Compiling A Mexfile using R CMD SHLIB - r

I am trying to import a number of Fortran 90 codes into R for a project. They were initially written with a mex (matlab integration of Fortran routines) type compilation in mind. This is what one of the codes look like:
# include <fintrf.h>
subroutine mexFunction(nlhs, plhs, nrhs, prhs)
!--------------------------------------------------------------
! MEX file for VFI3FCN routine
!
! log M_{t,t+1} = log \beta + gamma (x_t - x_{t+1})
! gamma = gamA + gamB (x_t - xbar)
!
!--------------------------------------------------------------
implicit none
mwPointer plhs(*), prhs(*)
integer nlhs, nrhs
mwPointer mxGetM, mxGetPr, mxCreateDoubleMatrix
mwPointer nk, nkp, nz, nx, nh
mwSize col_hxz, col_hz, col_xz
! check for proper number of arguments.
if(nrhs .ne. 31) then
call mexErrMsgTxt('31 input variables required.')
elseif(nlhs .ne. 4) then
call mexErrMsgTxt('4 output variables required.')
endif
! get the size of the input array.
nk = mxGetM(prhs(5))
nx = mxGetM(prhs(7))
nz = mxGetM(prhs(11))
nh = mxGetM(prhs(14))
nkp = mxGetM(prhs(16))
col_hxz = nx*nz*nh
col_xz = nx*nz
col_hz = nz*nh
! create matrix for the return arguments.
plhs(1) = mxCreateDoubleMatrix(nk, col_hxz, 0)
plhs(2) = mxCreateDoubleMatrix(nk, col_hxz, 0)
plhs(3) = mxCreateDoubleMatrix(nk, col_hxz, 0)
plhs(4) = mxCreateDoubleMatrix(nk, col_hxz, 0)
call vfi3fcnIEccB(%val(mxGetPr(plhs(1))), nkp)
return
end
subroutine vfi3fcnIEccB(optK, V, I, div, & ! output variables
alp1, alp2, alp3, V0, k, nk, x, xbar, nx, Qx, z, nz, Qz, h, nh, kp, &
alpha, beta, delta, f, gamA, gamB, gP, gN, istar, kmin, kmtrx, ksubm, hmtrx, xmtrx, zmtrx, &
nkp, col_hxz, col_xz, col_hz)
use ifwin
implicit none
! specify input and output variables
integer, intent(in) :: nk, nkp, nx, nz, nh, col_hxz, col_xz, col_hz
real*8, intent(out) :: V(nk, col_hxz), optK(nk, col_hxz), I(nk, col_hxz), div(nk, col_hxz)
real*8, intent(in) :: V0(nk, col_hxz), k(nk), kp(nkp), x(nx), z(nz), Qx(nx, nx), Qz(nz, nz), h(nh)
real*8, intent(in) :: alp1, alp2, alp3, xbar, kmin, alpha, gP, gN, beta, delta, gamA, gamB, f, istar
real*8, intent(in) :: kmtrx(nk, col_hxz), ksubm(nk, col_hz), zmtrx(nk, col_hxz), xmtrx(nk, col_hxz), hmtrx(nk, col_hxz)
! specify intermediate variables
real*8 :: Res(nk, col_hxz), Obj(nk, col_hxz), optKold(nk, col_hxz), Vold(nk, col_hxz), tmpEMV(nkp, col_hz), tmpI(nkp), &
tmpObj(nkp, col_hz), tmpA(nk, col_hxz), tmpQ(nx*nh, nh), detM(nx), stoM(nx), g(nkp), tmpInd(nh, nz)
real*8 :: Qh(nh, nh, nx), Qxh(nx*nh, nx*nh), Qzxh(col_hxz, col_hxz)
real*8 :: hp, d(nh), errK, errV, T1, lapse
integer :: ix, ih, iter, optJ(col_hz), ik, iz, ind(nh, col_xz), subindex(nx, col_hz)
logical*4 :: statConsole
! construct the transition matrix for kh --- there are nx number of these transition matrix: 3-d
Qh = 0.0
do ix = 1, nx
do ih = 1, nh
! compute the predicted next period kh
hp = alp1 + alp2*h(ih) + alp3*(x(ix) - xbar)
! construct transition probability vector
d = abs(h - hp) + 1D-32
Qh(:, ih, ix) = (1/d)/sum(1/d)
end do
end do
! construct the compound transition matrix over (z x h) space
! compound the (x h) space
Qxh = 0.0
do ix = 1, nx
call kron(tmpQ, Qx(:, ix), Qh(:, :, ix), nx, 1, nh, nh)
Qxh(:, (ix - 1)*nh + 1 : ix*nh) = tmpQ
end do
! compound the (z x h) space: h changes the faster, followed by x, and z changes the slowest
call kron(Qzxh, Qz, Qxh, nz, nz, nx*nh, nx*nh)
! available funds for the firm
Res = dexp(xmtrx + zmtrx + hmtrx)*(kmtrx**alpha) + (1 - delta)*kmtrx - f
! initializing
Obj = 0.0
optK = 0.0
optKold = optK + 1.0
Vold = V0
! Some Intermediate Variables Used in Stochastic Discount Factor
detM = beta*dexp((gamA - gamB*xbar)*x + gamB*x**2)
stoM = -(gamA - gamB*xbar + gamB*x)
! Intermediate index vector to facilitate submatrix extracting
ind = reshape((/1 : col_hxz : 1/), (/nh, col_xz/))
do ix = 1, nx
tmpInd = ind(:, ix : col_xz : nx)
do iz = 1, nz
subindex(ix, (iz - 1)*nh + 1 : iz*nh) = tmpInd(:, iz)
end do
end do
! start iterations
errK = 1.0
errV = 1.0
iter = 0
T1 = secnds(0.0)
do
if (errV <= 1D-3 .AND. errK <= 1D-8) then
exit
else
iter = iter + 1
do ix = 1, nx
! next period value function by linear interpolation: nkp by nz*nh matrix
call interp1(tmpEMV, k, detM(ix)*(matmul(dexp(stoM(ix)*xmtrx)*Vold, Qzxh(:, subindex(ix, :)))) - ksubm, kp, &
nk, nkp, col_hz)
! maximize the right-hand size of Bellman equation on EACH grid point of capital stock
do ik = 1, nk
! with istar tmpI is no longer investment but a linear transformation of that
tmpI = (kp - (1.0 - delta)*k(ik))/k(ik) - istar
where (tmpI >= 0.0)
g = gP
elsewhere
g = gN
end where
tmpObj = tmpEMV - spread((g/2.0)*(tmpI**2)*k(ik), 2, col_hz)
! direct discrete maximization
Obj(ik, subindex(ix, :)) = maxval(tmpObj, 1)
optJ = maxloc(tmpObj, 1)
optK(ik, subindex(ix, :)) = kp(optJ)
end do
end do
! update value function and impose limited liability condition
V = max(Res + Obj, 1D-16)
! convergence criterion
errK = maxval(abs(optK - optKold))
errV = maxval(abs(V - Vold))
! revise Initial Guess
Vold = V
optKold = optK
! visual
if (modulo(iter, 50) == 0) then
lapse = secnds(T1)
statConsole = AllocConsole()
print "(a, f10.7, a, f10.7, a, f8.1, a)", " errV:", errV, " errK:", errK, " Time:", lapse, "s"
end if
end if
end do
! visual check on errors
lapse = secnds(T1)
statConsole = AllocConsole()
print "(a, f10.7, a, f10.7, a, f8.1, a)", " errV:", errV, " errK:", errK, " Time:", lapse, "s"
! optimal investment and dividend
I = optK - (1.0 - delta)*kmtrx
tmpA = I/kmtrx - istar
where (tmpA >= 0)
div = Res - optK - (gP/2.0)*(tmpA**2)*kmtrx
elsewhere
div = Res - optK - (gN/2.0)*(tmpA**2)*kmtrx
end where
return
end
subroutine interp1(v, x, y, u, m, n, col)
!-------------------------------------------------------------------------------------------------------
! Linear interpolation routine similar to interp1 with 'linear' as method parameter in Matlab
!
! OUTPUT:
! v - function values on non-grid points (n by col matrix)
!
! INPUT:
! x - grid (m by one vector)
! y - function defined on the grid x (m by col matrix)
! u - non-grid points on which y(x) is to be interpolated (n by one vector)
! m - length of x and y vectors
! n - length of u and v vectors
! col - number of columns of v and y matrices
!
! Four ways to pass array arguments:
! 1. Use explicit-shape arrays and pass the dimension as an argument(most efficient)
! 2. Use assumed-shape arrays and use interface to call external subroutine
! 3. Use assumed-shape arrays and make subroutine internal by using "contains"
! 4. Use assumed-shape arrays and put interface in a module then use module
!
! This subroutine is equavilent to the following matlab call
! v = interp1(x, y, u, 'linear', 'extrap') with x (m by 1), y (m by col), u (n by 1), and v (n by col)
!------------------------------------------------------------------------------------------------------
implicit none
integer :: m, n, col, i, j
real*8, intent(out) :: v(n, col)
real*8, intent(in) :: x(m), y(m, col), u(n)
real*8 :: prob
do i = 1, n
if (u(i) < x(1)) then
! extrapolation to the left
v(i, :) = y(1, :) - (y(2, :) - y(1, :)) * ((x(1) - u(i))/(x(2) - x(1)))
else if (u(i) > x(m)) then
! extrapolation to the right
v(i, :) = y(m, :) + (y(m, :) - y(m-1, :)) * ((u(i) - x(m))/(x(m) - x(m-1)))
else
! interpolation
! find the j such that x(j) <= u(i) < x(j+1)
call bisection(x, u(i), m, j)
prob = (u(i) - x(j))/(x(j+1) - x(j))
v(i, :) = y(j, :)*(1 - prob) + y(j+1, :)*prob
end if
end do
end subroutine interp1
subroutine bisection(list, element, m, k)
!--------------------------------------------------------------------------------
! find index k in list such that (list(k) <= element < list(k+1)
!--------------------------------------------------------------------------------
implicit none
integer*4 :: m, k, first, last, half
real*8 :: list(m), element
first = 1
last = m
do
if (first == (last-1)) exit
half = (first + last)/2
if ( element < list(half) ) then
! discard second half
last = half
else
! discard first half
first = half
end if
end do
k = first
end subroutine bisection
subroutine kron(K, A, B, rowA, colA, rowB, colB)
!--------------------------------------------------------------------------------
! Perform K = kron(A, B); translated directly from kron.m
!
! OUTPUT:
! K -- rowA*rowB by colA*colB matrix
!
! INPUT:
! A -- rowA by colA matrix
! B -- rowB by colB matrix
! rowA, colA, rowB, colB -- integers containing shape information
!--------------------------------------------------------------------------------
implicit none
integer, intent(in) :: rowA, colA, rowB, colB
real*8, intent(in) :: A(rowA, colA), B(rowB, colB)
real*8, intent(out) :: K(rowA*rowB, colA*colB)
integer :: t1(rowA*rowB), t2(colA*colB), i, ia(rowA*rowB), ja(colA*colB), ib(rowA*rowB), jb(colA*colB)
t1 = (/ (i, i = 0, (rowA*rowB - 1)) /)
ia = int(t1/rowB) + 1
ib = mod(t1, rowB) + 1
t2 = (/ (i, i = 0, (colA*colB - 1)) /)
ja = int(t2/colB) + 1
jb = mod(t2, colB) + 1
K = A(ia, ja)*B(ib, jb)
end subroutine kron
My initial plan was to remove the mexFunction subroutine and compile the main Fortran subroutines using the R CMD SHLIB command but then I run into the Rtools compiler not knowing where to find the ifwin library even though I have the library in my intel fortran compiler folder.
So my first question is:
1) Is there a way for me to tell rtools where to find the ifwin library and any other library I need to include? Or is there a way to include the dependency libraries in the R CMD SHLIB command so the compiler can find the necessary libraries and compile?
2) If the answer to two is no, can I some how use the compiled version from Matlab in R. I can compile the file as is in matlab using the mex Zhang_4.f90 command with no errors.
3) Is there a way of setting up an environment in Visual Studio 2015 so I can compile Fortran subroutines for use in R using the Intel compiler?
When I take out the mexFunction subroutine and try compiling the rest of the code, I get the following error:
D:\SS_Programming\Fortran>R CMD SHLIB Zhang_4.f90
c:/Rtools/mingw_64/bin/gfortran -O2 -mtune=core2 -c Zhang_4.f90 -o
Zhang_4.o
Zhang_4.f90:6.4:
use ifwin
1
Fatal Error: Can't open module file 'ifwin.mod' for reading at (1): No
such file or directory
make: *** [Zhang_4.o] Error 1
Warning message:
running command 'make -f "C:/PROGRA~1/R/R-34~1.2/etc/x64/Makeconf" -f
"C:/PROGRA~1/R/R-34~1.2/share/make/winshlib.mk"
SHLIB_LDFLAGS='$(SHLIB_FCLDFLAGS)' SHLIB_LD='$(SHLIB_FCLD)'
SHLIB="Zhang_4.dll" SHLIB_LIBADD='$(FCLIBS)' WIN=64 TCLBIN=64
OBJECTS="Zhang_4.o"' had status 2

I don't think there is any other way then rewrite the code to not use IFWIN. Unless you manage to use Intel Fortran for R (that might require recompiling the whole R distribution...). Matlab is tied to Intel Fortran, that's why the code worked there.
You have to adjust the code anyway, you cannot use it as it stands.
Just get rid of the AllocConsole() calls and the print statements. You will need to use the R routines to print to console. See https://cran.r-project.org/doc/manuals/R-exts.html#Printing-from-FORTRAN

Related

Gamma function implementation not producing correct values

Function programmed in Fortran 95 to compute values of the Gamma function from mathematics is not producing the correct values.
I am trying to implement a recursive function in Fortran 95 that computes values of the Gamma function using the Lanczos approximation (yes I know that there is an intrinsic function for this in the 2003 standard and later). I've followed the standard formula very closely so I'm not certain what is wrong. Correct values for the Gamma function are crucial for some other numerical computations I am doing involving the numerical computation of the Jacobi polynomials by means of a recursion relation.
program testGam
implicit none
integer, parameter :: dp = selected_real_kind(15,307)
real(dp), parameter :: pi = 3.14159265358979324
real(dp), dimension(10) :: xGam, Gam
integer :: n
xGam = (/ -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 /)
do n = 1,10
Gam(n) = GammaFun(xGam(n))
end do
do n = 1,10
write(*,*) xGam(n), Gam(n)
end do
contains
recursive function GammaFun(x) result(G)
real(dp), intent(in) :: x
real(dp) :: G
real(dp), dimension(0:8), parameter :: q = &
(/ 0.99999999999980993, 676.5203681218851, -1259.1392167224028, &
771.32342877765313, -176.61502916214059, 12.507343278686905, &
-0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7 /)
real(dp) :: t, w, xx
integer :: n
xx = x
if ( xx < 0.5_dp ) then
G = pi / ( sin(pi*xx)*GammaFun(1.0_dp - xx) )
else
xx = xx - 1.0_dp
t = q(0)
do n = 1,9
t = t + q(n) / (xx + real(n, dp))
end do
w = xx + 7.5_dp
G = sqrt(2.0_dp*pi)*(w**(xx + 0.5_dp))*exp(-w)*t
end if
end function GammaFun
end program testGam
Whereas this code should be producing correct values for the Gamma function over the whole real line, it seems only to produce a constant value close to 122 regardless of the input. I suspect that there is some weird floating point arithmetic issue that I am not seeing.
There are two obvious issues with your code
Most seriously the code accesses an array out of bounds at line 42, i.e. in the loop
do n = 1,9
t = t + q(n) / (xx + real(n, dp))
end do
You have mixed up your precision somewhat, with some of the constants being of kind dp, other being of default kind
Making what I believe are the appropriate fixes to these your program compiles, links and runs correctly, at least as far as I can see. See below:
ian#eris:~/work/stackoverflow$ cat g.f90
program testGam
implicit none
integer, parameter :: dp = selected_real_kind(15,307)
real(dp), parameter :: pi = 3.14159265358979324_dp
real(dp), dimension(10) :: xGam, Gam
integer :: n
xGam = (/ -3.5_dp, -2.5_dp, -1.5_dp, -0.5_dp, 0.5_dp, 1.5_dp, 2.5_dp, 3.5_dp, 4.5_dp, 5.5_dp /)
do n = 1,10
Gam(n) = GammaFun(xGam(n))
end do
do n = 1,10
write(*,*) xGam(n), Gam(n), gamma( xGam( n ) ), Abs( Gam( n ) - gamma( xGam( n ) ) )
end do
contains
recursive function GammaFun(x) result(G)
real(dp), intent(in) :: x
real(dp) :: G
real(dp), dimension(0:8), parameter :: q = &
(/ 0.99999999999980993_dp, 676.5203681218851_dp, -1259.1392167224028_dp, &
771.32342877765313_dp, -176.61502916214059_dp, 12.507343278686905_dp, &
-0.13857109526572012_dp, 9.9843695780195716e-6_dp, 1.5056327351493116e-7_dp /)
real(dp) :: t, w, xx
integer :: n
xx = x
if ( xx < 0.5_dp ) then
G = pi / ( sin(pi*xx)*GammaFun(1.0_dp - xx) )
else
xx = xx - 1.0_dp
t = q(0)
do n = 1,8
t = t + q(n) / (xx + real(n, dp))
end do
w = xx + 7.5_dp
G = sqrt(2.0_dp*pi)*(w**(xx + 0.5_dp))*exp(-w)*t
end if
end function GammaFun
end program testGam
ian#eris:~/work/stackoverflow$ gfortran -O -std=f2008 -Wall -Wextra -fcheck=all g.f90
ian#eris:~/work/stackoverflow$ ./a.out
-3.5000000000000000 0.27008820585226917 0.27008820585226906 1.1102230246251565E-016
-2.5000000000000000 -0.94530872048294168 -0.94530872048294179 1.1102230246251565E-016
-1.5000000000000000 2.3632718012073521 2.3632718012073548 2.6645352591003757E-015
-0.50000000000000000 -3.5449077018110295 -3.5449077018110318 2.2204460492503131E-015
0.50000000000000000 1.7724538509055159 1.7724538509055161 2.2204460492503131E-016
1.5000000000000000 0.88622692545275861 0.88622692545275805 5.5511151231257827E-016
2.5000000000000000 1.3293403881791384 1.3293403881791370 1.3322676295501878E-015
3.5000000000000000 3.3233509704478430 3.3233509704478426 4.4408920985006262E-016
4.5000000000000000 11.631728396567446 11.631728396567450 3.5527136788005009E-015
5.5000000000000000 52.342777784553583 52.342777784553519 6.3948846218409017E-014
ian#eris:~/work/stackoverflow$

Numerical integration in Fortran 90

In Fortran 90, I want to numerically integrate a mathematical function with one variable within a given limit. For example, integrating f(x) = x**2 from 0 to 10. The function I have is more complicated than this one and I have to run it several times changing the integration limits. I found out on internet that the 'QUADPACK' library might help me with this. But how can I install this library so that I can call this in my code? Provide some details as I won't be able to follow advanced instructions quickly.
I've provided a simple program where midpoint method is used to integrate x^2. A more complicated formula may be entered, so long the mesh is fine enough (and the function is smooth), this should work..
program integrate
implicit none
integer,parameter :: cp = selected_real_kind(14)
integer,parameter :: N = 1000
real(cp),dimension(N) :: f,xc
real(cp),dimension(N+1) :: x
real(cp) :: s,xmax,xmin,dx
integer :: i
xmin = 0.0_cp
xmax = 10.0_cp
dx = (xmax - xmin)/real(N,cp)
x = (/(xmin + dx*(i-1),i=1,N+1)/)
! Define x at center
do i=1,N
xc(i) = x(i) + 0.5_cp*dx
enddo
! Define f
do i=1,N
f(i) = xc(i)**2
enddo
! Integrate (Midpoint method)
s = 0.0_cp
do i=1,N
s = s + f(i)*dx
enddo
write(*,*) 'sum = ',s
end program
Here is one possible solution to integrate your function f(x) = x**2 from 0 to 10. This uses the Gaussian quadrature formula for 8 and 16 points.
program quadrature
implicit none
! Declare variables
integer, parameter :: n8 = 8, n16 = 16
real(8) :: r, m, c
real(8) :: a, b, result8, result16
real(8), dimension (n8) :: x8, w8
real(8), dimension(n16) :: x16, w16
integer :: i
! Define the limits of integration
a = 0.D0
b = 10.D0
! Define the abscissas and weights for 8-point Gauss quadrature
data x8 /-0.1834346424956498D0, 0.1834346424956498D0, -0.5255324099163290D0, 0.5255324099163290D0, &
-0.7966664774136267D0, 0.7966664774136267D0, -0.9602898564975363D0, 0.9602898564975363D0/
data w8 / 0.3626837833783620D0, 0.3626837833783620D0, 0.3137066458778873D0, 0.3137066458778873D0, &
0.2223810344533745D0, 0.2223810344533745D0, 0.1012285362903763D0, 0.1012285362903763D0/
! Define the abscissas and weights for 16-point Gauss quadrature
data x16 /-0.0950125098376374D0, 0.0950125098376374D0, -0.2816035507792589D0, 0.2816035507792589D0, &
-0.4580167776572274D0, 0.4580167776572274D0, -0.6178762444026438D0, 0.6178762444026438D0, &
-0.7554044083550030D0, 0.7554044083550030D0, -0.8656312023878318D0, 0.8656312023878318D0, &
-0.9445750230732326D0, 0.9445750230732326D0, -0.9894009349916499D0, 0.9894009349916499D0 /
data w16 /0.1894506104550685D0, 0.1894506104550685D0, 0.1826034150449236D0, 0.1826034150449236D0, &
0.1691565193950025D0, 0.1691565193950025D0, 0.1495959888165767D0, 0.1495959888165767D0, &
0.1246289712555339D0, 0.1246289712555339D0, 0.0951585116824928D0, 0.0951585116824928D0, &
0.0622535239386479D0, 0.0622535239386479D0, 0.0271524594117541D0, 0.0271524594117541D0 /
! Compute the results using 8-point and 16-point Gauss quadrature
r = 0.D0
m = (b-a)/2.D0
c = (b+a)/2.D0
result8 = 0.D0
result16 = 0.D0
do i = 1, n8
result8 = result8 + w8(i) * f(m*x8(i) + c)
end do
result8 = result8*m
do i = 1, n16
result16 = result16 + w16(i) * f(m*x16(i) + c)
end do
result16 = result16*m
! Print the results
print *, "Result using 8-point Gauss quadrature: ", result8
print *, "Result using 16-point Gauss quadrature: ", result16
contains
! Function to be integrated
real(8) function f(x)
real(8), intent(in) :: x
f = x**2.D0
end function
end program

Unclassified statement at (1) in a mathematical expression

My first Fortran lesson is to plot the probability density function of the radial Sturmian functions. In case you are interested, the radial Sturmian functions are used to graph the momentum space eigenfunctions for the hydrogen atom.
In order to produce these radial functions, one needs to first produce some polynomials called the Gegenbauer polynomials, denoted
Cba(x),
where a and b should be stacked atop each other. One needs these polynomials because the Sturmians (let's call them R_n,l) are defined like so,
R_n,l(p) = N pl⁄(p2 + k2)l+2 Cn - l - 1l + 1(p2 - k2⁄p2 + k2),
where N is a normalisation constant, p is the momentum, n is the principle quantum number, l is the angular momentum and k is a constant. The normalisation constant is there so that when I come to square this function, it will produce a probability distribution for the momentum of the electron in a hydrogen atom.
Gegenbauer polynomials are generated using the following recurrence relation:
Cnl(x) = 1⁄n[2(l + n - 1) x Cn - 1l(x) - (2l + n - 2)Cn - 2l(x)],
with C0l(x) = 1 and C1l(x) = 2lx, as you may have noticed, l is fixed but n is not. At the start of my program, I will specify both l and n and work out the Gegenbauer polynomial I need for the radial function I wish to plot.
The problems I am having with my code at the moment are all in my subroutine for working out the value of the Gegenbauer polynomial Cn-l-1l+1(p2 - k2⁄p2 + k2) for incremental values of p between 0 and 3. I keep getting the error
Unclassified statement at (1)
but I cannot see what the issue is.
program Radial_Plot
implicit none
real, parameter :: pi = 4*atan(1.0)
integer, parameter :: top = 1000, l = 50, n = 100
real, dimension(1:top) :: x, y
real increment
real :: a=0.0, b = 2.5, k = 0.3
integer :: i
real, dimension(1:top) :: C
increment = (b-a)/(real(top)-1)
x(1) = 0.0
do i = 2, top
x(i) = x(i-1) + increment
end do
Call Gegenbauer(top, n, l, k, C)
y = x*C
! y is the function that I shall be plotting between values a and b.
end program Radial_Plot
Subroutine Gegenbauer(top1, n1, l1, k1, CSub)
! This subroutine is my attempt to calculate the Gegenbauer polynomials evaluated at a certain number of values between c and d.
implicit none
integer :: top1, i, j, n1, l1
real :: k1, increment1, c, d
real, dimension(1:top1) :: x1
real, dimension(1:n1 - l1, 1:top1) :: C1
real, dimension(1:n1 - l1) :: CSub
c = 0.0
d = 3.0
k1 = 0.3
n1 = 50
l1 = 25
top1 = 1000
increment1 = (d - c)/(real(top1) - 1)
x1(1) = 0.0
do i = 2, top1
x1(i) = x1(i-1) + increment1
end do
do j = 1, top1
C1(1,j) = 1
C1(2,j) = 2(l1 + 1)(x1(i)^2 - k1^2)/(x1(i)^2 + k1^2)
! All the errors occurring here are all due to, and I quote, 'Unclassifiable statement at (1)', I can't see what the heck I have done wrong.
do i = 3, n1 - l1
C1(i,j) = 2(((l1 + 1)/n1) + 1)(x1(i)^2 - k1^2)/(x1(i)^2 + k1^2)C1(i,j-1) - ((2(l1+1)/n1) + 1)C1(i,j-2)
end do
CSub(j) = Cn(n1 - l1,j)^2
end do
return
end Subroutine Gegenbauer
As francesalus correctly pointed out, the problem is because you use ^ instead of ** for exponentiation. Additionally, you do not put * between the terms you are multiplying.
C1(1,j) = 1
C1(2,j) = 2*(l1 + 1)*(x1(i)**2 - k1**2)/(x1(i)**2 + k1**2)
do i = 3, n1 - l1
C1(i,j) = 2 * (((l1 + 1)/n1) + 1) * (x1(i)**2 - k1**2) / &
(x1(i)**2 + k1**2)*C1(i,j-1) - ((2(l1+1)/n1) + 1) * &
C1(i,j-2)
end do
CSub(j) = Cn(n1 - l1,j)**2
Since you are beginning I have some advice. Learn to put all subroutines and functions to modules (unless they are internal). There is no reason for the return statement at the and of the subroutine, similarly as a stop statement isn't necessary at the and of the program.

idl/gdl ERROR: function not found or scalar subscript out of range

i try to solve this problem with my code. When i compile i have the follow error message:
% POINCARE: Ambiguous: POINCARE: Function not found: XT or: POINCARE: Scalar subscript out of range [>].e
% Execution halted at: POINCARE 38 poincare.pro
% $MAIN$
It's very simple:
1) i OPEN THE FILE AND COUNT THE NUMBER OF ROWS AND COLUMNS,
2) save the fle in a matrix of ROWSxCOLUMNS,
3) take the rows that i want and save them as vectors,
Now i want to modify the columns as follow:
A) translate each element of first and second column (x and y) by a costant factor (xc, yc ....)
B) apply some manipulation of each new element of this two new columns (xn ,yn ...)
C) if the value pyn is greater than 0. then save the rows with the four value of xn ,pxn.
Here the code:
pro poincare
file = "orbitm.txt"
rows =File_Lines(file) ; per le righe
openr,lun,file,/Get_lun ; per le colonne
line=""
readf,lun,line
cols = n_elements(StrSplit(line, /RegEx, /extract))
openr,1,"orbitm.txt"
data = dblarr(cols,rows)
readf,1,data
close,1
x = data(0,*) ; colonne e righe
y = data(1,*)
px = data(2,*)
py = data(3,*)
mu =0.001
xc = 0.5-mu
yc = 0.5*sqrt(3.)
openw,3,"section.txt"
for i=1, rows-2 do begin
xt = x(i)-xc
yt = y(i)-yc
pxt = px(i)-yc
pyt = py(i)+xc
tau = y(i)/(y(i)-y(i+1))
xn = xt(i) + (xt(i+1)-xt(i))*tau
yn = yt(i) + (yt(i+1)-yt(i))*tau
pxn = pxt(i) + (pxt(i+1)-pxt(i))*tau
pyn = pyt(i) + (pyt(i+1)-pyt(i))*tau
if (pyt(i) GT 0.) then begin
printf,3, xt(i), pxt(i)
endif
endfor
close,3
end
I attach also the first rows of my input orbitm.txt:
0.73634 0.66957 0.66062 -0.73503
0.86769 0.54316 0.51413 -0.82823
0.82106 0.66553 0.60353 -0.74436
0.59526 0.88356 0.79569 -0.52813
0.28631 1.0193 0.92796 -0.24641
-0.29229E-02 1.0458 0.96862 0.21874E-01
-0.21583 1.0090 0.95142 0.22650
-0.33994 0.96091 0.92099 0.35144
-0.38121 0.93413 0.90831 0.39745
-0.34462 0.93959 0.92534 0.36561
-0.22744 0.96833 0.96431 0.25054
-0.24560E-01 0.99010 0.99480 0.45173E-01
0.25324 0.95506 0.96459 -0.24000
0.55393 0.81943 0.82584 -0.54830
0.78756 0.61644 0.61023 -0.77367
0.88695 0.53076 0.50350 -0.82814
I can see a few issues that are immediately obvious. The first is that you define the variables XT, YT, PXT, and PYT inside your FOR loop as scalars. Shortly after, you try to index them as if they are arrays with multiple elements. Either your definition for these variables needs to change, or you need to change your definition of XN, YN, PXN, and PYN. Otherwise, this will not work as written. I have attached a modified version of your code with some suggestions and comments included.
pro poincare
file = "orbitm.txt"
rows =File_Lines(file) ; per le righe
openr,lun,file,/Get_lun ; per le colonne
line=""
readf,lun,line
cols = n_elements(StrSplit(line, /RegEx, /extract))
free_lun,lun ;; need to close this LUN
;; define data array
data = dblarr(cols,rows)
;;openr,1,"orbitm.txt"
;;readf,1,data
;; data = dblarr(cols,rows)
;;close,1
openr,lun,"orbitm.txt",/get_lun
readf,lun,data
free_lun,lun ;; close this LUN
;;x = data(0,*) ; colonne e righe
;;y = data(1,*)
;;px = data(2,*)
;;py = data(3,*)
x = data[0,*] ;; use []'s instead of ()'s in IDL
y = data[1,*]
px = data[2,*]
py = data[3,*]
mu = 0.001
xc = 0.5 - mu ;; currently a scalar
yc = 0.5*sqrt(3.) ;; currently a scalar
;; Perhaps you want to define XT, YT, PXT, and PYT as:
;; xt = x - xc[0]
;; yt = y - yc[0]
;; pxt = px - yc[0]
;; pyt = py + xc[0]
;; Then you could index these inside the FOR loop and
;; remove their definitions therein.
;;openw,3,"section.txt"
openw,lun,"section.txt",/get_lun
for i=1L, rows[0] - 2L do begin
xt = x[i] - xc ;; currently a scalar
yt = y[i] - yc ;; currently a scalar
pxt = px[i] - yc ;; currently a scalar
pyt = py[i] + xc ;; currently a scalar
tau = y[i]/(y[i] - y[i+1]) ;; currently a scalar
;; In the following you are trying to index XT, YT, PXT, and PYT but
;; each are scalars, not arrays!
xn = xt[i] + (xt[i+1] - xt[i])*tau
yn = yt[i] + (yt[i+1] - yt[i])*tau
pxn = pxt[i] + (pxt[i+1] - pxt[i])*tau
pyn = pyt[i] + (pyt[i+1] - pyt[i])*tau
if (pyt[i] GT 0.) then begin
printf,lun, xt[i], pxt[i]
endif
endfor
free_lun,lun ;; close this LUN
;;close,3
;; Return
return
end
General IDL Notes: You should use []'s instead of ()'s to index arrays to avoid confusion with functions. It is generally better to let IDL define a logical unit number (LUN) and then free the LUN than use CLOSE.

Draw from a conditional multivariate normal distribution in fortran

I am trying to write a fortran subroutine to draw a subsample from a multivariate normal distribution conditional on the state of the other subspace. Basically:
(x1, x2)' ~ N( (mu1, mu2)', Sigma)
where the covariance matrix Sigma can be partitioned in the four submatrices
Sigma=( S11, S12; S21, S22)
Textbooks & Wikipedia tell me that the conditional distribution of x1 on x2=a is:
x1|x1=a ~ N( mu, Sigma*)
where
mu = mu1 + S12 * S22^-1 * (a - mu2)
Sigma* = S11 - S12 * S22^-1 * S21
When writing this up in R it works like a charm. In Fortran not so much.
SUBROUTINE dCondMVnorm ( DIdx, NDraw, Sigma, NSigma, Mu, TMCurr)
IMPLICIT NONE
INTEGER :: I, NSigma, NDraw, INFO
INTEGER :: DIdx(NDraw), NIdx(NSigma-NDraw), AllIdx(NSigma)
LOGICAL :: IdxMask(NSigma)
DOUBLE PRECISION :: Sigma11(NDraw, NDraw), Sigma22(NSigma-NDraw,NSigma-NDraw)
DOUBLE PRECISION :: Sigma(NSigma,NSigma)
DOUBLE PRECISION :: Sigma12minv22(NSigma-NDraw,NDraw), iSigma22(NSigma-NDraw,NSigma-NDraw)
DOUBLE PRECISION :: RandNums(NDraw), Dummy1(NDraw), MeanDiff(NSigma-NDraw )
DOUBLE PRECISION :: TMcurr(NSigma), Mu(NSigma)
! create the indeces to _not_ draw from (NIdx)
IdxMask = .FALSE.
IdxMask(DIdx) = .TRUE.
AllIdx = (/ (I, I=1, NSigma) /)
NIdx = pack( AllIdx, .NOT. IdxMask)
Sigma11 = Sigma( DIdx, DIdx)
Sigma22 = Sigma( NIdx, NIdx)
iSigma22 =0.0D0
DO I = 1, NSigma-NDraw
iSigma22(I,I) = 1.0D0
END DO
CALL DPOSV( 'U', NSigma-NDraw,NSigma-NDraw, Sigma22, NSigma-NDraw, iSigma22, NSigma-NDraw, INFO)
CALL DGEMM ( 'N', 'N', NDraw, NSigma-NDraw, NSigma-NDraw, 1.0D0, Sigma(DIdx,NIdx), NDraw, &
iSigma22, NSigma-NDraw, 0.0D0, Sigma12minv22, NDraw )
CALL DGEMM ( 'N', 'N', NDraw, NDraw, NSigma-NDraw, -1.0D0, Sigma12minv22, NDraw, &
Sigma(NIdx,DIdx), NSigma-NDraw, +1.0D0, Sigma11, NDraw)
CALL DPOTRF( 'U', NDraw, Sigma11, NDraw, INFO)
DO I = 1, NDraw-1
Sigma11(I+1:NDraw,I) = 0.0D0
END DO
! now Sigma11 actually is the cholesky decomposition of the matrix Sigma*
MeanDiff = TMcurr(NIdx) - Mu(NIdx)
CALL DGEMV( 'N', NDraw, NSigma-NDraw, 1.0D0, Sigma12minv22, NDraw, MeanDiff, 1, 0.0D0, Dummy1(1), 1)
! sorry, this one is self written and returns NDraw random numbers that are i.i.d. N(0,1) using Marsaglia's algorithm
CALL getzig(RandNums, NDraw)
CALL DGEMV( 'N', NDraw, NDraw, 1.0D0, Sigma11, NDraw, RandNums(1), 1, 1.0D0, Dummy1(1), 1)
TMcurr(DIdx) = Dummy1
END SUBROUTINE dCondMVnorm
So I now build this (it is part of a larger module I am working on) call this from R using
CovMat <- diag(4)
CovMat[1:3,2:4] <- CovMat[1:3,2:4] + diag(3)*.5
CovMat[2:4,1:3] <- CovMat[2:4,1:3] + diag(3)*.5
CovMat[3:4,1:2] <- CovMat[3:4,1:2] + diag(2)*.2
CovMat[1:2,3:4] <- CovMat[1:2,3:4] + diag(2)*.2
library(MASS)
dyn.load("TM_Updater.so")
testMat2 <- matrix(NA,0,4)
for (a in seq(500) ){
y <- mvrnorm(1,rep(0,2), CovMat[3:4,3:4])
x <- .Fortran("dCondMVnorm", as.integer(c(1,2)),as.integer(2), CovMat, as.integer(4), c(0.0,0.0,0.0,0.0), c(0.0,0.0,y))[[6]]
testMat2 <- rbind(testMat2, c(x[1:2],y) )
}
dyn.unload("TM_Updater.so")
cov(testMat2)
and this returns
> cov(testMat2)
[,1] [,2] [,3] [,4]
[1,] 1.179618573 0.4183372 0.1978489 0.002156081
[2,] 0.418337156 0.8317497 0.4891746 0.204091537
[3,] 0.197848928 0.4891746 0.9649001 0.498660858
[4,] 0.002156081 0.2040915 0.4986609 1.032272666
clearly, the covariance of [1,1] is much too high and it is that way no matter how often (or for how long) I run it.
What am I missing? The covariance matrix calculated by Fortran matches the one calculated by hand, as do the means... some issues with different accuracies?
Plus there's this weirdness with the DGEMV that you need to give the exact starting address (see last call to DGEMV) of the vector y (as it is called in the documentary) in order to get
y := alpha A *x + beta * y, beta != 0
Any help would greatly be appreciated!
I feel embarrassed, but for future reference this blunder shall remain available for all to see.
The problem is converting a vector of i.i.d. N(0,1) random numbers to the target multivariate normal. Checking the textbooks you need the cholesky decomposition A of the covariance matrix S
S = AA'
Note that it is the lower triangular matrix we are interested in, not the upper that I calculated.
Solution: in the last call to DGEMV change 'N' to 'T' or calculate the 'L' triangle in the call to DPOSV and rewrite the zeroing out of the upper triangle in the following lines.

Resources