I know how to loop when a page is paginated, but I wish to scrape multiple information/html_nodes in one loop function, but I am not sure if you can set it up. So far I have tried the following. It's basically a jobsearch website, where I want company name, company description and number of open positions.
I use sprintf to get page 1-14.
urlingtek <- sprintf("https://www.jobindex.dk/virksomhedsoversigt/kanal/ingenioer?page=%d", 1:14)
I have made a loop, which works to scrape one data source.
company <- function(virksomhed){
company %>% read_html() %>%
html_nodes('.jix_company_name_link a') %>%
html_text()
}
virk <- lapply(urlingtek, virksomhed)
But I wish to scrape all the utilities down at once if possible.
I have so far tried using
jobvirksom <- function(alt){
alt %>%
read_html() %>%
html_nodes('.jix_company_name_link a') %>%
html_text()
html_nodes('.jix_companyindex_overview_ad_content') %>%
html_text()
html_nodes('.jix_active a') %>%
html_text()
}
So far without any luck. Would be a lot better if I could scrape it all at once, press lapply and turn into one list.
Here is the start of a solution. In this case with only 14 webpages to parse through it is sometimes easier to just use a loop. With this number of pages the time between a for loop and lapply is insignificant.
I notice the web pages are not consistently formatted so this solution will need additional work when the data is missing or inconsistent. This will work for the first 2 pages and fail on the third where the overview is missing.
library(rvest)
urlingtek <- sprintf("https://www.jobindex.dk/virksomhedsoversigt/kanal/ingenioer?page=%d", 1:14)
#define empty data frame to store all data
alllistings<-data.frame()
for (i in urlingtek){
print(i)
#read the page just once
page<-read_html(i)
#parse company name
company<-page%>%html_nodes('.jix_company_name_link a') %>% html_text()
#remove blank company names
company<-trimws(company)
company<-company[nchar(company)>1]
#parse company overview
overv<-page %>% html_nodes('.jix_companyindex_overview_ad_content') %>%
html_text()
#parse active information
active<-page %>% html_nodes('.jix_active a') %>% html_text()
#create temporary dataframe to store data from this loop
tempdf<-data.frame(company, overv, active)
#combine temp with all data
alllistings<-rbind(alllistings, tempdf)
}
Related
I am trying to scrape some sports data from this website (https://en.khl.ru/stat/players/1097/skaters/) using rvest. There are no pages to filter through, but there is a 'Show All' icon to show all the data on the page.
I have been trying to use a css selector to extract the table. Unfortunately, no rows are produced but the column names of the table are present.
I suspect the problem lies in the website's interactive features with the table.
Yes, this page is dynamically generated, thus troublesome for rvest to handle. But the key to scrape this page is to realize the data is stored as JSON in a script element on the page.
The code below reads the page and extracts the script nodes. Reviewed the script node to find the correct one. Then some trial and error extracted the JSON data. Cleaned up the player and team name columns for the final answer.
library(rvest)
library(dplyr)
library(stringr)
url <- "https://en.khl.ru/stat/players/1097/skaters/"
page <- read_html(url)
#the data for the page is stored in a script element
scripts <-page %>% html_elements("script")
#get column names
headers <- page %>% html_elements("thead th") %>% html_text()
#examined the nodes and manually determined the 31st node was it
tail(scripts, 18)
data <- scripts[31] %>% html_text()
#examined the data string and notice the start of the JSON was '[ ['
#end of the JSON was ']]'
jsonstring <- str_extract(data, "\\[ \\[.+\\]\\]")
#convert the JSON into data frame
answer <- jsonlite::fromJSON(jsonstring) %>% as.data.frame
#rename column titles
names(answer) <- headers
#function to clean up html code in columns
cleanhtml <- function(text) {
out<-text %>% read_html() %>% html_text()
}
#remove the html information in columns 1 &3
answer <- answer[ , -32] %>% rowwise() %>%
mutate(Player = cleanhtml(Player), Team=cleanhtml(Team))
answer
This is no doubt very simple so apologies but I am new to webscraping and am trying to extract multiple datapoints in one call using rvest. Let's take for example the following code (NB I have not used the actual website which I have replaced in this code snippet with xxxxxx.com):
univsalaries <- lapply(paste0('https://xxxxxx.com/job/p', 1:20,'/key=%F9%80%76&final=1&jump=1&PGTID=0d3408-0000-24gf-ac2b-810&ClickID=2'),
function(url_base){
url_base %>% read_html() %>%
html_nodes('.salary') %>%
html_text()
})
Let's say there is another html node I want to scrape (.company). Obviously I can make a separate call and fetch that data, but I want to understand the syntax of how I could extract the information in the same call.
I tried to put it in the following structure, but the code sent me to the debugger
.... function(url_base){
url_base %>% read_html() %>%
Salary <- univsalaries %>%
html_nodes('.salary') %>% html_text()
Company <- univsalaries %>%
html_nodes('.company') %>% html_text()
dt<-tibble(Salary,Company)
})
Read the webpage once and then you can extract multiple values from the same page.
library(purrr)
library(rvest)
univsalaries <- map(paste0('https://xxxxxx.com/job/p', 1:20,'/key=%F9%80%76&final=1&jump=1&PGTID=0d3408-0000-24gf-ac2b-810&ClickID=2'),
function(url_base){
webpage <- url_base %>% read_html()
data.frame(Salary = webpage %>% html_nodes('.salary') %>% html_text(),
Company = webpage %>% html_nodes('.company') %>% html_text())
})
This would give you a list of dataframes (one for every link), if you need one combined dataframe then use map_df instead of map.
As a practice project, I am trying to scrape property data from a website. (I only intend to practice my web scraping skills with no intention to further take advantage of the data scraped). But I found that some properties don't have price available, therefore, this creates an error of different length when I am trying to combine them into one data frame.
Here is the code for scraping:
library(tidyverse)
library(revest)
web_page <- read_html("https://wx.fang.anjuke.com/loupan/all/a1_p2/")
community_name <- web_page %>%
html_nodes(".items-name") %>%
html_text()
length(community_name)
listed_price <- web_page %>%
html_nodes(".price") %>%
html_text()
length(listed_price)
property_data <- data.frame(
name=community_name,
price=listed_price
)
How can I identity the property with no listed price and fill the price variable with NA when there is no value scraped?
Inspection of the web page shows that the class is .price when price has a value, and .price-txt when it does not. So one solution is to use an XPath expression in html_nodes() and match classes that start with "price":
listed_price <- web_page %>%
html_nodes(xpath = "//p[starts-with(#class, 'price')]") %>%
html_text()
length(listed_price)
[1] 60
I am trying to scrape data from a swimming time page, and other pages in the index with R, but cannot find any ids or classes to scrape the data with using rvest. The data I am looking to extract is the event, swimmers, and swim times, ideally preliminary and final swim times (from this page https://www.fhsaa.org/sites/default/files/orig_uploads/sports/swimming-diving/archives/2019-20/state/4A/191115P001.htm).
I am quite new to webscraping in r, and am just trying to extract the data, add it to a table, and then automate the process. Any ideas on how to scrape data from this simplistic site?
After some inspecting the data you want is found inside a <pre> tag, and for the urls I guess you only want the competition ones.
library(stringr)
library(rvest)
# Saving the base_url as the urls are relative
base_url <- "https://www.fhsaa.org/sites/default/files/orig_uploads/sports/swimming-diving/archives/2019-20/state/4A/"
# getting the index page html
indx <- read_html("https://www.fhsaa.org/sites/default/files/orig_uploads/sports/swimming-diving/archives/2019-20/state/4A/evtindex.htm")
# getting the hrefs of the links and selecting only the competition ones and prepending the base_url
urls <- indx %>% html_nodes("a") %>% html_attr("href") %>% str_match("^\\d+[PF]\\d+\\.htm$") %>% na.omit %>% paste0(base_url, .)
# getting all the data into a char vector
urls %>%
purrr::map_chr(~ read_html(.)%>%
html_nodes("pre") %>%
html_text()) -> info
I am new to data scraping and trying to use rvest to scrape all the salary data from the long table on this website:
https://www.fedsdatacenter.com/federal-pay-rates/
as expected, the following code gives me the variable names of the data:
url <- "https://www.fedsdatacenter.com/federal-pay-rates/"
names <- url %>%
read_html() %>%
html_node('thead') %>%
html_text()
However, why this code gives me no data?
url <- "https://www.fedsdatacenter.com/federal-pay-rates/"
dat <- url %>%
read_html() %>%
html_node('tbody') %>%
html_text()
I followed an example in this article: http://bradleyboehmke.github.io/2015/12/scraping-html-tables.html
url <- "https://www.fedsdatacenter.com/federal-pay-rates/"
sal <- url %>%
read_html() %>%
html_node('#table-example') %>%
html_table(fill=TRUE)
Again, it produces only column names with no data.
Also, how should I read through all the tens of thousands of pages to get all the data from the table? I suspect that I need to use the information in "#table-example_wrapper > div:nth-child(2) > div", but don't know how. Could anyone help?