Setup: I already have build a shiny-app with two plots. I used the flexdashboard-package to create two plots in two tabs. In addition I programmed the whole shiny-app in R-markdown.
Now I want to create an interface where the user can subset the data. That part itself works. However I also need to perform some calculations with the subsetted data, before I do my two plots.
Is there any way I can transform some subsetted object like mydata to a dataframe? My problem is that I need to use this subsetted object also in the UI part of the other plots.
EDIT: I specifically need some way to transport my selection from checkboxGroupInput to selectInput("cat_1"," category 1:",choices = levels(mydata()$mycat).
### 1. Create some sample data
myrows<-sample(letters,12)
exdata<- data.frame(mycat=rep(myrows,2),yr=rep(1:2,each=12),KPI_1=rnorm(24),
KPI_2=round(runif(24,1,20)),KPI_3=rbinom(24,6,0.5))
### 2. UI part
fluidPage(fluidRow(
checkboxGroupInput("comp", "Categories",myrows,myrows,inline=TRUE),
actionButton("go", "Update"),
textOutput("txt"),
tableOutput("head"))
)
### 3. Server part
mydata<-eventReactive(input$go,{
res<-subset(exdata,mycat%in%input$comp)
return(res)
})
output$txt <- renderText({
paste("You chose", paste(input$comp, collapse = ", "))
})
output$head <- renderTable({
mydata()
})
In the next chunk I do this:
library(plotly)
library(shiny)
### 4. UI part of my plot
fluidRow(sidebarLayout(sidebarPanel(
selectInput("cat_1",
" category 1:",
choices = levels(mydata()$mycat),
selected = levels(mydata()$mycat)[1]),
selectInput("cat_2",
" category 2:",
choices = levels(mydata()$mycat),
selected = levels(mydata()$mycat)[2])),
mainPanel(plotlyOutput("plot3", height = 300, width = 700))))
### 5. Server part of my plot
output$plot3 <- renderPlotly({
## 5.1 Create plot data
cat1<-input$cat_1
cat2<-input$cat_2
y1<-as.numeric(mydata()[mydata()$mycat==cat1])
y2<-as.numeric(mydata()[mydata()$mycat==cat2])
x0<-c(1,2)
## 5.2 Do plot
plot_ly(x = x0,y = y1, type="scatter",mode='lines+markers',name=Firm1) %>%
add_trace(y = y2, name = Firm2, mode = 'lines+markers') %>%
layout(dragmode = "select")
It took me a while to figure out your code. So:
1) Make use of renderUI which will allow you to dynamically create controls
2) Stick with one ui
3) Make sure you understand the renderPlotly and what you're trying to plot
library(shiny)
library(plotly)
### 1. Create some sample data
myrows<-sample(letters,12)
exdata<- data.frame(mycat=rep(myrows,2),yr=rep(1:2,each=12),KPI_1=rnorm(24),
KPI_2=round(runif(24,1,20)),KPI_3=rbinom(24,6,0.5))
ui <- fluidPage(
sidebarPanel(
uiOutput("c1"),uiOutput("c2")),
mainPanel(
column(6,
checkboxGroupInput("comp", "Categories",myrows,myrows,inline=TRUE),
actionButton("go", "Update"),
textOutput("txt"),
tableOutput("head")),
column(6,
plotlyOutput("plot3", height = 300, width = 700)))
)
server <- function(input, output) {
### 3. Server part
mydata <- eventReactive(input$go,{
res<-subset(exdata,mycat%in%input$comp)
return(res)
})
output$txt <- renderText({
paste("You chose", paste(input$comp, collapse = ", "))
})
output$head <- renderTable({
mydata()
})
conrolsdata <- reactive({
unique(as.character(mydata()$mycat))
})
output$c1 <- renderUI({
selectInput("cat_1", "Variable:",conrolsdata())
})
output$c2 <- renderUI({
selectInput("cat_2", "Variable:",conrolsdata())
})
output$plot3 <- renderPlotly({
if(is.null(input$cat_1)){
return()
}
y1<- mydata()$KPI_1[as.character(mydata()$mycat) %in% input$cat_1]
y2<- mydata()$KPI_2[as.character(mydata()$mycat) %in% input$cat_2]
x0<-c(1,2)
#use the key aesthetic/argument to help uniquely identify selected observations
plot_ly(x = x0,y = y1, type="scatter",mode='lines+markers',name="Firm1") %>%
add_trace(y = y2, name = "Firm2", mode = 'lines+markers') %>%
layout(dragmode = "select")
})
}
shinyApp(ui, server)
Related
I am trying to make an RShiny app that you can pick a gene from a list, and it will display different graphs using that gene's transcripts. However, each gene has a different number of transcripts, so a different number of graphs must be displayed every time a different gene is chosen. How I have it set right now is that when a person chooses a gene, a new table is created with the transcript numbers (data to be plotted) along with a new list of all the transcript names (length of this list is the amount of plots that I need). These are reactive values.
Below, in the server, I made a function that creates the graph that I want, and then I iterate through the creation of the function by indexing into the reactive list of names, so it creates a graph for each name (as each name is a different transcript). Right now, the code iterates through all the names correctly but only displays the last plot. Is there a way to have every plot displayed? I have tried a lot of different things, from renderUI to using local calls, but cannot figure it out.
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
selectInput("var", label = "Choose a gene to display", names),
mainPanel(
plotOutput("tdot"))
))
server <- function(input, output) {
genename <- reactive({
input$var
})
transTable2 <- reactive ({
cbind(biofluids, select(transTable, starts_with(input$var)))
})
names <- reactive ({
tableBF <- cbind(biofluids, select(transTable, starts_with(input$var)))
n <- colnames(tableBF)
final <- n[-1]
})
createUI <- function(name, table) {
ggplot(table, aes_string(x = "biofluids", y = name))+geom_boxplot(aes(color = biofluids))+
geom_boxplot(aes(fill = biofluids)) + scale_y_log10()+ylab( 'log10 normalized counts')+
ggtitle(name)}
output$tdot <- renderPlot({
lapply(1:length(names()), function(i)
createUI(names()[i], transTable2()))
})
}
# Run the application
shinyApp(ui = ui, server = server)
A reproducible example is as follows with the iris dataset, which would have the user select a category (either "Sepal" or "Petal"), and then create a plot for every column in the dataset that starts with that word:
cats <- c("Sepal", "Petal")
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
selectInput("var", label = "Choose a category to display", cats),
mainPanel(
plotOutput("tdot"))
))
server <- function(input, output) {
category <- reactive({
input$var
})
iris2 <- reactive ({
select(iris, starts_with(input$var))
})
names <- reactive ({
table2 <- select(transTable, starts_with(input$var))
n <- colnames(table2)
})
createUI <- function(name, table) {
ggplot(table, aes_string(x = "species", y = name))+geom_boxplot(aes(color = species))+
geom_boxplot(aes(fill = species)) + scale_y_log10()+ylab( 'log10 normalized counts')+
ggtitle(name)}
output$tdot <- renderPlot({
lapply(1:length(names()), function(i)
createUI(names()[i], iris2()))
})
}
# Run the application
shinyApp(ui = ui, server = server)
The following code generates dynamic number of outputs with iris data. You should be able to adapt this to your data.
library(shiny)
library(tidyverse)
# Load data
data("iris")
# Add row id
iris2 <- iris %>% mutate(ID = 1:n())
# ui
ui <- fluidPage(
sidebarPanel(
selectInput(inputId = "sel", label = "Select one or more parameters",
choices = names(iris2), multiple = TRUE)
),
mainPanel(
uiOutput("plots")
)
)
# server
server <- function(input, output, session){
# Dynamically generate the plots based on the selected parameters
observe({
req(input$sel)
lapply(input$sel, function(par){
p <- ggplot(iris2, aes_string(x = "ID", y = par)) +
geom_boxplot(aes(fill = Species, group=Species, color=Species)) +
ggtitle(paste("Plot: ", par))
output[[paste("plot", par, sep = "_")]] <- renderPlot({
p
},
width = 380,
height = 350)
})
})
# Create plot tag list
output$plots <- renderUI({
req(input$sel)
plot_output_list <- lapply(input$sel, function(par) {
plotname <- paste("plot", par, sep = "_")
plotOutput(plotname, height = '250px', inline=TRUE)
})
do.call(tagList, plot_output_list)
})
}
shinyApp(ui, server)
It gives the following output:
I want to create a modularized Shiny app where one module, dataUpload, is used to import a CSV and another module, chart, is used to
Create dynamic x and y dropdowns based on the column names within the CSV THIS WORKS
Create a plot based on the selected input$xaxis, input$yaxis This produces the error invalid type/length (symbol/0) in vector allocation
I think the issue is with my reactive ggplot in chart.R and I'd love any help - I added all the info here but I also have a github repo if that's easier I think this could be a really great demo into the world of interacting modules so I'd really appreciate any help!!
App.R
library(shiny)
library(shinyjs)
library(tidyverse)
source("global.R")
ui <-
tagList(
navbarPage(
"TWO MODULES",
tabPanel(
title = "Data",
dataUploadUI("datafile", "Import CSV")
),
tabPanel(
title = "Charts",
chartUI("my_chart")
)
)
)
server <- function(input, output, session) {
datafile <- callModule(dataUpload, "datafile", stringsAsFactors = FALSE)
output$table <- renderTable({ datafile() })
# PASS datafile WITHOUT () INTO THE MODULE
my_chart <- callModule(chart, "my_chart", datafile = datafile)
output$plot <- renderPlot({ my_chart() })
}
shinyApp(ui, server)
dataUpload.R
dataUpload <- function(input, output, session, stringsAsFactors) {
# The selected file, if any
userFile <- reactive({
# If no file is selected, don't do anything
# input$file == ns("file")
validate(need(input$file, message = FALSE))
input$file
})
# The user's data, parsed into a data frame
dataframe <- reactive({
read.csv(userFile()$datapath,
stringsAsFactors = stringsAsFactors)
})
# We can run observers in here if we want to
observe({
msg <- sprintf("File %s was uploaded", userFile()$name)
cat(msg, "\n")
})
# Return the reactive that yields the data frame
return(dataframe)
}
dataUploadUI.R
# The first argument is the id -- the namespace for the module
dataUploadUI <- function(id, label = "CSV file") {
# Create a namespace function using the provided id
#ALL UI FUNCTION BODIES MUST BEGIN WITH THIS
ns <- NS(id)
# Rather than fluidPage use a taglist
# If you're just returning a div you can skip the taglist
tagList(
sidebarPanel(
fileInput(ns("file"), label)),
mainPanel(tableOutput("table"))
)
}
chart.R
I believe this is the file that needs some minor changing in order to have the plot properly render?
chart <- function(input, output, session, datafile = reactive(NULL)) {
# SINCE DATAFILE IS A REACTIVE WE ADD THE PRERENTHESIS HERE
# WHERE/HOW CAN I ACCESS input$xaxis?
# Do I need to use ns? Can you do that in the server side of a module?
output$XAXIS <- renderUI(selectInput("xaxis", "X Axis", choices = colnames(datafile())))
output$YAXIS <- renderUI(selectInput("yaxis", "Y Axis", choices = colnames(datafile())))
# NOT WORKING
# Use the selectInput x and y to plot
p <- reactive({
req(datafile)
# WORKS: ggplot(datafile(), aes(x = Sepal_Length, y = Sepal_Width))
# DOES NOT WORK:
ggplot(datafile(), aes_(x = as.name(input$xaxis), y = as.name(input$yaxis))) +
geom_point()
})
return(p)
}
chartUI.R
chartUI <- function(id, label = "Create Chart") {
ns <- NS(id)
tagList(
sidebarPanel(
uiOutput(ns("XAXIS")),
uiOutput(ns("YAXIS"))
),
mainPanel(plotOutput("plot"))
)
}
We need to manually specify the name space within a renderUI function using session$ns
chart <- function(input, output, session, datafile = reactive(NULL)) {
# SINCE DATAFILE IS A REACTIVE WE ADD THE PRERENTHESIS HERE
# WHERE/HOW CAN I ACCESS input$xaxis?
# Do I need to use ns? Can you do that in the server side of a module?
output$XAXIS <- renderUI(selectInput(session$ns("xaxis"), "X Axis", choices = colnames(datafile())))
output$YAXIS <- renderUI(selectInput(session$ns("yaxis"), "Y Axis", choices = colnames(datafile())))
# NOT WORKING
# Use the selectInput x and y to plot
p <- reactive({
req(datafile)
# WORKS: ggplot(datafile(), aes(x = Sepal_Length, y = Sepal_Width))
# DOES NOT WORK:
ggplot(datafile(), aes_(x = as.name(input$xaxis), y = as.name(input$yaxis))) +
geom_point()
})
return(p)
}
Trying to create a shiny app that has a dropdown menu allowing you to select plots that are subelements of a list that is saved to the global environment.
The plots are located in the second subelement of each element in a list
e.g. list = ([[dataframe1, plot1], [dataframe2, plot2], etc])
The app I am trying to create is given by:
choices = paste0("list[[1]][[", 1:2, "]]")
ui <- shinyUI(fluidPage(selectInput("selectPlot",
"Choose desired country",
choices),
plotlyOutput("plot")))
server <- shinyServer(function(input,output){
output$plot <- renderPlotly({
return(get(input$selectPlot))
})
})
shinyApp(ui,server)
However, no plots are being shown and I am receiving the following error:
**Warning: Error in get: object 'anom[[1]][[1]]' not found*
If I save the plots individually to the environment then this approach works. However, I am trying to access the plots via this list that is already present!
Adding reproducible example:
ds1 <- data.frame(sample(1:10, 10), sample(11:20, 10))
ds2 <- data.frame(sample(1:10, 10), sample(11:20, 10))
p1 = plot_ly(x = ~ds1[[1]], y = ~ds1[[2]]) %>% add_markers()
p2 = plot_ly(x = ~ds2[[1]], y = ~ds2[[2]]) %>% add_markers()
l = list(list(ds1, p1), list(ds2, p2))
#want to access p1 and p2 from within the list to create drop down menu graph
choices.p = paste0("l[[1]][[", 1:2, "]]")
ui <- shinyUI(fluidPage(selectInput("selectPlot",
"Choose desired country",
choices.p),
plotlyOutput("plot")))
server <- shinyServer(function(input,output){
output$plot <- renderPlotly({
return(get(input$selectPlot))
})
})
shinyApp(ui,server)
Based on your MWE, this code doesn't save the plots anywhere but uses observeEvent to plot based on selection.
library(shiny)
library(plotly)
ui <-shinyUI(fluidPage(selectInput("selectPlot", "Choose desired plot", choices=paste0("p", 1:2)), plotlyOutput("plot")))
server <- shinyServer(function(input,output){
observeEvent(input$selectPlot,{
if(input$selectPlot %in% 'p1') output$plot <- renderPlotly(plot_ly(mtcars, x=~cyl, y=~gear))
else output$plot <- renderPlotly(plot_ly(mtcars, x=~hp, y=~am))
})
})
shinyApp(ui,server)
Would something like this work for you:
p1 <- plot_ly(mtcars, x=~cyl, y=~gear)
p2 <- plot_ly(iris, x=~Sepal.Width, y=~Petal.Length, color = "red")
l = list(mtcars = list(mtcars, p1), iris = list(iris, p2))
choice_data <- names(l)
ui <- shinyUI(fluidPage(selectInput("selectPlot",
"Choose desired country",
choices = choice_data), textOutput("selected_var"), uiOutput("test")))
server <- shinyServer(function(input,output){
output$test <- renderUI({
l[[input$selectPlot]][2]
})
})
shinyApp(ui,server)
I'm trying to build a simple application that draws a histogram of a selected variable based on a subset filtered by the other input. I get the error in the line hist(dataX()$datasetInput()) which should return dataX$mpg. How can I fix it?
Full code:
library(shiny)
u <- shinyUI(pageWithSidebar(
headerPanel("Staz w bezrobociu"),
sidebarPanel(
selectInput("variable", "Variable:",
list("Milles/gallon",
"Horse power")
),
textInput("nc","Number of cylinders",value = 6)
),
mainPanel(
plotOutput("Plot")
)
))
s <- shinyServer(function(input, output)
{
dataX <- reactive({mtcars[mtcars$cyl==input$nc,,drop = FALSE]})
datasetInput <- reactive({
switch(input$variable,
"Milles/gallon" = mpg,
"Horse power" = hp)
})
output$Plot <- renderPlot({
hist(dataX()$datasetInput())
})
})
shinyApp(u,s)
You complicated the simple app.
You do not need to list all the columns in selectInput. You can just render it from the server side.
Same applies to the cylinders
Shortcuts like u and sare acceptable, but just stick to the naming conventions. It makes your life easy.
Below is a complete working app
library(shiny)
ui <- shinyUI(pageWithSidebar(
headerPanel("Staz w bezrobociu"),
sidebarPanel(uiOutput("SelectColname"),
uiOutput("Cylinders")),
mainPanel(plotOutput("Plot"))
))
server <- shinyServer(function(input, output){
# Create a reactive dataset
dataX <- reactive({
mtcars
})
# Output number cylinders as select box
output$Cylinders <- renderUI({
selectInput("cylinders", "cylinders:", unique(dataX()$cyl))
})
# Output column names as selectbox
output$SelectColname <- renderUI({
selectInput("variable", "Variable:", colnames(dataX()[,c(1,4)]))
})
# Based on the selection by user, create an eventreactive plotdata object
plotdata <- eventReactive(input$cylinders, {
plotdata = dataX()[dataX()$cyl == input$cylinders, , drop = FALSE]
})
# Render the plot, the plot changes when new cylinder is selected
output$Plot <- renderPlot({
if (is.null(plotdata()))
return(NULL)
hist(
plotdata()[, input$variable],
xlab = input$variable,
main = paste(
"Histogram of" ,
input$variable
)
)
})
})
shinyApp(ui, server)
Could anyone can tell me why I get an error when I change a dataset in first selectInput widget? When I change a dataset from diamonds to mtcars I get an error Could not find 'carat' in input$bins and in the plot just for one second and after that everything works fine. Why it happened?
library(shiny)
library(ggplot2)
data(diamonds)
data(mtcars)
ui <- fluidPage(
column(3,
selectInput("data", "", choices = c('mtcars', 'diamonds')),
uiOutput('server_cols'),
uiOutput('server_bins')
),
column(9,
plotOutput("plot")
)
)
server <- function(input, output) {
data <- reactive({
switch(input$data,
diamonds = diamonds,
mtcars = mtcars)
})
output$server_cols <- renderUI({
data <- data()
nam <- colnames(data)
selectInput('cols', "Choose numeric columns:", choices = nam[sapply(data, function(x) is.numeric(x))])
})
output$server_bins <- renderUI({
if (!is.null(input$cols)) {
df <- data()
x <- eval(input$cols)
max_value <- max(df[,x])
sliderInput('bins','Choose number of bins:', min = 0.1,
max = max_value,
value = max_value/2)
}
})
output$plot <- renderPlot({
if (!is.null(input$cols) & !is.null(input$bins)) {
basicData <- data()
var <- eval(input$cols)
ggplot(basicData, aes_string(var)) +
geom_histogram(binwidth = input$bins, color = 'white', fill = 'red')
}
})
}
shinyApp(ui, server)
Your respective output objects respond to any changes of your input variables. Thus, when you change your dataset via input$data, the plot rebuilds itself, although input$cols did not yet adjust. Actually, try inserting some print("a") inside the output$plot to see that it is called up to three times if you change input$data.
The fix is to rethink your reaction logic and let your elements respond only to specific changes, to get some kind of response "thread".
For example, input$data should only trigger output$server_cols. And output$server_bins should only be triggered by input$cols (because this already implies that input$data changed earlier). Ultimately, output$plot just has to listen to changes of input$bins (because changes in input$cols and input$data always result in changes of input$bins since it is at the end of the thread).
Here is my suggestion using isolate.
library(shiny)
library(ggplot2)
data(diamonds)
data(mtcars)
ui <- fluidPage(
column(3,
selectInput("data", "", choices = c('mtcars', 'diamonds')),
uiOutput('server_cols'),
uiOutput('server_bins')
),
column(9,
plotOutput("plot")
)
)
server <- function(input, output) {
data <- reactive({
switch(input$data, diamonds = diamonds, mtcars = mtcars)
})
output$server_cols <- renderUI({
data <- data()
nam <- colnames(data)
selectInput('cols', "Choose numeric columns:", choices = nam[sapply(data, function(x) is.numeric(x))])
})
output$server_bins <- renderUI({
if (!is.null(input$cols)) {
df <- isolate(data())
x <- eval(input$cols)
max_value <- max(df[,x])
sliderInput('bins','Choose number of bins:', min = 0.1, max = max_value, value = max_value/2)
}
})
output$plot <- renderPlot({
if (!is.null(isolate(input$cols)) & !is.null(input$bins)) {
basicData <- isolate(data())
var <- eval(isolate(input$cols))
ggplot(basicData, aes_string(var)) +
geom_histogram(binwidth = input$bins, color = 'white', fill = 'red')
}
})
}
shinyApp(ui, server)
You might also want to look into updateSelectInput and updateSliderInput if you want to alter Input Elements depending on other input.