Data Frame Filter Values - r

Suppose I have the next data frame.
table<-data.frame(group=c(0,5,10,15,20,25,30,35,40,0,5,10,15,20,25,30,35,40,0,5,10,15,20,25,30,35,40),plan=c(1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3),price=c(1,4,5,6,8,9,12,12,12,3,5,6,7,10,12,20,20,20,5,6,8,12,15,20,22,28,28))
group plan price
1 0 1 1
2 5 1 4
3 10 1 5
4 15 1 6
5 20 1 8
6 25 1 9
7 30 1 12
8 35 1 12
9 40 1 12
10 0 2 3
11 5 2 5
12 10 2 6
13 15 2 7
14 20 2 10
15 25 2 12
16 30 2 20
17 35 2 20
18 40 2 20
How can I get the values from the table up to the maximum price, without duplicates.
So the result would be:
group plan price
1 0 1 1
2 5 1 4
3 10 1 5
4 15 1 6
5 20 1 8
6 25 1 9
7 30 1 12
10 0 2 3
11 5 2 5
12 10 2 6
13 15 2 7
14 20 2 10
15 25 2 12
16 30 2 20

You can use slice in dplyr:
library(dplyr)
table %>%
group_by(plan) %>%
slice(1:which.max(price == max(price)))
which.max gives the index of the first occurrence of price == max(price). Using that, I can slice the data.frame to only keep rows for each plan up to the maximum price.
Result:
# A tibble: 22 x 3
# Groups: plan [3]
group plan price
<dbl> <dbl> <dbl>
1 0 1 1
2 5 1 4
3 10 1 5
4 15 1 6
5 20 1 8
6 25 1 9
7 30 1 12
8 0 2 3
9 5 2 5
10 10 2 6
# ... with 12 more rows

Related

Exclude rows where value used in another row

Imagine you have the following data set:
df = data.frame(ID = c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20), gender= c(1,2,1,2,2,2,2,1,1,2,1,2,1,2,2,2,2,1,1,2),
PID = c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10))
how can I write a code that removes the rows in the df whose gender and PID are the same (see picture). Please imagine that the code is over 1000 rows long (so it should be a solution that automatically searches for the right values to exclude).
base R
df[ave(rep(TRUE, nrow(df)), df[,c("gender","paar")], FUN = function(z) !any(duplicated(z))),]
# ID gender paar
# 1 1 1 1
# 2 2 2 1
# 3 3 1 2
# 4 4 2 2
# 7 7 2 4
# 8 8 1 4
# 9 9 1 5
# 10 10 2 5
# 11 11 1 6
# 12 12 2 6
# 13 13 1 7
# 14 14 2 7
# 17 17 2 9
# 18 18 1 9
# 19 19 1 10
# 20 20 2 10
dplyr
library(dplyr)
df %>%
group_by(gender, paar) %>%
filter(!any(duplicated(cbind(gender, paar)))) %>%
ungroup()
In base R, we may use subset after removing the observations where the group count for 'gender' and 'paar' are not 1
subset(df, ave(seq_along(gender), gender, paar, FUN = length) == 1)
Or with duplicated
df[!(duplicated(df[-1])|duplicated(df[-1], fromLast = TRUE)),]
-output
ID gender paar
1 1 1 1
2 2 2 1
3 3 1 2
4 4 2 2
7 7 2 4
8 8 1 4
9 9 1 5
10 10 2 5
11 11 1 6
12 12 2 6
13 13 1 7
14 14 2 7
17 17 2 9
18 18 1 9
19 19 1 10
20 20 2 10
Here is one more: :-)
library(dplyr)
df %>%
group_by(gender, PID) %>%
filter(is.na(ifelse(n()>1, 1, NA)))
ID gender PID
<dbl> <dbl> <dbl>
1 1 1 1
2 2 2 1
3 3 1 2
4 4 2 2
5 7 2 4
6 8 1 4
7 9 1 5
8 10 2 5
9 11 1 6
10 12 2 6
11 13 1 7
12 14 2 7
13 17 2 9
14 18 1 9
15 19 1 10
16 20 2 10
Another dplyr option could be:
df %>%
filter(with(rle(paste0(gender, PID)), rep(lengths == 1, lengths)))
ID gender PID
1 1 1 1
2 2 2 1
3 3 1 2
4 4 2 2
5 7 2 4
6 8 1 4
7 9 1 5
8 10 2 5
9 11 1 6
10 12 2 6
11 13 1 7
12 14 2 7
13 17 2 9
14 18 1 9
15 19 1 10
16 20 2 10
If the duplicated values can occur also between non-consecutive rows:
df %>%
arrange(gender, PID) %>%
filter(with(rle(paste0(gender, PID)), rep(lengths == 1, lengths)))
Using aggregate
na.omit(aggregate(. ~ gender + PID, df, function(x)
ifelse(length(x) == 1, x, NA)))
gender PID ID
1 1 1 1
2 2 1 2
3 1 2 3
4 2 2 4
6 1 4 8
7 2 4 7
8 1 5 9
9 2 5 10
10 1 6 11
11 2 6 12
12 1 7 13
13 2 7 14
15 1 9 18
16 2 9 17
17 1 10 19
18 2 10 20
With dplyr
library(dplyr)
df %>%
group_by(gender, PID) %>%
filter(n() == 1) %>%
ungroup()
# A tibble: 16 × 3
ID gender PID
<dbl> <dbl> <dbl>
1 1 1 1
2 2 2 1
3 3 1 2
4 4 2 2
5 7 2 4
6 8 1 4
7 9 1 5
8 10 2 5
9 11 1 6
10 12 2 6
11 13 1 7
12 14 2 7
13 17 2 9
14 18 1 9
15 19 1 10
16 20 2 10

Assign ID based on a sequence of consecutive days in R

I have a dataset with repeated measures which I want to use to assign IDs. The repeated measures are from a sequence of consecutive days. However, the sequence itself may be unbalanced (e.g., some have more days while others have less, some start with day 1 but a few others may start with 2 or 3). My question is how to create and assign the same ID withinid the same block of sequence. Here is a toy dataset:
days <- data.frame(
day = c(1L,2L,3L,4L,5L,6L,8L,9L,10L,
2L,3L,4L,5L,6L,7L,9L,10L,
1L,2L,4L,5L,6L,8L,9L,10L,
1L,2L,3L,4L,5L,6L,7L,8L,9L,10L)
)
Here is the end result I expect:
id day
1 1 1
2 1 2
3 1 3
4 1 4
5 1 5
6 1 6
7 1 8
8 1 9
9 1 10
10 2 2
11 2 3
12 2 4
13 2 5
14 2 6
15 2 7
16 2 9
17 2 10
18 3 1
19 3 2
20 3 4
21 3 5
22 3 6
23 3 8
24 3 9
25 3 10
26 4 1
27 4 2
28 4 3
29 4 4
30 4 5
31 4 6
32 4 7
33 4 8
34 4 9
35 4 10
Get the difference between adjacent elements and check if it is less than 0, take the cumulative sum
days$id <- cumsum(c(TRUE, diff(days$day) < 0))

Add rows to dataframe in R based on values in column

I have a dataframe with 2 columns: time and day. there are 3 days and for each day, time runs from 1 to 12. I want to add new rows for each day with times: -2, 1 and 0. How do I do this?
I have tried using add_row and specifying the row number to add to, but this changes each time a new row is added making the process tedious. Thanks in advance
picture of the dataframe
We could use add_row
then slice the desired sequence
and bind all to a dataframe:
library(tibble)
library(dplyr)
df1 <- df %>%
add_row(time = -2:0, Day = c(1,1,1), .before = 1) %>%
slice(1:15)
df2 <- bind_rows(df1, df1, df1) %>%
mutate(Day = rep(row_number(), each=15, length.out = n()))
Output:
# A tibble: 45 x 2
time Day
<dbl> <int>
1 -2 1
2 -1 1
3 0 1
4 1 1
5 2 1
6 3 1
7 4 1
8 5 1
9 6 1
10 7 1
11 8 1
12 9 1
13 10 1
14 11 1
15 12 1
16 -2 2
17 -1 2
18 0 2
19 1 2
20 2 2
21 3 2
22 4 2
23 5 2
24 6 2
25 7 2
26 8 2
27 9 2
28 10 2
29 11 2
30 12 2
31 -2 3
32 -1 3
33 0 3
34 1 3
35 2 3
36 3 3
37 4 3
38 5 3
39 6 3
40 7 3
41 8 3
42 9 3
43 10 3
44 11 3
45 12 3
Here's a fast way to create the desired dataframe from scratch using expand.grid(), rather than adding individual rows:
df <- expand.grid(-2:12,1:3)
colnames(df) <- c("time","day")
Results:
df
time day
1 -2 1
2 -1 1
3 0 1
4 1 1
5 2 1
6 3 1
7 4 1
8 5 1
9 6 1
10 7 1
11 8 1
12 9 1
13 10 1
14 11 1
15 12 1
16 -2 2
17 -1 2
18 0 2
19 1 2
20 2 2
21 3 2
22 4 2
23 5 2
24 6 2
25 7 2
26 8 2
27 9 2
28 10 2
29 11 2
30 12 2
31 -2 3
32 -1 3
33 0 3
34 1 3
35 2 3
36 3 3
37 4 3
38 5 3
39 6 3
40 7 3
41 8 3
42 9 3
43 10 3
44 11 3
45 12 3
You can use tidyr::crossing
library(dplyr)
library(tidyr)
add_values <- c(-2, 1, 0)
crossing(time = add_values, Day = unique(day$Day)) %>%
bind_rows(day) %>%
arrange(Day, time)
# A tibble: 45 x 2
# time Day
# <dbl> <int>
# 1 -2 1
# 2 0 1
# 3 1 1
# 4 1 1
# 5 2 1
# 6 3 1
# 7 4 1
# 8 5 1
# 9 6 1
#10 7 1
# … with 35 more rows
If you meant -2, -1 and 0 you can also use complete.
tidyr::complete(day, Day, time = -2:0)

R: Separate data into combinations of two columns

I have some data where each id is measured by different types which can be have different values type_val. The measured value is val. A small dummy data is like this:
df <- data.frame(id=rep(letters[1:2],6),
type=c(rep('t1',6), rep('t2',6)),
type_val=rep(c(1,1,2,2,3,3),2),
val=1:12)
Then df is:
id type type_val val
1 a t1 1 1
2 b t1 1 2
3 a t1 2 3
4 b t1 2 4
5 a t1 3 5
6 b t1 3 6
7 a t2 1 7
8 b t2 1 8
9 a t2 2 9
10 b t2 2 10
11 a t2 3 11
12 b t2 3 12
I need to spread/cast data so that all combinations of type and type_val for each id are row-wise. I think this must be a job for pkgs reshape2 or tidyr but I have completely failed to generate anything other than errors.
The outcome data structure - somewhat redundant - would be something like this (hope I got it right!) where pairs of type (as given by combinations of the type_val) are columns type_t1 and type_t2 , and their associated values (val in df) are val_t1 and val_t2 - columns names are of cause arbitrary :
id type_t1 type_t2 val_t1 val_t2
1 a 1 1 1 7
2 a 1 2 1 9
3 a 1 3 1 11
4 a 2 1 3 7
5 a 2 2 3 9
6 a 2 3 3 11
7 a 3 1 5 7
8 a 3 2 5 9
9 a 3 3 5 11
10 b 1 1 2 8
11 b 1 2 2 10
12 b 1 3 2 12
13 b 2 1 4 8
14 b 2 2 4 10
15 b 2 3 4 12
16 b 3 1 6 8
17 b 3 2 6 10
18 b 3 3 6 12
UPDATE
Note that (#Sotos)
> spread(df, type, val)
id type_val t1 t2
1 a 1 1 7
2 a 2 3 9
3 a 3 5 11
4 b 1 2 8
5 b 2 4 10
6 b 3 6 12
is not the desired output - it fails to deliver the wide format defined by combinations of type and type_val in df.
how about this:
df1=df[df$type=="t1",]
df2=df[df$type=="t2",]
DF=merge(df1,df2,by="id")
DF=DF[,-c(2,5)]
colnames(DF)<-c("id", "type_t1", "val_t1","type_t2", "val_t2")
Here is something more generic that will work with an arbitrary number of unique type:
library(dplyr)
# This function takes a list of dataframes (.data) and merges them by ID
reduce_merge <- function(.data, ID) {
return(Reduce(function(x, y) merge(x, y, by = ID), .data))
}
# This function renames the cols columns in .data by appending _identifier
batch_rename <- function(.data, cols, identifier, sep = '_') {
return(plyr::rename(.data, sapply(cols, function(x){
x = paste(x, .data[1, identifier], sep = sep)
})))
}
# This function creates a list of subsetted dataframes
# (subsetted by values of key),
# uses batch_rename() to give each dataframe more informative column names,
# merges them together, and returns the columns you'd like in a sensible order
multi_spread <- function(.data, grp, key, vals) {
.data %>%
plyr::dlply(key, subset) %>%
lapply(batch_rename, vals, key) %>%
reduce_merge(grp) %>%
select(-starts_with(paste0(key, '.'))) %>%
select(id, sort(setdiff(colnames(.), c(grp, key, vals))))
}
# Your example
df <- data.frame(id=rep(letters[1:2],6),
type=c(rep('t1',6), rep('t2',6)),
type_val=rep(c(1,1,2,2,3,3),2),
val=1:12)
df %>% multi_spread('id', 'type', c('type_val', 'val'))
id type_val_t1 type_val_t2 val_t1 val_t2
1 a 1 1 1 7
2 a 1 2 1 9
3 a 1 3 1 11
4 a 2 1 3 7
5 a 2 2 3 9
6 a 2 3 3 11
7 a 3 1 5 7
8 a 3 2 5 9
9 a 3 3 5 11
10 b 1 1 2 8
11 b 1 2 2 10
12 b 1 3 2 12
13 b 2 1 4 8
14 b 2 2 4 10
15 b 2 3 4 12
16 b 3 1 6 8
17 b 3 2 6 10
18 b 3 3 6 12
# An example with three unique values of 'type'
df <- data.frame(id = rep(letters[1:2], 9),
type = c(rep('t1', 6), rep('t2', 6), rep('t3', 6)),
type_val = rep(c(1, 1, 2, 2, 3, 3), 3),
val = 1:18)
df %>% multi_spread('id', 'type', c('type_val', 'val'))
id type_val_t1 type_val_t2 type_val_t3 val_t1 val_t2 val_t3
1 a 1 1 1 1 7 13
2 a 1 1 2 1 7 15
3 a 1 1 3 1 7 17
4 a 1 2 1 1 9 13
5 a 1 2 2 1 9 15
6 a 1 2 3 1 9 17
7 a 1 3 1 1 11 13
8 a 1 3 2 1 11 15
9 a 1 3 3 1 11 17
10 a 2 1 1 3 7 13
11 a 2 1 2 3 7 15
12 a 2 1 3 3 7 17
13 a 2 2 1 3 9 13
14 a 2 2 2 3 9 15
15 a 2 2 3 3 9 17
16 a 2 3 1 3 11 13
17 a 2 3 2 3 11 15
18 a 2 3 3 3 11 17
19 a 3 1 1 5 7 13
20 a 3 1 2 5 7 15
21 a 3 1 3 5 7 17
22 a 3 2 1 5 9 13
23 a 3 2 2 5 9 15
24 a 3 2 3 5 9 17
25 a 3 3 1 5 11 13
26 a 3 3 2 5 11 15
27 a 3 3 3 5 11 17
28 b 1 1 1 2 8 14
29 b 1 1 2 2 8 16
30 b 1 1 3 2 8 18
31 b 1 2 1 2 10 14
32 b 1 2 2 2 10 16
33 b 1 2 3 2 10 18
34 b 1 3 1 2 12 14
35 b 1 3 2 2 12 16
36 b 1 3 3 2 12 18
37 b 2 1 1 4 8 14
38 b 2 1 2 4 8 16
39 b 2 1 3 4 8 18
40 b 2 2 1 4 10 14
41 b 2 2 2 4 10 16
42 b 2 2 3 4 10 18
43 b 2 3 1 4 12 14
44 b 2 3 2 4 12 16
45 b 2 3 3 4 12 18
46 b 3 1 1 6 8 14
47 b 3 1 2 6 8 16
48 b 3 1 3 6 8 18
49 b 3 2 1 6 10 14
50 b 3 2 2 6 10 16
51 b 3 2 3 6 10 18
52 b 3 3 1 6 12 14
53 b 3 3 2 6 12 16
54 b 3 3 3 6 12 18

Subset data frame based on column values

I have a data frame consisting of the fluorescence read out of multiple cells tracked over time, for example:
Number=c(1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4)
Fluorescence=c(9,10,20,30,8,11,21,31,6,12,22,32,7,13,23,33)
df = data.frame(Number, Fluorescence)
Which gets:
Number Fluorescence
1 1 9
2 2 10
3 3 20
4 4 30
5 1 8
6 2 11
7 3 21
8 4 31
9 1 6
10 2 12
11 3 22
12 4 32
13 1 7
14 2 13
15 3 23
16 4 33
Number pertains to the cell number. What I want is to collate the fluorescence readout based on the cell number. The data.frame here has it counting 1-4, whereas really I want something like this:
Number Fluorescence
1 1 9
2 1 8
3 1 6
4 1 7
5 2 10
6 2 11
7 2 12
8 2 13
9 3 20
10 3 21
11 3 22
12 3 23
13 4 30
14 4 31
15 4 32
16 4 33
Or even more ideal would be having columns based on Number, then respective cell fluorescence:
1 2 3 4
1 9 10 20 30
2 8 11 21 31
3 6 12 22 32
4 7 13 23 33
I've used the which function to extract them one at a time:
Cell1=df[which(df[,1]==1),2]
But this would require me to write a line for each cell (of which there are hundreds).
Thank you for any help with this! Apologies that I'm still a bit of an R noob.
How about this:
library(tidyr);library(data.table)
number <- c(1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4)
fl <- c(9,10,20,30,8,11,21,31,6,12,22,32,7,13,23,33)
df <- data.table(number,fl)
df[, index:=1:.N, keyby=number]
df
number fl index
1: 1 9 1
2: 1 8 2
3: 1 6 3
4: 1 7 4
5: 2 10 1
6: 2 11 2
7: 2 12 3
8: 2 13 4
9: 3 20 1
10: 3 21 2
11: 3 22 3
12: 3 23 4
13: 4 30 1
14: 4 31 2
15: 4 32 3
16: 4 33 4
The index is added for the unique identifier in spread function from tidyr. Look this post for more information.
spread(df,number,fl)
index 1 2 3 4
1: 1 9 10 20 30
2: 2 8 11 21 31
3: 3 6 12 22 32
4: 4 7 13 23 33

Resources