For the time series plot which is composed by two subplots:
library(tidyverse)
library(lubridate)
library(feasts)
library(tsibble)
library(gghighlight)
df %>%
mutate(date = as.Date(date, origin = "1899-12-30")) %>%
mutate(year=as.numeric(year(date))) %>%
pivot_longer(`food_index`:`energy_index`) %>%
mutate(date=yearmonth(date)) %>%
as_tsibble(index=date, key=name) %>%
gg_season(value, alpha=1) +
geom_line(size=0.8, alpha=0.8) +
geom_point(size=2, alpha=1)
Out:
Let's say if the current year is 2022, I wanna to plot the line of that year with alpha=1, other years' lines with smaller alpha, ie., alpha=0.3.
How could I do that? Thanks for your helps at advance.
Data:
df <- structure(list(date = c(42766, 42794, 42825, 42855, 42886, 42916,
42947, 42978, 43008, 43039, 43069, 43100, 43131, 43159, 43190,
43220, 43251, 43281, 43312, 43343, 43373, 43404, 43434, 43465,
43496, 43524, 43555, 43585, 43616, 43646, 43677, 43708, 43738,
43769, 43799, 43830, 43861, 43890, 43921, 43951, 43982, 44012,
44043, 44074, 44104, 44135, 44165, 44196, 44227, 44255, 44286,
44316, 44347, 44377, 44408, 44439, 44469, 44500, 44530, 44561
), food_index = c(58.53, 61.23, 55.32, 55.34, 61.73, 56.91, 54.27,
59.08, 60.11, 66.01, 60.11, 63.41, 69.8, 72.45, 81.11, 89.64,
88.64, 88.62, 98.27, 111.11, 129.39, 140.14, 143.44, 169.21,
177.39, 163.88, 135.07, 151.28, 172.81, 143.82, 162.13, 172.22,
176.67, 179.3, 157.27, 169.12, 192.51, 194.2, 179.4, 169.1, 193.17,
174.92, 181.92, 188.41, 192.14, 203.41, 194.19, 174.3, 174.86,
182.33, 182.82, 185.36, 192.41, 195.59, 202.6, 201.51, 225.01,
243.78, 270.67, 304.57), energy_index = c(127.36, 119.87, 120.96,
112.09, 112.19, 109.24, 109.56, 106.89, 109.35, 108.35, 112.39,
117.77, 119.52, 122.24, 120.91, 125.41, 129.72, 135.25, 139.33,
148.6, 169.62, 184.23, 204.38, 198.55, 189.29, 202.47, 220.23,
240.67, 263.12, 249.74, 240.84, 243.42, 261.2, 256.76, 258.69,
277.98, 289.63, 293.46, 310.81, 318.68, 310.04, 302.17, 298.62,
260.92, 269.29, 258.84, 241.68, 224.18, 216.36, 226.57, 235.98,
253.86, 267.37, 261.99, 273.37, 280.91, 291.84, 297.88, 292.78,
289.79)), row.names = c(NA, 60L), class = "data.frame")
You could achieve this by creating a boolean variable that detects the year you would like to highlight and then passing that as the alpha aesthetic inside your plot:
df %>%
mutate(date = as.Date(date, origin = "1899-12-30")) %>%
mutate(year=as.numeric(year(date))) %>%
pivot_longer(`food_index`:`energy_index`) %>%
mutate(date=yearmonth(date),
highlight = ifelse(year == "2021", T, F)) %>%
as_tsibble(index=date, key=name) %>%
gg_season(value, alpha = 0.2) +
geom_line(aes(alpha = highlight),
size=0.8) +
geom_point(aes(alpha = highlight),
size=2) +
scale_alpha_manual(values = c(0.2, 1)) +
guides(alpha = "none") +
theme_bw()
I'm trying to assign different colors to the scatterplot based on their dates, more specifically the year.
This is how my dataset looks like:
> dput(head(CORt_r100_stack_join_fspec,10))
structure(list(Date = structure(c(16779, 16834, 16884, 16924,
16973, 16997, 17031, 17184, 17214, 17254), class = "Date"), meanNDVIN_int = c(0.677501157246889,
0.632728796482024, 0.578636981692124, 0.547002029242488, 0.632635423362751,
NA, 0.699596252720458, 0.670059391804396, 0.643347941166436,
0.674034259709311), meanNDVIW_int = c(0.784142418592418, 0.652437451242156,
0.648319814752948, 0.593432266488189, 0.767890365415717, NA,
0.779249089832163, 0.71974944410843, 0.715777992826006, 0.685045115352089
), meanNDVIE_int = c(0.703614512017928, 0.701963337684803, 0.488628353756438,
0.631309466083632, 0.781589421376217, NA, 0.799663418920722,
0.78910564747191, 0.710962969930836, 0.715644011856453), meanNDVINr_int_f = c(0.677501157246889,
0.632728796482024, 0.578636981692124, 0.547002029242488, 0.632635423362751,
0.687343078509066, 0.699596252720458, 0.670059391804396, 0.643347941166436,
0.674034259709311), meanNDVIWr_int_f = c(0.784142418592418, 0.652437451242156,
0.648319814752948, 0.593432266488189, 0.767890365415717, 0.749505859407419,
0.779249089832163, 0.71974944410843, 0.715777992826006, 0.685045115352089
), meanNDVIEr_int_f = c(0.703614512017928, 0.701963337684803,
0.488628353756438, 0.631309466083632, 0.781589421376217, 0.625916155640988,
0.799663418920722, 0.78910564747191, 0.710962969930836, 0.715644011856453
), NDVI_N = c(0.17221248, 0.644239685, 0.57222623, 0.558666635,
0.51654034, 0.42053949, 0.396706695, 0.641767447, 0.641008268,
0.662841949), NDVI_W = c(0.08182944, 0.69112807, 0.637699375,
0.629429605, 0.658829525, 0.60621678, 0.57186129, 0.72636742,
0.724193596, 0.738424976), NDVI_E = c(0.17135712, 0.659222803,
0.58665977, 0.573081253, 0.533498035, 0.437643585, 0.412841468,
0.652057206, 0.651854988, 0.670345511), NDVI_U = c(0.40520304,
0.578414833, 0.455746833, 0.428289893, 0.208847548, 0, 0, 0.475193691,
0.478691084, 0.505043773)), row.names = c(NA, 10L), class = "data.frame")
I've been plotting meanNDVIN_int against NDVI_N using this code:
ggplot(CORt_r100_join_fspec_2NDVIday,aes(x=NDVI_N)) +
geom_point(aes(y=meanNDVIN_int), colour="red")
theme_bw()+
ylab("meanNDVIN_int")+
xlab("NDVI_N")
Now I want to color each point differently (no matter the color) based on their year, 2015, 2016, and 2017.
I've used the scale_color_manual function to introduce the dates but no success so far.
Any help will be much appreciated.
Here is an alternative where you substring the first 4 characters from Date in color
df
ggplot(df,aes(x=NDVI_N)) +
geom_point(aes(y=meanNDVIN_int, color=substring(Date,1,4))) +
labs(color="Year")+
theme_bw()+
ylab("meanNDVIN_int")+
xlab("NDVI_N")
I created a year variable with lubridate and stored it asfactor for discrete colouring. You were just missing moving color inside the aes() to color it by year.
# Add year Variable;
CORt_r100_stack_join_fspec <- CORt_r100_stack_join_fspec %>% mutate(
year = as.factor(lubridate::year(Date))
)
# Plot;
ggplot(CORt_r100_stack_join_fspec,aes(x=NDVI_N)) +
geom_point(aes(y=meanNDVIN_int, color = year)) +
theme_bw() +
ylab("meanNDVIN_int")+
xlab("NDVI_N")
Note: The data you provided, and named is not the same as in your plot-call. So I changed CORt_r100_join_fspec_2NDVIday to CORt_r100_join_fspec_2NDVIday to make the plot and mutate function properly.
I'm trying to plot a relatively small data set, and I can't get it to show me the plot. It keeps giving the error Error: cannot allocate vector of size 9.7 Gb. This doesn't make much sense to me as the data set is rather small.
> nrow(locs)
[1] 130
> head(locs)
STATION AVGTRANGE LAT LONG
1: USC00286979 22.13333 40.6971 -75.2042
2: USC00360022 21.33333 40.5361 -79.8152
3: USC00360132 24.37037 40.5227 -78.3694
4: USC00360140 19.80000 40.4949 -78.4667
5: USC00360147 22.36667 41.3585 -77.9262
6: USC00360457 20.68000 40.8209 -76.4983
How I'm plotting it.
gg <- ggplot(data = locs, aes(x = LONG, y = LAT)) +
geom_raster(aes(fill=AVGTRANGE), interpolate=TRUE)
gg # can't allocate here
Here is the dput my data.
> dput(locs)
structure(list(STATION = structure(1:130, .Label = c("USC00286979",
"USC00360022", "USC00360132", "USC00360140", "USC00360147", "USC00360457",
"USC00360560", "USC00360656", "USC00360754", "USC00360785", "USC00360861",
"USC00360868", "USC00361139", "USC00361212", "USC00361301", "USC00361350",
"USC00361354", "USC00361362", "USC00361377", "USC00361480", "USC00361485",
"USC00361705", "USC00361726", "USC00361751", "USC00361802", "USC00361810",
"USC00361838", "USC00361920", "USC00362071", "USC00362183", "USC00362323",
"USC00362470", "USC00362574", "USC00362721", "USC00362942", "USC00363018",
"USC00363028", "USC00363226", "USC00363311", "USC00363321", "USC00363343",
"USC00363417", "USC00363437", "USC00363451", "USC00363632", "USC00363665",
"USC00363698", "USC00364214", "USC00364325", "USC00364432", "USC00364763",
"USC00364778", "USC00364815", "USC00364839", "USC00364896", "USC00364934",
"USC00364976", "USC00364992", "USC00365050", "USC00365109", "USC00365344",
"USC00365573", "USC00365686", "USC00365738", "USC00365902", "USC00365918",
"USC00366111", "USC00366151", "USC00366194", "USC00366238", "USC00366508",
"USC00366649", "USC00366886", "USC00366921", "USC00366927", "USC00367029",
"USC00367073", "USC00367103", "USC00367167", "USC00367186", "USC00367229",
"USC00367409", "USC00367477", "USC00367732", "USC00367782", "USC00367863",
"USC00367931", "USC00367938", "USC00368073", "USC00368184", "USC00368308",
"USC00368361", "USC00368400", "USC00368449", "USC00368469", "USC00368596",
"USC00368668", "USC00368868", "USC00368873", "USC00368888", "USC00368905",
"USC00369298", "USC00369367", "USC00369408", "USC00369823", "USR0000PALL",
"USW00003761", "USW00004726", "USW00004751", "USW00004787", "USW00004843",
"USW00013739", "USW00014711", "USW00014712", "USW00014736", "USW00014737",
"USW00014751", "USW00014762", "USW00014770", "USW00014777", "USW00014778",
"USW00014860", "USW00054737", "USW00054782", "USW00054786", "USW00054789",
"USW00054792", "USW00093778", "USW00094732", "USW00094823"), class = "factor"),
AVGTRANGE = c(22.1333333333333, 21.3333333333333, 24.3703703703704,
19.8, 22.3666666666667, 20.68, 23.35, 21.4333333333333, 25.75,
23.4333333333333, 23.6428571428571, 26.4333333333333, 27.551724137931,
25.3448275862069, 25.0666666666667, 26.6842105263158, 23.4444444444444,
29.6, 23.3, 30.2631578947368, 27.0454545454545, 25.9333333333333,
24.2083333333333, 27.448275862069, 28.2333333333333, 21.4666666666667,
24.1111111111111, 25.7333333333333, 23.8571428571429, 21.6,
26.08, 26.2916666666667, 27.1034482758621, 28.3666666666667,
27.9259259259259, 23.6, 25.7, 26.3666666666667, 26.0344827586207,
20.2666666666667, 23.0909090909091, 27.2727272727273, 25.9666666666667,
24.8214285714286, 20.2413793103448, 24.0333333333333, 20.6333333333333,
26.0344827586207, 22.6, 29.0333333333333, NA, 25.625, 19.0333333333333,
18.7666666666667, 21.0689655172414, 22, 24.1333333333333,
25.0333333333333, 24.0666666666667, 24.3666666666667, 20.7333333333333,
32.5, 26.6666666666667, NA, 22.2666666666667, 25.1333333333333,
27.1481481481481, 22.7, 24.4827586206897, 21.6071428571429,
20.8461538461538, 29.9333333333333, 17.3928571428571, 26.2666666666667,
23.84, 23.1481481481481, 23.8275862068966, 26.9, 26.7931034482759,
25.3636363636364, NA, 23.5333333333333, 27.3571428571429,
17.2, 24.5, 22.0666666666667, NA, 23.8333333333333, 26.5172413793103,
27.6551724137931, 21.2307692307692, 26.5384615384615, 19.5,
20.8, 25.3, 18.6666666666667, 25.2758620689655, 23.8333333333333,
24.3461538461538, 27.6551724137931, 25.7666666666667, 24,
26.0344827586207, 24.6, 28.7333333333333, 27.7, 20.1034482758621,
18.6071428571429, 26.1785714285714, 22.5714285714286, 22.6071428571429,
17.1785714285714, 19.3571428571429, 21.6071428571429, 24.4285714285714,
23.6071428571429, 21.6785714285714, 19.9642857142857, 25.2142857142857,
22.7241379310345, 23.0357142857143, 17.8928571428571, 22.2962962962963,
21.2857142857143, 21.8571428571429, 21, 25.6428571428571,
25.6071428571429, 19.4444444444444, 22.6785714285714), LAT = c(40.6971,
40.5361, 40.5227, 40.4949, 41.3585, 40.8209, 40.8619, 39.9355,
41.0072, 40.3803, 40.3916, 41.8975, 40.8415, 41.6516, 41.5217,
39.848, 39.9353, 41.9301, 40.1468, 41.0489, 41.1922, 39.7994,
39.9969, 41.3575, 41.775, 41.7391, 41.9903, 40.2258, 40.46,
40.1275, 41.5216, 40.4681, 40.50194, 40.0136, 40.71306, 41.1184,
41.4004, 39.8815, 41.5631, 40.0962, 40.5513, 40.9666, 40.2305,
39.78333, 40.5511, 39.77056, 40.2817, 40.5972, 41.4992, 41.6767,
40.0499, 40.1167, 41.4234, 40.1692, 40.3333, 40.8223, 40.9474,
40.5864, 41.64583, 41.131, 40.8344, 40.3391, 39.7808, 41.6725,
40.6475, 40.5319, 40.412, 40.61417, 40.1482, 40.075, 39.8,
41.9245, 39.9587, 40.8729, 40.12, 41.7394, 39.7275, 41.8157,
40.6515, 41.589, 40.9248, 41.3299, 41.4196, 39.8958, 40.5101,
40.683, 40.7831, 40.335, 40.05889, 41.05583, 39.8582, 41.8162,
40.5711, 40.7933, 41.40389, 41.008, 40.8532, 41.8975, 41.4792,
41.63, 41.7511, 41.84667, 39.89861, 41.7004, 40.0417, 41.4864,
39.8593, 40.31611, 41.8, 41.17833, 41.62639, 39.87327, 40.1962,
40.36667, 40.29639, 40.64985, 40.21722, 40.35472, 40.82056,
41.3336, 41.2433, 42.0803, 40.12028, 40.23833, 40.33, 41.13889,
41.04667, 39.91806, 40.08194, 40.4846), LONG = c(-75.2042,
-79.8152, -78.3694, -78.4667, -77.9262, -76.4983, -75.6428,
-77.2577, -76.4482, -76.0274, -79.8594, -78.7144, -79.9163,
-76.8463, -77.4478, -79.5898, -77.6394, -79.297, -79.8986,
-77.9411, -79.4361, -79.3665, -79.5963, -79.2172, -78.0417,
-77.971, -77.1567, -77.1894, -76.8703, -79.4058, -76.4043,
-78.7289, -80.0833, -78.3653, -79.5144, -75.7277, -79.8305,
-77.3506, -78.6014, -75.7513, -80.2167, -78.5871, -75.4354,
-79.9166, -75.9913, -77.0325, -76.8703, -79.1186, -80.4681,
-78.8036, -76.2742, -76.4333, -76.4933, -79.1411, -76.4667,
-75.6962, -76.8786, -77.5692, -80.425, -77.4336, -76.1352,
-79.8604, -79.041, -75.0641, -80.3861, -80.2172, -79.7245,
-79.7191, -74.953, -76.0717, -76.05, -78.0072, -75.1728,
-78.2161, -75.5011, -75.4465, -79.913, -78.2873, -78.5551,
-75.3303, -79.2825, -77.7381, -78.7493, -76.3948, -79.5459,
-79.6684, -76.8617, -75.313, -77.5213, -80.06, -77.4774,
-80.4249, -75.2781, -77.8672, -78.0183, -75.1876, -76.7891,
-77.1419, -79.4432, -79.693, -76.443, -79.1494, -80.1655,
-77.3871, -78.5278, -79.1025, -75.7861, -78.8338, -78.6333,
-78.8988, -80.215, -75.2267, -76.7724, -75.9666, -78.3202,
-75.4477, -76.8513, -79.9216, -76.8641, -75.7269, -76.9217,
-80.1824, -76.2944, -75.5572, -75.1225, -75.3794, -78.4116,
-76.8741, -75.0111, -80.2144)), .Names = c("STATION", "AVGTRANGE",
"LAT", "LONG"), class = c("data.table", "data.frame"), row.names = c(NA,
-130L), .internal.selfref = <pointer: 0x2a40128>, sorted = "STATION")
I am not sure what your are trying to achieve with the geom_raster, as your data does not seem to fit the purpose.
Consider the outputs of dot plot:
gg <- ggplot(data = locs, aes(x = LONG, y = LAT, colour = AVGTRANGE)) +
geom_point()
#geom_raster(aes(fill=AVGTRANGE), interpolate=TRUE)
gg
data(faithfuld)
gg <- ggplot(faithfuld, aes(waiting, eruptions, colour = density)) +
geom_point()
#geom_raster(aes(fill = density), interpolate = TRUE)
gg
I have also tried geom_contour on your data and it does not work:
gg <- ggplot(data = locs, aes(x = LONG, y = LAT, z = AVGTRANGE)) +
geom_contour()
gg
UPDATE
I have checked the code of the geom_raster and the reason it tries to create the giant plot is that resolution of the plot is based on the minimal distance between points. As some of the points in your data are quite close to each other size of the matrix is so large.
If you round LAT and LONG to 2 digits code works.
locs$LAT <- round(locs$LAT, 0)
locs$LONG <- round(locs$LONG, 0)