integ in Int.thy.
It also sets up a transfer rule for the function. This how you get [2]: proving properties without having to worry about Rep and Abs. Using the transfer proof method, you can bring a lemma about an abstraction down to the representation level, and prove the desired property there.
As an example, you can state the commutativity of addition in the form int_plus x y = int_plus y x, and then use the transfer method to bring that statement down to the representation level, which after a clarify looks like intrel (a + c, b + d) (c + a, d + b). We can then prove by simplification with the definition of intrel:
lemma plus_comm: "int_plus x y = int_plus y x"
apply transfer
apply clarify
by (simp add: intrel_def)
And to get [3], you simply use these lemmas and properties of the abstract type, without worrying about the actual representations.
After this point, you'll even forget that you're using a quotient type, since the abstract type and it's properties are all you need. Usually a handful of lemmas on the abstract type is enough, and Int.thy will give you a lot more than a handful.
References and further reading
Section 1 of the paper "Quotient Types" gives a good overview of the topic (and goes in depth in the other sections).
The introduction of "Quotients Revisited for Isabelle/HOL" also explains very well the purpose of 'Rep' and 'Abs'.
"Lifting and Transfer" is also a great read into how these can be concealed and the automation behind quotient types in Isabelle.
Isabelle's Reference Manual (with some ctrl+f) is also a great source when in doubt about what specific commands do.

What are the most interesting equivalences arising from the Curry-Howard Isomorphism?

I came upon the Curry-Howard Isomorphism relatively late in my programming life, and perhaps this contributes to my being utterly fascinated by it. It implies that for every programming concept there exists a precise analogue in formal logic, and vice versa. Here's a "basic" list of such analogies, off the top of my head:
program/definition | proof
type/declaration | proposition
inhabited type | theorem/lemma
function | implication
function argument | hypothesis/antecedent
function result | conclusion/consequent
function application | modus ponens
recursion | induction
identity function | tautology
non-terminating function | absurdity/contradiction
tuple | conjunction (and)
disjoint union | disjunction (or) -- corrected by Antal S-Z
parametric polymorphism | universal quantification
So, to my question: what are some of the more interesting/obscure implications of this isomorphism? I'm no logician so I'm sure I've only scratched the surface with this list.
For example, here are some programming notions for which I'm unaware of pithy names in logic:
currying | "((a & b) => c) iff (a => (b => c))"
scope | "known theory + hypotheses"
And here are some logical concepts which I haven't quite pinned down in programming terms:
primitive type? | axiom
set of valid programs? | theory
Edit:
Here are some more equivalences collected from the responses:
function composition | syllogism -- from Apocalisp
continuation-passing | double negation -- from camccann
Since you explicitly asked for the most interesting and obscure ones:
You can extend C-H to many interesting logics and formulations of logics to obtain a really wide variety of correspondences. Here I've tried to focus on some of the more interesting ones rather than on the obscure, plus a couple of fundamental ones that haven't come up yet.
evaluation | proof normalisation/cut-elimination
variable | assumption
S K combinators | axiomatic formulation of logic
pattern matching | left-sequent rules
subtyping | implicit entailment (not reflected in expressions)
intersection types | implicit conjunction
union types | implicit disjunction
open code | temporal next
closed code | necessity
effects | possibility
reachable state | possible world
monadic metalanguage | lax logic
non-termination | truth in an unobservable possible world
distributed programs | modal logic S5/Hybrid logic
meta variables | modal assumptions
explicit substitutions | contextual modal necessity
pi-calculus | linear logic
EDIT: A reference I'd recommend to anyone interested in learning more about extensions of C-H:
"A Judgmental Reconstruction of Modal Logic" http://www.cs.cmu.edu/~fp/papers/mscs00.pdf - this is a great place to start because it starts from first principles and much of it is aimed to be accessible to non-logicians/language theorists. (I'm the second author though, so I'm biased.)
You're muddying things a little bit regarding nontermination. Falsity is represented by uninhabited types, which by definition can't be non-terminating because there's nothing of that type to evaluate in the first place.
Non-termination represents contradiction--an inconsistent logic. An inconsistent logic will of course allow you to prove anything, including falsity, however.
Ignoring inconsistencies, type systems typically correspond to an intuitionistic logic, and are by necessity constructivist, which means certain pieces of classical logic can't be expressed directly, if at all. On the other hand this is useful, because if a type is a valid constructive proof, then a term of that type is a means of constructing whatever you've proven the existence of.
A major feature of the constructivist flavor is that double negation is not equivalent to non-negation. In fact, negation is rarely a primitive in a type system, so instead we can represent it as implying falsehood, e.g., not P becomes P -> Falsity. Double negation would thus be a function with type (P -> Falsity) -> Falsity, which clearly is not equivalent to something of just type P.
However, there's an interesting twist on this! In a language with parametric polymorphism, type variables range over all possible types, including uninhabited ones, so a fully polymorphic type such as ∀a. a is, in some sense, almost-false. So what if we write double almost-negation by using polymorphism? We get a type that looks like this: ∀a. (P -> a) -> a. Is that equivalent to something of type P? Indeed it is, merely apply it to the identity function.
But what's the point? Why write a type like that? Does it mean anything in programming terms? Well, you can think of it as a function that already has something of type P somewhere, and needs you to give it a function that takes P as an argument, with the whole thing being polymorphic in the final result type. In a sense, it represents a suspended computation, waiting for the rest to be provided. In this sense, these suspended computations can be composed together, passed around, invoked, whatever. This should begin to sound familiar to fans of some languages, like Scheme or Ruby--because what it means is that double-negation corresponds to continuation-passing style, and in fact the type I gave above is exactly the continuation monad in Haskell.
Your chart is not quite right; in many cases you have confused types with terms.
function type implication
function proof of implication
function argument proof of hypothesis
function result proof of conclusion
function application RULE modus ponens
recursion n/a [1]
structural induction fold (foldr for lists)
mathematical induction fold for naturals (data N = Z | S N)
identity function proof of A -> A, for all A
non-terminating function n/a [2]
tuple normal proof of conjunction
sum disjunction
n/a [3] first-order universal quantification
parametric polymorphism second-order universal quantification
currying (A,B) -> C -||- A -> (B -> C), for all A,B,C
primitive type axiom
types of typeable terms theory
function composition syllogism
substitution cut rule
value normal proof
[1] The logic for a Turing-complete functional language is inconsistent. Recursion has no correspondence in consistent theories. In an inconsistent logic/unsound proof theory you could call it a rule which causes inconsistency/unsoundness.
[2] Again, this is a consequence of completeness. This would be a proof of an anti-theorem if the logic were consistent -- thus, it can't exist.
[3] Doesn't exist in functional languages, since they elide first-order logical features: all quantification and parametrization is done over formulae. If you had first-order features, there would be a kind other than *, * -> *, etc.; the kind of elements of the domain of discourse. For example, in Father(X,Y) :- Parent(X,Y), Male(X), X and Y range over the domain of discourse (call it Dom), and Male :: Dom -> *.
function composition | syllogism
I really like this question. I don't know a whole lot, but I do have a few things (assisted by the Wikipedia article, which has some neat tables and such itself):
I think that sum types/union types (e.g. data Either a b = Left a | Right b) are equivalent to inclusive disjunction. And, though I'm not very well acquainted with Curry-Howard, I think this demonstrates it. Consider the following function:
andImpliesOr :: (a,b) -> Either a b
andImpliesOr (a,_) = Left a
If I understand things correctly, the type says that (a ∧ b) → (a ★ b) and the definition says that this is true, where ★ is either inclusive or exclusive or, whichever Either represents. You have Either representing exclusive or, ⊕; however, (a ∧ b) ↛ (a ⊕ b). For instance, ⊤ ∧ ⊤ ≡ ⊤, but ⊤ ⊕ ⊥ ≡ ⊥, and ⊤ ↛ ⊥. In other words, if both a and b are true, then the hypothesis is true but the conclusion is false, and so this implication must be false. However, clearly, (a ∧ b) → (a ∨ b), since if both a and b are true, then at least one is true. Thus, if discriminated unions are some form of disjunction, they must be the inclusive variety. I think this holds as a proof, but feel more than free to disabuse me of this notion.
Similarly, your definitions for tautology and absurdity as the identity function and non-terminating functions, respectively, are a bit off. The true formula is represented by the unit type, which is the type which has only one element (data ⊤ = ⊤; often spelled () and/or Unit in functional programming languages). This makes sense: since that type is guaranteed to be inhabited, and since there's only one possible inhabitant, it must be true. The identity function just represents the particular tautology that a → a.
Your comment about non-terminating functions is, depending on what precisely you meant, more off. Curry-Howard functions on the type system, but non-termination is not encoded there. According to Wikipedia, dealing with non-termination is an issue, as adding it produces inconsistent logics (e.g., I can define wrong :: a -> b by wrong x = wrong x, and thus “prove” that a → b for any a and b). If this is what you meant by “absurdity”, then you're exactly correct. If instead you meant the false statement, then what you want instead is any uninhabited type, e.g. something defined by data ⊥—that is, a data type without any way to construct it. This ensures that it has no values at all, and so it must be uninhabited, which is equivalent to false. I think you could probably also use a -> b, since if we forbid non-terminating functions, then this is also uninhabited, but I'm not 100% sure.
Wikipedia says that axioms are encoded in two different ways, depending on how you interpret Curry-Howard: either in the combinators or in the variables. I think the combinator view means that the primitive functions we are given encode the things we can say by default (similar to the way that modus ponens is an axiom because function application is primitive). And I think that the variable view may actually mean the same thing—combinators, after all, are just global variables which are particular functions. As for primitive types: if I'm thinking about this correctly, then I think that primitive types are the entities—the primitive objects that we're trying to prove things about.
According to my logic and semantics class, the fact that (a ∧ b) → c ≡ a → (b → c) (and also that b → (a → c)) is called the exportation equivalence law, at least in natural deduction proofs. I didn't notice at the time that it was just currying—I wish I had, because that's cool!
While we now have a way to represent inclusive disjunction, we don't have a way to represent the exclusive variety. We should be able to use the definition of exclusive disjunction to represent it: a ⊕ b ≡ (a ∨ b) ∧ ¬(a ∧ b). I don't know how to write negation, but I do know that ¬p ≡ p → ⊥, and both implication and falsehood are easy. We should thus able to represent exclusive disjunction by:
data ⊥
data Xor a b = Xor (Either a b) ((a,b) -> ⊥)
This defines ⊥ to be the empty type with no values, which corresponds to falsity; Xor is then defined to contain both (and) Either an a or a b (or) and a function (implication) from (a,b) (and) to the bottom type (false). However, I have no idea what this means. (Edit 1: Now I do, see the next paragraph!) Since there are no values of type (a,b) -> ⊥ (are there?), I can't fathom what this would mean in a program. Does anyone know a better way to think about either this definition or another one? (Edit 1: Yes, camccann.)
Edit 1: Thanks to camccann's answer (more particularly, the comments he left on it to help me out), I think I see what's going on here. To construct a value of type Xor a b, you need to provide two things. First, a witness to the existence of an element of either a or b as the first argument; that is, a Left a or a Right b. And second, a proof that there are not elements of both types a and b—in other words, a proof that (a,b) is uninhabited—as the second argument. Since you'll only be able to write a function from (a,b) -> ⊥ if (a,b) is uninhabited, what does it mean for that to be the case? That would mean that some part of an object of type (a,b) could not be constructed; in other words, that at least one, and possibly both, of a and b are uninhabited as well! In this case, if we're thinking about pattern matching, you couldn't possibly pattern-match on such a tuple: supposing that b is uninhabited, what would we write that could match the second part of that tuple? Thus, we cannot pattern match against it, which may help you see why this makes it uninhabited. Now, the only way to have a total function which takes no arguments (as this one must, since (a,b) is uninhabited) is for the result to be of an uninhabited type too—if we're thinking about this from a pattern-matching perspective, this means that even though the function has no cases, there's no possible body it could have either, and so everything's OK.
A lot of this is me thinking aloud/proving (hopefully) things on the fly, but I hope it's useful. I really recommend the Wikipedia article; I haven't read through it in any sort of detail, but its tables are a really nice summary, and it's very thorough.
Here's a slightly obscure one that I'm surprised wasn't brought up earlier: "classical" functional reactive programming corresponds to temporal logic.
Of course, unless you're a philosopher, mathematician or obsessive functional programmer, this probably brings up several more questions.
So, first off: what is functional reactive programming? It's a declarative way to work with time-varying values. This is useful for writing things like user interfaces because inputs from the user are values that vary over time. "Classical" FRP has two basic data types: events and behaviors.
Events represent values which only exist at discrete times. Keystrokes are a great example: you can think of the inputs from the keyboard as a character at a given time. Each keypress is then just a pair with the character of the key and the time it was pressed.
Behaviors are values that exist constantly but can be changing continuously. The mouse position is a great example: it is just a behavior of x, y coordinates. After all, the mouse always has a position and, conceptually, this position changes continually as you move the mouse. After all, moving the mouse is a single protracted action, not a bunch of discrete steps.
And what is temporal logic? Appropriately enough, it's a set of logical rules for dealing with propositions quantified over time. Essentially, it extends normal first-order logic with two quantifiers: □ and ◇. The first means "always": read □φ as "φ always holds". The second is "eventually": ◇φ means that "φ will eventually hold". This is a particular kind of modal logic. The following two laws relate the quantifiers:
□φ ⇔ ¬◇¬φ
◇φ ⇔ ¬□¬φ
So □ and ◇ are dual to each other in the same way as ∀ and ∃.
These two quantifiers correspond to the two types in FRP. In particular, □ corresponds to behaviors and ◇ corresponds to events. If we think about how these types are inhabited, this should make sense: a behavior is inhabited at every possible time, while an event only happens once.
Related to the relationship between continuations and double negation, the type of call/cc is Peirce's law http://en.wikipedia.org/wiki/Call-with-current-continuation
C-H is usually stated as correspondence between intuitionistic logic and programs. However if we add the call-with-current-continuation (callCC) operator (whose type corresponds to Peirce's law), we get a correspondence between classical logic and programs with callCC.
2-continuation | Sheffer stoke
n-continuation language | Existential graph
Recursion | Mathematical Induction
One thing that is important, but have not yet being investigated is the relationship of 2-continuation (continuations that takes 2 parameters) and Sheffer stroke. In classic logic, Sheffer stroke can form a complete logic system by itself (plus some non-operator concepts). Which means the familiar and, or, not can be implemented using only the Sheffer stoke or nand.
This is an important fact of its programming type correspondence because it prompts that a single type combinator can be used to form all other types.
The type signature of a 2-continuation is (a,b) -> Void. By this implementation we can define 1-continuation (normal continuations) as (a,a) -> Void, product type as ((a,b)->Void,(a,b)->Void)->Void, sum type as ((a,a)->Void,(b,b)->Void)->Void. This gives us an impressive of its power of expressiveness.
If we dig further, we will find out that Piece's existential graph is equivalent to a language with the only data type is n-continuation, but I didn't see any existing languages is in this form. So inventing one could be interesting, I think.
While it's not a simple isomorphism, this discussion of constructive LEM is a very interesting result. In particular, in the conclusion section, Oleg Kiselyov discusses how the use of monads to get double-negation elimination in a constructive logic is analogous to distinguishing computationally decidable propositions (for which LEM is valid in a constructive setting) from all propositions. The notion that monads capture computational effects is an old one, but this instance of the Curry--Howard isomorphism helps put it in perspective and helps get at what double-negation really "means".
First-class continuations support allows you to express $P \lor \neg P$.
The trick is based on the fact that not calling the continuation and exiting with some expression is equivalent to calling the continuation with that same expression.
For more detailed view please see: http://www.cs.cmu.edu/~rwh/courses/logic/www-old/handouts/callcc.pdf

Resources