data.table grouping with variable names - r

I'm attempting to create a summarised data.table from an existing one, however I am wanting to do this in a function that allows me to pass in a column prefix so I can prefix my columns as required.
I've seen the question/response here but am trying to work out how to do it when not using the := operator.
Reprex:
library(data.table)
tbl1 <- data.table(urn = c("a", "a", "a", "b", "b", "b"),
amount = c(1, 2, 1, 3, 3, 4))
# urn amount
# 1: a 1
# 2: a 2
# 3: a 1
# 4: b 3
# 5: b 3
# 6: b 4
tbl2 <- tbl1[, .(mean_amt = mean(amount),
rows = .N),
by = urn]
# urn mean_amt rows
# 1: a 1.333333 3
# 2: b 3.333333 3
This is using fixed names for the column names being created, however as mentioned I'd like to be able to include a prefix.
I've tried the following:
prefix <- "mypfx_"
tbl2 <- tbl1[, .(paste0(prefix, mean_amt) = mean(amount),
paste0(prefix, rows) = .N),
by = urn]
# Desired output
# urn mypfx_mean_amt mypfx_rows
# 1: a 1.333333 3
# 2: b 3.333333 3
Unfortunately that codes gets an error saying: Error: unexpected '=' in " tbl2 <- tbl1[, .(paste0(prefix, mean_amt) ="
Any thoughts on how to make the above work would be appreciated.

You can use setNames to rename the columns dynamically:
prefix <- "mypfx_"
tbl2 <- tbl1[, setNames(list(mean(amount), .N), paste0(prefix, c("mean_amt", "rows"))),
by = urn]
tbl2
# urn mypfx_mean_amt mypfx_rows
#1: a 1.333333 3
#2: b 3.333333 3

Related

Merging a sum by reference with data.table

Let's say I have two data.table, dt_a and dt_b defined as below.
library(data.table)
set.seed(20201111L)
dt_a <- data.table(
foo = c("a", "b", "c")
)
dt_b <- data.table(
bar = sample(c("a", "b", "c"), 10L, replace=TRUE),
value = runif(10L)
)
dt_b[]
## bar value
## 1: c 0.4904536
## 2: c 0.9067509
## 3: b 0.1831664
## 4: c 0.0203943
## 5: c 0.8707686
## 6: a 0.4224133
## 7: a 0.6025349
## 8: b 0.4916672
## 9: a 0.4566726
## 10: b 0.8841110
I want to left join dt_b on dt_a by reference, summing over the multiple match. A way to do so would be to first create a summary of dt_b (thus solving the multiple match issue) and merge if afterwards.
dt_b_summary <- dt_b[, .(value=sum(value)), bar]
dt_a[dt_b_summary, value_good:=value, on=c(foo="bar")]
dt_a[]
## foo value_good
## 1: a 1.481621
## 2: b 1.558945
## 3: c 2.288367
However, this will allow memory to the object dt_b_summary, which is inefficient.
I would like to have the same result by directly joining on dt_b and summing multiple match. I'm looking for something like below, but that won't work.
dt_a[dt_b, value_bad:=sum(value), on=c(foo="bar")]
dt_a[]
## foo value_good value_bad
## 1: a 1.481621 5.328933
## 2: b 1.558945 5.328933
## 3: c 2.288367 5.328933
Anyone knows if there is something possible?
We can use .EACHI with by
library(data.table)
dt_b[dt_a, .(value = sum(value)), on = .(bar = foo), by = .EACHI]
# bar value
#1: a 1.481621
#2: b 1.558945
#3: c 2.288367
If we want to update the original object 'dt_a'
dt_a[, value := dt_b[.SD, sum(value), on = .(bar = foo), by = .EACHI]$V1]
dt_a
# foo value
#1: a 1.481621
#2: b 1.558945
#3: c 2.288367
For multiple columns
dt_b$value1 <- dt_b$value
nm1 <- c('value', 'value1')
dt_a[, (nm1) := dt_b[.SD, lapply(.SD, sum),
on = .(bar = foo), by = .EACHI][, .SD, .SDcols = nm1]]

na.locf in data.table when completing by group

I have a data.table in which I'd like to complete a column to fill in some missing values, however I'm having some trouble filling in the other columns.
dt = data.table(a = c(1, 3, 5), b = c('a', 'b', 'c'))
dt[, .(a = seq(min(a), max(a), 1), b = na.locf(b))]
# a b
# 1: 1 a
# 2: 2 b
# 3: 3 c
# 4: 4 a
# 5: 5 b
However looking for something more like this:
dt %>%
complete(a = seq(min(a), max(a), 1)) %>%
mutate(b = na.locf(b))
# # A tibble: 5 x 2
# a b
# <dbl> <chr>
# 1 1 a
# 2 2 a
# 3 3 b
# 4 4 b
# 5 5 c
where the last value is carried forward
Another possible solution with only the (rolling) join capabilities of data.table:
dt[.(min(a):max(a)), on = .(a), roll = Inf]
which gives:
a b
1: 1 a
2: 2 a
3: 3 b
4: 4 b
5: 5 c
On large datasets this will probably outperform every other solution.
Courtesy to #Mako212 who gave the hint by using seq in his answer.
First posted solution which works, but gives a warning:
dt[dt[, .(a = Reduce(":", a))], on = .(a), roll = Inf]
data.table recycles observations by default when you try dt[, .(a = seq(min(a), max(a), 1))] so it never generates any NA values for na.locf to fill. Pretty sure you need to use a join here to "complete" the cases, and then you can use na.locf to fill.
dt[dt[, .(a = min(a):max(a))], on = 'a'][, .(a, b = na.locf(b))]
Not sure if there's a way to skip the separate t1 line, but this gives you the desired result.
a b
1: 1 a
2: 2 a
3: 3 b
4: 4 b
5: 5 c
And I'll borrow #Jaap's min/max line to avoid creating the second table. So basically you can either use his rolling join solution, or if you want to use na.locf this gets the same result.

Collapse redundant rows in data table

I have a data table in the format:
myTable <- data.table(Col1 = c("A", "A", "A", "B", "B", "B"), Col2 = 1:6)
print(myTable)
Col1 Col2
1: A 1
2: A 2
3: A 3
4: B 4
5: B 5
6: B 6
I want show only the highest result for each category in Col1, then collapse all others and present their sum in Col2. It should look like this:
print(myTable)
Col1 Col2
1: A 3
2: Others 3
3: B 6
4: Others 9
I managed to do it with the following code:
unique <- unique(myTable$Col1) # unique values in Col1
myTable2 <- data.table() # empty data table to populate
for(each in unique){
temp <- myTable[Col1 == each, ] # filter myTable for unique Col1 values
temp <- temp[order(-Col2)] # order filtered table increasingly
sumCol2 <- sum(temp$Col2) # sum of values in filtered Col2
temp <- temp[1, ] # retain only first element
remSum <- sumCol2 - sum(temp$Col2) # remaining sum in Col2 (without first element)
temp <- rbindlist(list(temp, data.table("Others", remSum))) # rbind first element and remaining elements
myTable2 <- rbindlist(list(myTable2, temp)) # populate data table from beginning
}
This works, but I am trying to shorten a very large data table, so it takes forever.
Is there any better way to approach this?
Thanks.
UPDATE: Actually my procedure is a little bit more complicated. I figured I would be able to develop it myself after the basics were mastered but it seems I will need further help instead. I want to display the 5 highest values in Col1, and collapse the others, but some entries in Col1 do not have 5 values; in these case, all entries should be displayed, and no "Others" row should be added.
Here the data is split into groups according to the value of Col1 (by = Col1). .N is the index of the last row in the given group, so c(Col2[.N], sum(Col2) - Col2[.N])) gives the last value of Col2, and the sum of Col2 minus the last value. The newly created variables are surrounded by .() because .() is an alias for the list() function when using data.table, and the created columns need to go in a list.
library(data.table)
setDT(df)
df[, .(Col1 = c(Col1, 'Others'),
Col2 = c(Col2[.N], sum(Col2) - Col2[.N]))
, by = Col1][, -1]
# Col1 Col2
# 1: A 3
# 2: Others 3
# 3: B 6
# 4: Others 9
If it just a matter of displaying things you could the 'tables' packages :
others <- function(x) sum(x)-last(x)
df %>% tabular(Col1*(last+others) ~ Col2, .)
# Col1 Col2
# A last 3
# others 3
# B last 6
# others 9
do.call(
rbind, lapply(split(myTable, factor(myTable$Col1)), function(x) rbind(x[which.max(x$Col2),], list("Other", sum(x$Col2[-which.max(x$Col2)]))))
)
# Col1 Col2
#1: A 3
#2: Other 3
#3: B 6
#4: Other 9
I did it! I made a new myTable to illustrate. I want to retain only the 4 highest values by category, and collapse the others.
set.seeed(123)
myTable <- data.table(Col1 = c(rep("A", 3), rep("B", 5), rep("C", 4)), Col2 = sample(1:12, 12))
print(myTable)
Col1 Col2
1: A 8
2: A 5
3: A 2
4: B 7
5: B 10
6: B 9
7: B 12
8: B 11
9: C 4
10: C 6
11: C 3
12: C 1
# set key to Col2, it will sort it increasingly
setkey(myTable, Col2)
# if there are more than 4 entries by Col1 category, will return all information, otherwise will return 4 entries completing with NA
myTable <- myTable[,.(Col2 = Col2[1:max(c(4, .N))]) , by = Col1]
# will print in Col1: 4 entries of Col1 category, then "Other"
# will print in Col2: 4 last entries of Col2 in that category, then the remaining sum
myTable <- myTable[, .(Col1 = c(rep(Col1, 4), "Other"), Col2 = c(Col2[.N-3:0], sum(Col2) - sum(Col2[.N-3:0]))), by = Col1]
# removes rows with NA inserted in first step
myTable <- na.omit(myTable)
# removes rows where Col2 = 0, inserted because that Col1 category had exactly 4 entries
myTable <- myTable[Col2 != 0]
Owooooo!
Here's a base R solution and the dplyr equivalent:
res <- aggregate(Col2 ~.,transform(
myTable, Col0 = replace(Col1,duplicated(Col1,fromLast = TRUE), "Other")), sum)
res[order(res$Col1),-1]
# Col0 Col2
# 1 A 3
# 3 Other 3
# 2 B 6
# 4 Other 9
myTable %>%
group_by(Col0= Col1, Col1= replace(Col1,duplicated(Col1,fromLast = TRUE),"Other")) %>%
summarize_at("Col2",sum) %>%
ungroup %>%
select(-1)
# # A tibble: 4 x 2
# Col1 Col2
# <chr> <int>
# 1 A 3
# 2 Other 3
# 3 B 6
# 4 Other 9

Labeling each value in a column by grouping from another column R

I have an unusual data set that I need to work with and I've created a small scale, reproducible example.
library(data.table)
DT <- data.table(Type = c("A", rep("", 4), "B", rep("", 3), "C", rep("", 5)), Cohort = c(NA,1:4, NA, 5:7, NA, 8:12))
dt <- data.table(Type = c(rep("A", 4), rep("B", 3), rep("C", 5)), Cohort = 1:12)
I need DT to look like dt and the actual dataset has 6.8 million rows. I realize it might be a simple issue but I can't seem to figure it out, maybe setkey? Any help is appreciated, thanks.
You can replace "" by NA and use na.locf from the zoo package:
library(zoo)
DT[Type=="",Type:=NA][,Type:=na.locf(Type)][!is.na(Cohort)]
Here is another option without using na.locf. Grouped by the cumulative sum of logical vector (Type!=""), we select the first 'Type' and the lead value of 'Cohort', assign (:=) it to the names of 'DT' to replace the original column values and use na.omit to replace the NA rows.
na.omit(DT[, names(DT) := .(Type[1L], shift(Cohort, type="lead")), cumsum(Type!="")])
# Type Cohort
# 1: A 1
# 2: A 2
# 3: A 3
# 4: A 4
# 5: B 5
# 6: B 6
# 7: B 7
# 8: C 8
# 9: C 9
#10: C 10
#11: C 11
#12: C 12

Get number of same individuals for different groups

I have a data set with individuals (ID) that can be part of more than one group.
Example:
library(data.table)
DT <- data.table(
ID = rep(1:5, c(3:1, 2:3)),
Group = c("A", "B", "C", "B",
"C", "A", "A", "C",
"A", "B", "C")
)
DT
# ID Group
# 1: 1 A
# 2: 1 B
# 3: 1 C
# 4: 2 B
# 5: 2 C
# 6: 3 A
# 7: 4 A
# 8: 4 C
# 9: 5 A
# 10: 5 B
# 11: 5 C
I want to know the sum of identical individuals for 2 groups.
The result should look like this:
Group.1 Group.2 Sum
A B 2
A C 3
B C 3
Where Sum indicates the number of individuals the two groups have in common.
Here's my version:
# size-1 IDs can't contribute; skip
DT[ , if (.N > 1)
# simplify = FALSE returns a list;
# transpose turns the 3-length list of 2-length vectors
# into a length-2 list of 3-length vectors (efficiently)
transpose(combn(Group, 2L, simplify = FALSE)), by = ID
][ , .(Sum = .N), keyby = .(Group.1 = V1, Group.2 = V2)]
With output:
# Group.1 Group.2 Sum
# 1: A B 2
# 2: A C 3
# 3: B C 3
As of version 1.9.8 (on CRAN 25 Nov 2016), data.table has gained the ability to do non-equi joins. So, a self non-equi join can be used:
library(data.table) # v1.9.8+
setDT(DT)[, Group:= factor(Group)]
DT[DT, on = .(ID, Group < Group), nomatch = 0L, .(ID, x.Group, i.Group)][
, .N, by = .(x.Group, i.Group)]
x.Group i.Group N
1: A B 2
2: A C 3
3: B C 3
Explanantion
The non-equi join on ID, Group < Group is a data.table version of combn() (but applied group-wise):
DT[DT, on = .(ID, Group < Group), nomatch = 0L, .(ID, x.Group, i.Group)]
ID x.Group i.Group
1: 1 A B
2: 1 A C
3: 1 B C
4: 2 B C
5: 4 A C
6: 5 A B
7: 5 A C
8: 5 B C
We self-join with the same dataset on 'ID', subset the rows where the 'Group' columns are different, get the nrows (.N), grouped by the 'Group' columns, sort the 'Group.1' and 'Group.2' columns by row using pmin/pmax and get the unique value of 'N'.
library(data.table)#v1.9.6+
DT[DT, on='ID', allow.cartesian=TRUE][Group!=i.Group, .N ,.(Group, i.Group)][,
list(Sum=unique(N)) ,.(Group.1=pmin(Group, i.Group), Group.2=pmax(Group, i.Group))]
# Group.1 Group.2 Sum
#1: A B 2
#2: A C 3
#3: B C 3
Or as mentioned in the comments by #MichaelChirico and #Frank, we can convert 'Group' to factor class, subset the rows based on as.integer(Group) < as.integer(i.Group), group by 'Group', 'i.Group' and get the nrow (.N)
DT[, Group:= factor(Group)]
DT[DT, on='ID', allow.cartesian=TRUE][as.integer(Group) < as.integer(i.Group), .N,
by = .(Group.1= Group, Group.2= i.Group)]
Great answers above.
Just an alternative using dplyr in case you, or someone else, is interested.
library(dplyr)
cmb = combn(unique(dt$Group),2)
data.frame(g1 = cmb[1,],
g2 = cmb[2,]) %>%
group_by(g1,g2) %>%
summarise(l=length(intersect(DT[DT$Group==g1,]$ID,
DT[DT$Group==g2,]$ID)))
# g1 g2 l
# (fctr) (fctr) (int)
# 1 A B 2
# 2 A C 3
# 3 B C 3
yet another solution (base R):
tmp <- split(DT, DT[, 'Group'])
ans <- apply(combn(LETTERS[1 : 3], 2), 2, FUN = function(ind){
out <- length(intersect(tmp[[ind[1]]][, 1], tmp[[ind[2]]][, 1]))
c(group1 = ind[1], group2 = ind[2], sum_ = out)
}
)
data.frame(t(ans))
# group1 group2 sum_
#1 A B 2
#2 A C 3
#3 B C 3
first split data into list of groups, then for each unique pairwise combinations of two groups see how many subjects in common they have, using length(intersect(....

Resources