How to visualize Net Promoter Score (NPS) using Kibana? - kibana

I want to visualize NPS (Net Promoter Score) score. The data is very simple, consisting of answers ranging from 0 to 10. Visualizing the answers as such is very simple, but I also want to visualize NPS as time series.
Calculating NPS is simple: (promoters - detractors) / answers_total * 100, where
Promoter: answer=9~10
Detractor: answer=0~6
Not that difficult calculation, but I can't find a way to do it using Kibana.
Only information I could find was this: https://discuss.elastic.co/t/how-to-calculate-net-promoter-score-and-display-in-kibana/51095/8
Writing a plugin is out of question. Modifying the data stored to Elasticsearch is possible.
How should/could I visualize NPS using Kibana?

Related

Calculating magnitude of longitudinal and latitudinal error

Lets say i have those coordinates..
Long.GPS Lat.GPS Long.TEST Lat.TEST
22.355951 44.699745 24.00092 44.37806
22.355951 44.699745 24.08816 44.36839
22.355951 44.699745 23.73256 44.42112
22.355951 44.699745 22.35929 44.6953
Now, what i want is to know how to calculate the magnitude of longitudinal and latitudinal error by the following: Long.error = |Long.GPS - Long.Test|
and the same for latitude.
Then, i would like to know how to calculate the magnitude of total horizontal error as the Euclidean distance from the true location(GPS) to tested location(TEST) by the following: Total.error = sqrt(Long.error^2 + Lat.error^2)
After all this, i would like to plot them using ggplot2 geom_point, but i think that i can handle this on my own.
I am quite new into this field and i need help in order to finish my project.
Thanks in advance !

How do I produce a probability histogram?

I've just started learning R, and was wondering, say I have the dataset quake, and I want to generate the probability histogram of quakes near Fiji, would the code simply be hist(quakes$lat,freq=F)?
A histogram shows the frequency or proportion of a given value out of all the values in a data set. You need a numeric vector as the x argument for hist(). There is no flat variable in quakes, but there is a lat variable. hist(quakes$lat, freq = F) would show the following:
This shows the north/south geographical distribution of earthquakes, centering around -20, and, since it is approximately normal (with a left skew) suggests that there is a mechanism for earthquake generation that centers around a specific latitude.
The best way to learn is to try. If you wonder if that would be the way to do it, try it.
You might also want to look at this tutorial on creating kernel density plots with ggplot.

Visualize clusters for K means in R

I am doing a project on K means clustering and I have a shopping dataset which has 17 variables and 2 million observations.
After running the K Means, I want to visualize all different combinations for the variables. For example A against B, B against C, C against D etc. Rather than doing it one by one, is there a way to plot all of them in one go?
I am using R for my coding. could anyone please suggest the best way to visualize all these clusters? I am looking for a pattern within the dataset.
Any help would be much appreciated.
Thank you
A
You could just simply use plot
For instance:
km <- kmeans(iris[,-5], centers=3)
plot(iris[,-5], col=km$cluster)
If you plot to a large enough image or PDF file (e.g. using the jpeg or pdf command) you can then zoom in to see individual graphs more easily.

How to generate medoid plots

Hi I am using partitioning around medoids algorithm for clustering using the pam function in clustering package. I have 4 attributes in the dataset that I clustered and they seem to give me around 6 clusters and I want to generate a a plot of these clusters across those 4 attributes like this 1: http://www.flickr.com/photos/52099123#N06/7036003411/in/photostream/lightbox/ "Centroid plot"
But the only way I can draw the clustering result is either using a dendrogram or using
plot (data, col = result$clustering) command which seems to generate a plot similar to this
[2] : http://www.flickr.com/photos/52099123#N06/7036003777/in/photostream "pam results".
Although the first image is a centroid plot I am wondering if there are any tools available in R to do the same with a medoid plot Note that it also prints the size of each cluster in the plot. It would be great to know if there are any packages/solutions available in R that facilitate to do this or if not what should be a good starting point in order to achieve plots similar to that in Image 1.
Thanks
Hi All,I was trying to work out the problem the way Joran told but I think I did not understand it correctly and have not done it the right way as it is supposed to be done. Anyway this is what I have done so far. Following is how the file looks like that I tried to cluster
geneID RPKM-base RPKM-1cm RPKM+4cm RPKMtip
GRMZM2G181227 3.412444267 3.16437442 1.287909035 0.037320722
GRMZM2G146885 14.17287135 11.3577013 2.778514642 2.226818648
GRMZM2G139463 6.866752401 5.373925806 1.388843962 1.062745344
GRMZM2G015295 1349.446347 447.4635291 29.43627879 29.2643755
GRMZM2G111909 47.95903081 27.5256729 1.656555758 0.949824883
GRMZM2G078097 4.433627458 0.928492841 0.063329249 0.034255945
GRMZM2G450498 36.15941083 9.45235616 0.700105077 0.194759794
GRMZM2G413652 25.06985426 15.91342458 5.372151214 3.618914949
GRMZM2G090087 21.00891969 18.02318412 17.49531186 10.74302155
following is the Pam clustering output
GRMZM2G181227
1
GRMZM2G146885
2
GRMZM2G139463
2
GRMZM2G015295
2
GRMZM2G111909
2
GRMZM2G078097
3
GRMZM2G450498
3
GRMZM2G413652
2
GRMZM2G090087
2
AC217811.3_FG003
2
Using the above two files I generated a third file that somewhat looks like this and has cluster information in the form of cluster type K1,K2,etc
geneID RPKM-base RPKM-1cm RPKM+4cm RPKMtip Cluster_type
GRMZM2G181227 3.412444267 3.16437442 1.287909035 0.037320722 K1
GRMZM2G146885 14.17287135 11.3577013 2.778514642 2.226818648 K2
GRMZM2G139463 6.866752401 5.373925806 1.388843962 1.062745344 K2
GRMZM2G015295 1349.446347 447.4635291 29.43627879 29.2643755 K2
GRMZM2G111909 47.95903081 27.5256729 1.656555758 0.949824883 K2
GRMZM2G078097 4.433627458 0.928492841 0.063329249 0.034255945 K3
GRMZM2G450498 36.15941083 9.45235616 0.700105077 0.194759794 K3
GRMZM2G413652 25.06985426 15.91342458 5.372151214 3.618914949 K2
GRMZM2G090087 21.00891969 18.02318412 17.49531186 10.74302155 K2
I certainly don't think that this is the file that joran would have wanted me to create but I could not think of anything else thus I ran lattice on the above file using the following code.
clusres<- read.table("clusinput.txt",header=TRUE,sep="\t");
jpeg(filename = "clusplot.jpeg", width = 800, height = 1078,
pointsize = 12, quality = 100, bg = "white",res=100);
parallel(~clusres[2:5]|Cluster_type,clusres,horizontal.axis=FALSE);
dev.off();
and I get a picture like this
Since I want one single line as the representative of the whole cluster at four different points this output is wrong moreover I tried playing with lattice but I can not figure out how to make it accept the Rpkm values as the X coordinate It always seems to plot so many lines against a maximum or minimum value at the Y coordinate which I don't understand what it is.
It will be great if anybody can help me out. Sorry If my question still seems absurd to you.
I do not know of any pre-built functions that generate the plot you indicate, which looks to me like a sort of parallel coordinates plot.
But generating such a plot would be a fairly trivial exercise.
Add a column of cluster labels (K1,K2, etc.) to your original data set, based on your clustering algorithm's output.
Use one of the many, many tools in R for aggregating data (plyr, aggregate, etc.) to calculate the relevant summary statistics by cluster on each of the four variables. (You haven't said what the first graph is actually plotting. Mean and sd? Median and MAD?)
Since you want the plots split into six separate panels, or facets, you will probably want to plot the data using either ggplot or lattice, both of which provide excellent support for creating the same plot, split across a single grouping vector (i.e. the clusters in your case).
But that's about as specific as anyone can get, given that you've provided so little information (i.e. no minimal runnable example, as recommended here).
How about using clusplot from package cluster with partitioning around medoids? Here is a simple example (from the example section):
require(cluster)
#generate 25 objects, divided into 2 clusters.
x <- rbind(cbind(rnorm(10,0,0.5), rnorm(10,0,0.5)),
cbind(rnorm(15,5,0.5), rnorm(15,5,0.5)))
clusplot(pam(x, 2)) #`pam` does you partitioning

Lorentz curve plot

I need to get a plot of a Lorentz curve of a cumulative variable as a function of the number of observations. I want both axes to be displayed on a percentage basis (e.g. say observations are the number of buyers and the y variable is the amount they bought, buyers are already ranked in descending order, I want to get the plot that says "The top 10% buyers purchased 90% of the total bought"). My dataset is a couple million observations.
What is the best way to do this? Sub-questions:
If I need to add two variables for the quantiles of total observations and total $ bought (so as to use them to plot), what is the object that returns the row number? I tried:
user_quantile <- row(df)/nrow(df)
but I get a matrix of identical columns (user_quantile.1, user_quantile.2) of which I only need one column.
Is there instead any way to skip adding percentages as variables and only have them for axes values?
The plot has way to many points than I need to get the line. What is the best approach to minimize the computational effort and get a nice graph?
Thanks.
You may want to acquaint yourself with the excellent RSeek search engine for R content. One quick query for Lorentz curve (and Lorenz curve) lead to these packages:
ineq: Measuring inequality, concentration, and poverty
reldist: Relative Distribution Methods
GeoXp: Interactive exploratory spatial data analysis
lawstat: An R package for biostatistics, public policy and law
all of which seem to supply a Lorenz curve function.
In order to get the plot done you need first to arrange the raw data.
1) You can use the cut2() function from the Hmisc package to cut the data in quantiles. Check the documentation, it's not hard. It's similar to the cut() from the base package.
2) After using the cut2() function with the income data, you need to compute the frequency of each decile. Use table() for that. Then calculate percentages of income for each decile.
3) Now you should have a very small table with the following columns:
Decile, cumulative % of total income.
Add another column with the 45 degree line. Just add a constant cumulative % of income.
finaltable$cumulative_equality_line = seq(0.1, 1, by = 0.1)
4) You can use base graphics or ggplot2 for plotting. I guess you can do it with the info of step 3 or perhaps check out specific plotting questions.
I'll have to do it soon, but i already have the final table. I'll post the code for plotting once i do it.
Good luck!

Resources