R logistic regression model.matrix - r

I am new to R and I am trying to understand the solution of a logistic regression. All that is done so far is to remove unused variables, split the data into train and test datasets. I am trying t understand part of it where it talks about model.matrix. I am just getting into R and statistics and I am not sure of what is model.matrix and what is contracts. Here is the code:
## create design matrix; indicators for categorical variables (factors)
Xdel <- model.matrix(delay~.,data=DataFD_new)[,-1]
xtrain <- Xdel[train,]
xnew <- Xdel[-train,]
ytrain <- del$delay[train]
ynew <- del$delay[-train]
m1=glm(delay~.,family=binomial,data=data.frame(delay=ytrain,xtrain))
summary(m1)
Can someone please tell me the usage of model.matrix? Why cant we directly create dummy variables of categorical variables and put them in glm? I am confused. What is the usage of model.matrix?

Marius' comment explains how to do this - the below code just gives an example (which I felt was helpful since the poster was still confused).
# Create example dataset. 'catvar' represents a categorical variable despite being coded with numbers.
X = data.frame("catvar" = sample(c(1, 2, 3), 100, replace = T),
"numvar" = rnorm(100),
"y" = sample(c(0, 1), 100, replace = T))
# Check whether you're categorical variables are coded correctly. (They'll say 'factor' if so)
sapply(X, class) #catvar is coded as 'numeric', which is wrong.
# Tell 'R' that catvar is categorical. If your categorical variables are already classed as factors, you can skip this step
X$catvar = factor(X$catvar)
sapply(X, class) # check all variables are coded correctly
# Fit model to dataframe (i.e. without needing to convert X to a model matrix)
fit = glm(y ~ numvar + catvar, data = X, family = "binomial")

Related

How do I utilize imputed data, with categorical levels, in a prediction in R?

I'll illustrate my problem with the iris data set in R. My objective here is to create 5 imputed data sets, fit a regression to each imputed data set, then pool together the results of these regressions into one final model. This is the preferred order of operations for a proper execution of multiple imputation.
library(mice)
df <- iris
# Inject some missingness into the data:
df$Sepal.Width[c(20,40,70,121)] <- NA
df$Species[c(15,80,99,136)] <- NA
# Perform the standard steps of multiple imputation with MICE:
imputed_data <- mice(df, method = c(rep("pmm", 5)), m = 5, maxit = 5)
model <- with(imputed_data, lm(Sepal.Length ~ Sepal.Width + Species))
pooled_model <- pool(model)
This leaves me with this pooled_model object which I am hoping to use as a fitted model in the predict command. However, that does not work. When I run:
predict(pooled_model, newdata = iris)
I get this error:
Error in UseMethod("predict") :
no applicable method for 'predict' applied to an object of class "c('mipo', 'data.frame')"
Disregard the reasoning why I am using the original iris data set in my newly fitted model; I simply want to be able to fit this data, or a subset of it, onto the model I created with my imputation.
I specifically chose a data set with multiple levels of a categorical variable to highlight my problem. I thought about using some matrix multiplication with which I could do this manually, but the presence of a categorical variable makes that tough. In my actual data set, I have over a hundred variables, many of which have multiple categorical levels. I say this because I realize one possible solution would be to re-code my categorical variables into dummy variables, and then I can apply some matrix multiplication to get my answer. But that would be an EXTREME amount of work for me. If there's a way I can somehow get a model object I can use in the predict function, that would make my life 100x easier.
Any suggestions?
You have two issues: 1) how to use stats::predict with pooled data and 2) what to do about your categorical variables.
Your first issue has already been documented on the mice Github page and it seems like there's been a desire to have a predict.mira function for a while. The author of the mice package posted some code on how to simulate a predict.mira-like function. Unfortunately, it only works with lm models, but it seems like that's okay considering your reprex. If you have a Github account, you can comment on that Github issue to demonstrate your interest in the predict.mira function.
Your question also has been posted on StackOverflow before; although the answer was never accepted, the SO user suggested this reading by Miles (2015).
For your second question, have you considered leaving out your current method argument when using mice()? As long as your variables have been classed as factors, then mice will default to the polyreg method for categorical variables and pmm for continuous variables. You can read more about the method argument here.
library(mice)
set.seed(123)
# make missing data
df <- iris
df$Sepal.Width[c(20,40,70,121)] <- NA
df$Species[c(15,80,99,136)] <- NA
# specify method
meth <- mice(df, maxit = 0, printFlag = FALSE)$meth
print(meth)
# this is how you would change your methods, if you wanted
# but pmm and polyreg are defaults
meth["Species"] <- "polr"
meth["Sepal.Width"] <- "midastouch"
print(meth)
# impute
imputed_data <- mice(df,
m = 5,
maxit = 5,
method = meth, # new method
printFlag = FALSE)
# make model
model <- with(imputed_data, lm(Sepal.Length ~ Sepal.Width + Species))
summary(pool(model))
# obtain predictions Q and prediction variance U
predm <- lapply(getfit(model), predict, se.fit = TRUE)
Q <- sapply(predm, `[[`, "fit")
U <- sapply(predm, `[[`, "se.fit")^2
dfcom <- predm[[1]]$df
# pool predictions
pred <- matrix(NA, nrow = nrow(Q), ncol = 3,
dimnames = list(NULL, c("fit", "se.fit", "df")))
for(i in 1:nrow(Q)) {
pi <- pool.scalar(Q[i, ], U[i, ], n = dfcom + 1)
pred[i, 1] <- pi[["qbar"]]
pred[i, 2] <- sqrt(pi[["t"]])
pred[i, 3] <- pi[["df"]]
}
head(pred)

Simulating logistic regression from saved estimates in R

I have a bit of an issue. I am trying to develop some code that will allow me to do the following: 1) run a logistic regression analysis, 2) extract the estimates from the logistic regression analysis, and 3) use those estimates to create another logistic regression formula that I can use in a subsequent simulation of the original model. As I am, relatively new to R, I understand I can extract these coefficients 1-by-1 through indexing, but it is difficult to "scale" this to models with different numbers of coefficients. I am wondering if there is a better way to extract the coefficients and setup the formula. Then, I would have to develop the actual variables, but the development of these variables would have to be flexible enough for any number of variables and distributions. This appears to be easily done in Mplus (example 12.7 in the Mplus manual), but I haven't figured this out in R. Here is the code for as far as I have gotten:
#generating the data
set.seed(1)
gender <- sample(c(0,1), size = 100, replace = TRUE)
age <- round(runif(100, 18, 80))
xb <- -9 + 3.5*gender + 0.2*age
p <- 1/(1 + exp(-xb))
y <- rbinom(n = 100, size = 1, prob = p)
#grabbing the coefficients from the logistic regression model
matrix_coef <- summary(glm(y ~ gender + age, family = "binomial"))$coefficients
the_estimates <- matrix_coef[,1]
the_estimates
the_estimates[1]
the_estimates[2]
the_estimates[3]
I just cannot seem to figure out how to have R create the formula with the variables (x's) and the coefficients from the original model in a flexible manner to accommodate any number of variables and different distributions. This is not class assignment, but a necessary piece for the research that I am producing. Any help will be greatly appreciated, and please, treat this as a teaching moment. I really want to learn this.
I'm not 100% sure what your question is here.
If you want to simulate new data from the same model with the same predictor variables, you can use the simulate() method:
dd <- data.frame(y, gender, age)
## best practice when modeling in R: take the variables from a data frame
model <- glm(y ~ gender + age, data = dd, family = "binomial")
simulate(model)
You can create multiple replicates by specifying the nsim= argument (or you can simulate anew every time through a for() loop)
If you want to simulate new data from a different set of predictor variables, you have to do a little bit more work (some model types in R have a newdata= argument, but not GLMs alas):
## simulate new model matrix (including intercept)
simdat <- cbind(1,
gender = rbinom(100, prob = 0.5, size = 1),
age = sample(18:80, size = 100, replace = TRUE))
## extract inverse-link function
invlink <- family(model)$linkinv
## sample new values
resp <- rbinom(n = 100, size = 1, prob = invlink(simdat %*% coef(model)))
If you want to do this later from coefficients that have been stored, substitute the retrieved coefficient vector for coef(model) in the code above.
If you want to flexibly construct formulas, reformulate() is your friend — but I don't see how it fits in here.
If you want to (say) re-fit the model 1000 times to new responses simulated from the original model fit (same coefficients, same predictors: i.e. a parametric bootstrap), you can do something like this.
nsim <- 1000
res <- matrix(NA, ncol = length(coef(model)), nrow = nsim)
for (i in 1:nsim) {
## simulate returns a list (in this case, of length 1);
## extract the response vector
newresp <- simulate(model)[[1]]
newfit <- update(model, newresp ~ .)
res[i,] <- coef(newfit)
}
You don't have to store coefficients - you can extract/compute whatever model summaries you like (change the number of columns of res appropriately).
Let’s say your data matrix including age and gender, or whatever predictors, is X. Then you can use X on the right-hand side of your glm formula, get xb_hat <- X %*% the_estimates (or whatever other data matrix replacing X as long as it has same columns) and plug xb_hat into whatever link function you want.

Obtaining Standardized coefficients from "rstanarm" package in R?

I was wondering if it might be possible (and perhaps recommended) to obtain standardized coefficients from stan_glm() in the rstanarm package? (did not find anything specific in the documentation)
Can I just standardize all variables as in normal regression? (see below)
Example:
library("rstanarm")
fit <- stan_glm(wt ~ vs*gear, data = mtcars)
Standardization:
design <- wt ~ vs*gear
vars <- all.vars(design)
stand.vars <- lapply(mtcars[, vars], scale)
fit <- stan_glm(stand.vars, data = mtcars)
I would not say that it is affirmatively recommended, but I would recommend that you not subtract the sample mean and divide by the sample standard deviation of the outcome because the estimation uncertainty in those two statistics will not be propagated to the posterior distribution.
Standardizing the predictors is more debatable. You can do it, but it makes doing posterior prediction with new data harder because you have to remember to subtract the old means from the new data and divide by the old standard deviations.
The most computationally efficient approach is to leave the variables as they are but specify the non-default argument QR = TRUE, especially if you are not going to modify the default (normal) priors on the coefficients anyway.
You can then standardize the posterior coefficients after-the-fact if standardized coefficients are of interest. To do so, you can do
X <- model.matrix(fit)
sd_X <- apply(X, MARGIN = 2, FUN = sd)[-1]
sd_Y <- apply(posterior_predict(fit), MARGIN = 1, FUN = sd)
beta <- as.matrix(fit)[ , 2:ncol(X), drop = FALSE]
b <- sweep(sweep(beta, MARGIN = 2, STATS = sd_X, FUN = `*`),
MARGIN = 1, STATS = sd_Y, FUN = `/`)
summary(b)
However, standardizing regression coefficients just gives the illusion of comparability across variables and says nothing about how germane a one standard deviation difference is, particularly for dummy variables. If your question is really whether manipulating this predictor or that predictor is going to make a bigger difference on the outcome variable, then simply simulate those manipulations like
PPD_0 <- posterior_predict(fit)
nd <- model.frame(fit)
nd[ , 2] <- nd[ , 2] + 1 # for example
PPD_1 <- posterior_predict(fit, newdata = nd)
summary(c(PPD_1 - PPD_0))
and repeat that process for other manipulations of interest.

caret dummy-vars exclude target

How can I use dummy vars in caret without destroying my target variable?
set.seed(5)
data <- ISLR::OJ
data<-na.omit(data)
dummies <- dummyVars( Purchase ~ ., data = data)
data2 <- predict(dummies, newdata = data)
split_factor = 0.5
n_samples = nrow(data2)
train_idx <- sample(seq_len(n_samples), size = floor(split_factor * n_samples))
train <- data2[train_idx, ]
test <- data2[-train_idx, ]
modelFit<- train(Purchase~ ., method='lda',preProcess=c('scale', 'center'), data=train)
will fail, as the Purchase variable is missing. In case I replace it with data$Purchase <- ifelse(data$Purchase == "CH",1,0) beforehand caret complains that this no longer is a classification but a regression problem
At least the example code seems to have a few issues indicated in the comments below. To answer your questions:
The result of ifelse is an integer vector, not a factor, so the train function defaults to regression
Passing the dummyVars directly to the function is done by using the train(x = , y =, ...) instead of a formula
To avoid these problems, check the class of your objects carefully.
Be aware that option preProcess in train() will apply the preprocessing to all numeric variables, including the dummies. Option 2 below avoid this, be standardizing the data before calling train().
set.seed(5)
data <- ISLR::OJ
data<-na.omit(data)
# Make sure that all variables that should be a factor are defined as such
newFactorIndex <- c("StoreID","SpecialCH","SpecialMM","STORE")
data[, newFactorIndex] <- lapply(data[,newFactorIndex], factor)
library(caret)
# See help for dummyVars. The function does not take a dependent variable and predict will give an error
# I don't include the target variable here, so predicting dummies on new data will drop unknown columns
# including the target variable
dummies <- dummyVars(~., data = data[,-1])
# I don't change the data yet to apply standardization to the numeric variables,
# before turning the categorical variables into dummies
split_factor = 0.5
n_samples = nrow(data)
train_idx <- sample(seq_len(n_samples), size = floor(split_factor * n_samples))
# Option 1 (as asked): Specify independent and dependent variables separately
# Note that dummy variables will be standardized by preProcess as per the original code
# Turn the categorical variabels to (unstandardized) dummies
# The output of predict is a matrix, change it to data frame
data2 <- data.frame(predict(dummies, newdata = data))
modelFit<- train(y = data[train_idx, "Purchase"], x = data2[train_idx,], method='lda',preProcess=c('scale', 'center'))
# Option 2: Append dependent variable to the independent variables (needs to be a data frame to allow factor and numeric)
# Note that I also shift the proprocessing away from train() to
# avoid standardizing the dummy variables
train <- data[train_idx, ]
test <- data[-train_idx, ]
preprocessor <- preProcess(train[!sapply(train, is.factor)], method = c('center',"scale"))
train <- predict(preprocessor, train)
test <- predict(preprocessor, test)
# Turn the categorical variabels to (unstandardized) dummies
# The output of predict is a matrix, change it to data frame
train <- data.frame(predict(dummies, newdata = train))
test <- data.frame(predict(dummies, newdata = test))
# Reattach the target variable to the training data that has been
# dropped by predict(dummies,...)
train$Purchase <- data$Purchase[train_idx]
modelFit<- train(Purchase ~., data = train, method='lda')

does randomForest [R] not accept logical variable as response, but accept it as predictor?

Hi I'm using randomForest in R and it doesn't accept logical variable as response (Y), but seems to accept it as predictor (X). I'm a little surprised b/c I thought logical is essentially 2-class factor...
My question is: is it true that randomForest accepts logical as predictor, but not as response? Why is it like this?
Does other common models (glmnet, svm, ...) accept logical variables?
Any explanation/discussion is appreciated. Thanks
N = 100
data1 = data.frame(age = sample(1:80, N, replace=T),
sex = sample(c('M', 'F'), N, replace=T),
veteran = sample(c(T, F), N, replace=T),
exercise = sample(c(T, F), N, replace=T))
sapply(data1, class)
# age sex veteran exercise
# "integer" "factor" "logical" "logical"
# this doesnt work b/c exercise is logical
rf = randomForest(exercise ~ ., data = data1, importance = T)
# Warning message:
# In randomForest.default(m, y, ...) :
# The response has five or fewer unique values. Are you sure you want to do regression?
# this works, and veteran and exercise (logical) work as predictors
rf = randomForest(sex ~ ., data = data1, importance = T)
importance(rf)
# F M MeanDecreaseAccuracy MeanDecreaseGini
# age -2.0214486 -7.584637 -6.242150 6.956147
# veteran 4.6509542 3.168551 4.605862 1.846428
# exercise -0.1205806 -6.226174 -3.924871 1.013030
# convert it to factor and it works
rf = randomForest(as.factor(exercise) ~ ., data = data1, importance = T)
The reason for this behaviour is that randomForest is also able to do regression (in addition to classification). You can also observe it in the warning message you obtained:
The response has five or fewer unique values. Are you sure you want to do regression?
The function decides between regression and classification depending on the type of the given response vector. If it is a factor classification is done, otherwise regression (which makes sense, as a regression response vector will never be a factor / categorical variable).
Regarding your question: It is no problem to use logical variables in your input dataset (predictor), randomForest is able to handle that perfectly as you would expect.
training_data <- data.frame(x = rep(c(T,F), times = 1000)) # training data with logical
response <- as.factor(rep(c(F,T), times = 1000)) # inverse of training data
randomForest(response ~ ., data = training_data) # returns 100% accurate classifier
EDIT:
why they don't include this coercion (logical to factor) in the source code?
It's speculation but it might be for consistency and simplicity. They would have to change the documentation from
If a factor, classification is assumed, otherwise regression is
assumed
to
If a factor or a logical vector, classification is assumed, otherwise regression is
assumed
And then people might show up asking for character...
Also you can have issues if your logical response vector only contains either TRUE or FALSE values. If you coerce such a vector to factor it will only have one level. (Although it does not really make sense to train a model on a dataset where the outcome is always FALSE)
But if the authors included such a more "intelligent" coercion, they would have to deal with those questions and define the behaviour in those border cases, and also document it.

Resources