Find groups that contain all elements, but do not overlap [closed] - r

Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 5 years ago.
Improve this question
I've been given a set of country groups and I'm trying to get a set of mutually exclusive regions so that I can compare them. The problem is that my data contains several groups, many of which overlap. How can I get a set of groups which contain all countries, but do not overlap with each other?
For example, assume that this is the list of countries in the world:
World <- c("Angola", "France", "Germany", "Australia", "New Zealand")
Assume that this is my set of groups:
df <- data.frame(group = c("Africa", "Western Europe", "Europe", "Europe", "Oceania", "Oceania", "Commonwealth Countries"),
element = c("Angola", "France", "Germany", "France", "Australia", "New Zealand", "Australia"))
group element
1 Africa Angola
2 Western Europe France
3 Europe Germany
4 Europe France
5 Oceania Australia
6 Oceania New Zealand
7 Commonwealth Countries Australia
How could I remove overlapping groups (in this case Western Europe) to get a set of groups that contains all countries like the following:
df_solved <- data.frame(group = c("Africa", "Europe", "Europe", "Oceania", "Oceania"),
element = c("Angola", "France", "Germany", "Australia", "New Zealand"))
group element
1 Africa Angola
2 Europe France
3 Europe Germany
4 Oceania Australia
5 Oceania New Zealand

One possible rule could be to minimize the number of groups, e.g. to associate an element with that group which includes the most elements.
library(data.table)
setDT(df)[, n.elements := .N, by = group][
order(-n.elements), .(group = group[1L]), by = element]
element group
1: Germany Europe
2: France Europe
3: Australia Oceania
4: New Zealand Oceania
5: Angola Africa
Explanation
setDT(df)[, n.elements := .N, by = group][]
returns
group element n.elements
1: Africa Angola 1
2: Western Europe France 1
3: Europe Germany 2
4: Europe France 2
5: Oceania Australia 2
6: Oceania New Zealand 2
7: Commonwealth Countries Australia 1
Now, the rows are ordered by decreasing number of elements and for each country the first, i.e., the "largest", group is picked. This should return a group for each country as requested.
In case of ties, i.e., one group contains equally many elements, you can add additional citeria when ordering, e.g., length of the group name, or just alphabetical order.

1) If you want to simply eliminate duplicate elements then use !duplicated(...) as shown. No packages are used.
subset(df, !duplicated(element))
giving:
group element
1 Africa Angola
2 Europe France
3 Europe Germany
5 Oceania Australia
6 Oceania New Zealand
2) set partitioning If each group must be wholly in or wholly out and each element may only appear once then this is a set partitioning problem:
library(lpSolve)
const.mat <- with(df, table(element, group))
obj <- rep(1L, ncol(const.mat))
res <- lp("min", obj, const.mat, "=", 1L, all.bin = TRUE)
subset(df, group %in% colnames(const.mat[, res$solution == 1]))
giving:
group element
1 Africa Angola
2 Europe France
3 Europe Germany
5 Oceania Australia
6 Oceania New Zealand
3) set covering Of course there may be no exact set partition so we could consider the set covering problem (same code exceept "=" is replaced by ">=" in the lp line.
library(lpSolve)
const.mat <- with(df, table(element, group))
obj <- rep(1L, ncol(const.mat))
res <- lp("min", obj, const.mat, ">=", 1L, all.bin = TRUE)
subset(df, group %in% colnames(const.mat[, res$solution == 1]))
giving:
group element
1 Africa Angola
2 Europe France
3 Europe Germany
5 Oceania Australia
6 Oceania New Zealand
and we could optionally then apply (1) to remove any duplicates in the cover.
4) Non-dominated groups Another approach is to remove any group whose elements form a strict subset of the elements of some other group. For example, every element in Western Europe is in Europe and Europe has more elements than Western Europe so the elements of Western Europe are a strict subset of the elements of Europe and we remove Western Europe. Using const.mat from above:
# returns TRUE if jth column of const.mat is dominated by some other column
is_dom_fun <- function(j) any(apply(const.mat[, j] <= const.mat[, -j], 2, all) &
sum(const.mat[, j]) < colSums(const.mat[, -j]))
is_dom <- sapply(seq_len(ncol(const.mat)), is_dom_fun)
subset(df, group %in% colnames(const.mat)[!is_dom])
giving:
group element
1 Africa Angola
3 Europe Germany
4 Europe France
5 Oceania Australia
6 Oceania New Zealand
If there are any duplicates left we can use (1) to remove them.

library(dplyr)
df %>% distinct(element, .keep_all=TRUE)
group element
1 Africa Angola
2 Europe France
3 Europe Germany
4 Oceania Australia
5 Oceania New Zealand
Shoutout to Axeman for beating me with this answer.
Update
Your question is ill-defined. Why is 'Europe' preferred over 'Western Europe'? Put another way, each country is assigned several groups. You want to reduce it to one group per country. How do you decide which group?
Here's one way, we always prefer the biggest:
groups <- df %>% count(group)
df %>% inner_join(groups, by='group') %>%
arrange(desc(n)) %>% distinct(elemenet, .keep_all=TRUE)
group element n
1 Europe France 2
2 Europe Germany 2
3 Oceania Australia 2
4 Oceania New Zealand 2
5 Africa Angola 1

Here is one option with data.table
library(data.table)
setDT(df)[, head(.SD, 1), element]
Or with unique
unique(setDT(df), by = 'element')
# group element
#1: Africa Angola
#2: Europe France
#3: Europe Germany
#4: Oceania Australia
#5: Oceania New Zealand
Packages are used and it is data.table

A completely different approach would be to ignore the given groups but to look up just the country names in the catalogue of UN regions which are available in the countrycodes or ISOcodes packages.
The countrycodes package seems to offer the simpler interface and it also warns about country names which can not be found in its database:
# given country names - note the deliberately misspelled last entry
World <- c("Angola", "France", "Germany", "Australia", "New Zealand", "New Sealand")
# regions
countrycode::countrycode(World, "country.name.en", "region")
[1] "Middle Africa" "Western Europe" "Western Europe" "Australia and New Zealand"
[5] "Australia and New Zealand" NA
Warning message:
In countrycode::countrycode(World, "country.name.en", "region") :
Some values were not matched unambiguously: New Sealand
# continents
countrycode::countrycode(World, "country.name.en", "continent")
[1] "Africa" "Europe" "Europe" "Oceania" "Oceania" NA
Warning message:
In countrycode::countrycode(World, "country.name.en", "continent") :
Some values were not matched unambiguously: New Sealand

Related

How do I combine two data frames one of which contains nested lists in R?

Specifically, I'm trying to combine the two data frames UN_M.49_Countries and UN_M.49_Regions which contains the country codes in nested lists.
> UN_M.49_Countries
Code Name ISO_Alpha_3
1 004 Afghanistan AFG
2 248 Åland Islands ALA
3 008 Albania ALB
...
> UN_M.49_Regions
Code Name Parent Children Type
1 001 World 002, 019, 010, 142, 150, 009 Region
2 002 Africa 001 015, 202 Region
3 015 Northern Africa 002 012, 818, 434, 504, 729, 788, 732 Region
...
I would like to build a new table which adds two columns to UN_M.49_Countries.
> new_table
Code Name ISO_Alpha_3 Region Subregion
1 004 Afghanistan AFG Asia Southern Asia
2 248 Åland Islands ALA Europe Northern Europe
3 008 Albania ALB Europe Southern Europe
...
I am new to programming and R and, to be honest, I do not even know where to start. Any help would be much appreciated!
install.packages("ISOcodes")
library(ISOcodes)
UN_M.49_Countries
UN_M.49_Regions
if you need to get a specific version you can change Southern Europe to anything you would like, also if don't subset you can get the whole world.
Check out the package documentation.
https://cran.r-project.org/web/packages/ISOcodes/ISOcodes.pdf
data("UN_M.49_Regions")
data("UN_M.49_Countries")
region <- subset(UN_M.49_Regions, Name == "Southern Europe")
codes <- unlist(strsplit(region$Children, ", "))
subset(UN_M.49_Countries, Code %in% codes)
Using the tidyverse
library(ISOcodes)
library(tidyverse)
library(stringr)
countries <- UN_M.49_Countries
regions <- UN_M.49_Regions
countries <- UN_M.49_Countries
region_focused <- regions %>%
mutate(codes = str_split(Children,",")) %>%
unnest() %>%
left_join(countries, by = c("codes" = "Code"))
countr_focused <- regions %>%
mutate(codes = str_split(Children,",")) %>%
unnest() %>%
right_join(countries, by = c("codes" = "Code"))

create a variable in a dataframe based on another matrix on R

I am having some problems with the following task
I have a data frame of this type with 99 different countries for thousands of IDs
ID Nationality var 1 var 2 ....
1 Italy //
2 Eritrea //
3 Italy //
4 USA
5 France
6 France
7 Eritrea
....
I want to add a variable corresponding to a given macroregion of Nationality
so I created a matrix of this kind with the rule to follow
Nationality Continent
Italy Europe
Eritrea Africa
Usa America
France Europe
Germany Europe
....
I d like to obtain this
ID Nationality var 1 var 2 Continent
1 Italy // Europe
2 Eritrea // Africa
3 Italy // Europe
4 USA America
5 France Europe
6 France Europe
7 Eritrea Africa
....
I was trying with this command
datasubset <- merge(dataset , continent.matrix )
but it doesn't work, it reports the following error
Error: cannot allocate vector of size 56.6 Mb
that seems very strange to me, also trying to apply this code to a subset it doesn't work. do you have any suggestion on how to proceed?
thank you very much in advance for your help, I hope my question doesn't sound too trivial, but I am quite new to R
You can do this with the left_join function (dplyr's library):
library(dplyr)
df <- tibble(ID=c(1,2,3),
Nationality=c("Italy", "Usa", "France"),
var1=c("a", "b", "c"),
var2=c(4,5,6))
nat_cont <- tibble(Nationality=c("Italy", "Eritrea", "Usa", "Germany", "France"),
Continent=c("Europe", "Africa", "America", "Europe", "Europe"))
df_2 <- left_join(df, nat_cont, by=c("Nationality"))
The output:
> df_2
# A tibble: 3 x 5
ID Nationality var1 var2 Continent
<dbl> <chr> <chr> <dbl> <chr>
1 1 Italy a 4 Europe
2 2 Usa b 5 America
3 3 France c 6 Europe

Replace a value in a data frame based on a conditional statement

I have a question very similar to this question
country continent
<chr> <chr>
1 Taiwan Asia
2 New Zealand Oceania
3 Bulgaria Europe
4 Bahamas Americas
5 Serbia Europe
6 Tajikistan Asia
7 Southern Sub-Saharan Africa NA
8 Cameroon Africa
9 Indonesia Asia
10 Democratic Republic of Congo Africa
How do I use a function/write a loop so that when the country is "Bahamas" that it converts the continent so that it now says South America?
The page that I linked was the closest answer I could find but it differed from my question because I am trying to manipulate one column based on the values in a different column.
I tried using ifelse() but that did not work:
gm %>%
ifelse(country == "Bahamas", continent == "S America", continent)
Any insight would be greatly appreciated!
You need to mutate:
library(dplyr)
gm %>%
mutate(continent = ifelse(country == "Bahamas", "S America", continent))
This works:
gm[,'continent'][gm[,'country'] == "Bahamas"] <- "South America"
You might get a warning message like this if "South America" is not already in the dataframe:
Warning message:
In `[<-.factor`(`*tmp*`, gm[, "country"] == "Bahamas", value = c(2L, :
invalid factor level, NA generated
This means you need to add the level first, you are trying to issue a level which doesn't exist:
levels(gm$continent) <- c(levels(gm$continent), "South America")
gm[,'continent'][gm[,'country'] == "Bahamas"] <- "South America"
(run time on this approach [5M entries in a dataframe, 10 repeated measures] was 4x faster than the dplyr method)

extracting country name from city name in R

This question may look like a duplicate but I am facing some issue while extracting country names from the string. I have gone through this link [link]Extracting Country Name from Author Affiliations but I was not able to solve my problem.I have tried grepl and for loop for text matching and replacement, my data column consists of more than 300k rows so using grepl and for loop for pattern matching is very very slow.
I have a column like this.
org_loc
Zug
Zug Canton of Zug
Zimbabwe
Zigong
Zhuhai
Zaragoza
York United Kingdom
Delhi
Yalleroi Queensland
Waterloo Ontario
Waterloo ON
Washington D.C.
Washington D.C. Metro
New York
df$org_loc <- c("zug", "zug canton of zug", "zimbabwe",
"zigong", "zhuhai", "zaragoza","York United Kingdom", "Delhi","Yalleroi Queensland","Waterloo Ontario","Waterloo ON","Washington D.C.","Washington D.C. Metro","New York")
the string may contain the name of a state, city or country. I just want Country as output. Like this
org_loc
Switzerland
Switzerland
Zimbabwe
China
China
Spain
United Kingdom
India
Australia
Canada
Canada
United State
United state
United state
I am trying to convert state (if match found) to its country using countrycode library but not able to do so. Any help would be appreciable.
You can use your City_and_province_list.csv as a custom dictionary for countrycode. The custom dictionary can not have duplicates in the origin vector (the City column in your City_and_province_list.csv), so you'll have to remove them or deal with them somehow first (as in my example below). Currently, you don't have all of the possible strings in your example in your lookup CSV, so they are not all converted, but if you added all of the possible strings to the CSV, it would work completely.
library(countrycode)
org_loc <- c("Zug", "Zug Canton of Zug", "Zimbabwe", "Zigong", "Zhuhai",
"Zaragoza", "York United Kingdom", "Delhi",
"Yalleroi Queensland", "Waterloo Ontario", "Waterloo ON",
"Washington D.C.", "Washington D.C. Metro", "New York")
df <- data.frame(org_loc)
city_country <- read.csv("https://raw.githubusercontent.com/girijesh18/dataset/master/City_and_province_list.csv")
# custom_dict for countrycode cannot have duplicate origin codes
city_country <- city_country[!duplicated(city_country$City), ]
df$country <- countrycode(df$org_loc, "City", "Country",
custom_dict = city_country)
df
# org_loc country
# 1 Zug Switzerland
# 2 Zug Canton of Zug <NA>
# 3 Zimbabwe <NA>
# 4 Zigong China
# 5 Zhuhai China
# 6 Zaragoza Spain
# 7 York United Kingdom <NA>
# 8 Delhi India
# 9 Yalleroi Queensland <NA>
# 10 Waterloo Ontario <NA>
# 11 Waterloo ON <NA>
# 12 Washington D.C. <NA>
# 13 Washington D.C. Metro <NA>
# 14 New York United States of America
library(countrycode)
df <- c("zug switzerland", "zug canton of zug switzerland", "zimbabwe",
"zigong chengdu pr china", "zhuhai guangdong china", "zaragoza","York United Kingdom", "Yamunanagar","Yalleroi Queensland Australia","Waterloo Ontario","Waterloo ON","Washington D.C.","Washington D.C. Metro","USA")
df1 <- countrycode(df, 'country.name', 'country.name')
It didn't match a lot of them, but that should do what you're looking for, based on the reference manual for countrycode.
With function geocode from package ggmap you may accomplish, with good but not total accuracy your task; you must also use your criterion to say "Zaragoza" is a city in Spain (which is what geocode returns) and not somewhere in Argentina; geocode tends to give you the biggest city when there are several homonyms.
(remove the $country to see all of the output)
library(ggmap)
org_loc <- c("zug", "zug canton of zug", "zimbabwe",
"zigong", "zhuhai", "zaragoza","York United Kingdom",
"Delhi","Yalleroi Queensland","Waterloo Ontario","Waterloo ON","Washington D.C.","Washington D.C. Metro","New York")
geocode(org_loc, output = "more")$country
as geocode is provided by google, it has a query limit, 2,500 per day per IP address; if it returns NAs it may be because an unconsistent limit check, just try it again.

How to apply multiple if statements in R?

I have a data frame (df) that lists the countries associated with every site
Site Country
Site1 USA
Site2 Vietnam
Site3 Spain
Site4 Germany
Site5 China
I want to attach a column, where for each country I associate its corresponding continent. I wrote a simple if loop to do this:
df$Continent <- NA
if(df$Country == "USA" |df$Country == "Canada" |df$Country == "Mexico")
{df$Continent <- "North America"}
if(df$Country == "Spain" |df$Country == "France" |df$Country == "Germany")
{df$Continent <- "Europe"}
## .. etc
summary(df)
However, each time I run it the df, I find that it assigns North America to all the countries. I understand that this may sound trivial, but does it make a difference if I use if statments everywhere and not else or if else? Any suggestions for correcting this?
Build a lookup table and merge() it with the data.
For example:
lookup <- data.frame(Country = c("USA", "Canada", "Mexico",
"Spain", "France", "Germany",
"Vietnam", "China"),
Continent = rep(c("North America", "Europe", "Asia"),
times = c(3,3,2)))
Using your snippet of data as data frame df, we can add Continent via merge() (a join in database terminology):
> merge(df, lookup, sort = FALSE, all.x = TRUE)
Country Site Continent
1 USA Site1 North America
2 Vietnam Site2 Asia
3 Spain Site3 Europe
4 Germany Site4 Europe
5 China Site5 Asia
If you're working with a factor you can also do some nonsense with levels, or levels<- to be exact:
`levels<-`(dat$Country, list(
`North America` = c("USA","Canada","Mexico"),
`Europe` = c("Spain","France","Germany"),
`Asia` = c("Vietnam","China")
))
#[1] North America Asia Europe Europe Asia
#Levels: North America Europe Asia
I like ifelse() for things like this. You could use it with the %in% operator like this:
df$Continent <- ifelse(df$Country %in% c("USA", "Canada", "Mexico"),
"North America", df$Continent)
df$Continent <- ifelse(df$Country %in% c("Spain", "France", "Germany"),
"Europe", df$Continent)
df
Site Country Continent
1 Site1 USA North America
2 Site2 Vietnam <NA>
3 Site3 Spain Europe
4 Site4 Germany Europe
5 Site5 China <NA>

Resources