Removing new lines in R - r

I am trying to bring multiple rows into one cell in my CSV file. I first began with converting my text file into a CSV file, however the final column needs to have all the contents in one cell, and it's currently being split into multiple. The CSV File currently looks like the first picture, and needs to look like the second picture. Picture1Picture2
I have the following code:
mydata = read.table ("rolled_swiftmessage_test.txt", sep="|", allowEscapes
= TRUE, fill = FALSE)
write.table(mydata, file="rolled_swiftmessage_test.csv",sep=",",col.names=
FALSE,row.names= FALSE)
Currently it produces Picture_1, and I need it to produce picture_2. How do I fix it? Thanks!

After corresponding with the OP and seeing the kind of data that she has, this is my updated answer:
mydata <- read.table ("Test_TextFile.txt", sep="|", allowEscapes = TRUE, fill = FALSE, stringsAsFactors = F)
# Remove rows full of dashes
for(row in 1:nrow(mydata)) {
if(grepl('^\\-+$', mydata$V1[row])) mydata <- mydata[-row,]
}
empty_rows <- which(grepl('^\\s*$', mydata$V1))
rows_to_squeeze <- split(empty_rows, cumsum(c(1, diff(empty_rows) != 1)))
for(i in length(rows_to_squeeze):1) {
mydata$V12[rows_to_squeeze[[i]][1] - 1] <- paste(mydata$V12[seq(rows_to_squeeze[[i]][1] - 1, rows_to_squeeze[[i]][length(rows_to_squeeze[[i]])])], collapse = ' ')
mydata <- mydata[-seq(rows_to_squeeze[[i]][1], rows_to_squeeze[[i]][length(rows_to_squeeze[[i]])]),]
}
write.table(mydata, file="rolled_swiftmessage_test.csv", sep=",", col.names = FALSE, row.names = FALSE)
Original answer
Here you have my attempt at this. It's not pretty, but I think it works. Basically, I read the file as lines of text, not a table, I operate on the lines to join those that belong on the same 'message' cell, and then I put them in a nice data frame that can be saved as a csv file. Let me know if you need any other tweaks:
install.packages('stringr') ## if not installed yet
library(stringr) ## in order to use str_detect and str_split below
mydata <- readLines("rolled_swiftmessage_test.txt")
new_mydata = vector('character')
current <- 1
while(!is.na(mydata[current])) {
if(str_detect(mydata[current], '\\{')) {
i <- 1
while(!str_detect(mydata[current + i], '\\}')) {
mydata[current] <- paste(mydata[current], mydata[current + i], collapse = ' ')
i = i + 1
}
mydata[current] <- paste(mydata[current], mydata[current + i], collapse = ' ')
mydata[current] <- gsub('\\| \\| \\| \\|', '', mydata[current])
new_mydata = c(new_mydata, mydata[current])
current = current + i + 1
} else {
new_mydata = c(new_mydata, mydata[current])
current = current + 1
}
}
new_mydata <- sapply(new_mydata, function(x) str_split(x, '\\|'))
new_mydata <- as.data.frame(t(as.data.frame(new_mydata)))
write.table(new_mydata, file="rolled_swiftmessage_test.csv", sep=",", col.names = FALSE, row.names = FALSE)
The resulting image after opening the csv file (notice that I added the same row to the original text file three times just so that I would have more lines for testing):

Related

Read multiple .txt files and add new column identifying file name in R

I have 1500+ .txt files called data_{date from 2015070918 to today} all with 7 columns worth of data and variable row amounts. I have managed to use the following code to extract and merge the data into one table:
files = list.files(pattern = ".txt")
myData <- lapply(files, function(x) {
tryCatch(read.table(x, header = F, sep = ','), error=function(e) NULL)
})
Note: there are no headers on the columns, currently I don't even know which variable is which!
At the moment the data only has the date in the file name and therefore it isn't possible to distinguish between each subset of daily data. I want to create an additional column to include the date which I can extract if I can include the filename in an additional column.
I searched on stackexchange and came across this possible solution: Importing multiple .csv files into R and adding a new column with file name
df <- do.call(rbind, lapply(files, function(x) cbind(read.csv(x, header = F, sep = ","), name=strsplit(x,'\\.')[[1]][1])))
However I get the following error:
Error in read.table(file = file, header = header, sep = sep, quote = quote, :
no lines available in input
I have used read.csv on individual files and they have imported without any issues. Any ideas to resolve this would be greatly appreciated!
This should work, if your read.table command is correct:
myData_list <- lapply(files, function(x) {
out <- tryCatch(read.table(x, header = F, sep = ','), error = function(e) NULL)
if (!is.null(out)) {
out$source_file <- x
}
return(out)
})
myData <- data.table::rbindlist(myData_list)
In the past I found that you can spare yourself a lot of headache using data.table::fread instead of read.table. So you could consider this:
myData_list <- lapply(files, function(x) {
out <- data.table::fread(x, header = FALSE)
out$source_file <- x
return(out)
})
myData <- data.table::rbindlist(myData_list)
You can add the tryCatch part back if necessary. Depending on how the files vector looks, basename() might be interesting to use on the column source_file.
You could try using sapply with an index corresponding to each of the files:
files <- list.files(pattern = ".txt")
myData <- lapply(seq_along(files), function(x) {
tryCatch(
{
dt <- read.table(files[x], header = F, sep = ',')
dt$index <- x # or files[x] is you want to use the file name instead
dt
},
error=function(e) { NULL }
)
})

For-loop in R to create a new file (but gives incorrect/unexpected output)

I'm currently busy with some data and I need to check their validity.
Therefore, I would like to use a for-loop to go through all my data files.
In this for-loop, I would like to calculate some things (like mean, min,max...).
My code below works but produced an incorrectly written csv file. The problem occurs after the calculations (and their values) are done during csv file creation. CSV:
"c.1..1..1004.89081855716..630.174466667434..461.738905906677.." "c.1..1..950.990843858612..479.98560814955..517.955102920532.."
1 1
1 1
1004.89081855716 950.990843858612
630.174466667434 479.98560814955
461.738905906677 517.955102920532
1535.86795806885 1452.30199813843
-13.3948961645365 3.72026950120926
1259.26423788071 1159.17089223862
Approach/What I'm expecting:
So I start from some data files with eye tracking data in it.
As you can see at the beginning of the code, I try to get some values out of this eye tracking data (validity, new file with only validity == 1 data...). Once I created the filtered_data dataframe, I want to calculate some extra values out of it (mean, sd, min/max).
My plan is to create a new csv file (validity_loop.csv) in which I can find all my calculations (validity_left, validity_right,mean_eye_x, mean_eye_y, min_eye_x,max_eye_x,min_eye_y,max_eye_y). All in a row. One row for each data set (file_list[i]).
Can someone help me in how to tackle and solve this issue?
Here is my code:
set <- setwd("/Users/Sarah/Documents")
file_list <- list.files(set, pattern = ".csv", all.files = TRUE)
validity_list <- data_list <- vector("list", "length" = length(file_list))
for(i in seq_along(file_list)){
filename = file_list[i]
#read files
data_frame = read.csv(filename, sep = ",", dec = ".",
header = TRUE,
stringsAsFactors = FALSE)
#what has to be done
#validity
validity_left <- mean(is.numeric(data_frame$left_gaze_point_validity))
validity_right <-mean(is.numeric(data_frame$right_gaze_point_validity))
#Zuiver dataframe (validity ==1)
to_keep = which(data_frame$left_gaze_point_validity == 1 &
data_frame$right_gaze_point_validity==1)
filtered_data = data_frame[to_keep,]
filtered_data$left_eye_x = as.numeric(filtered_data$left_eye_x)
filtered_data$left_eye_y = as.numeric(filtered_data$left_eye_y)
filtered_data$right_eye_x = as.numeric(filtered_data$right_eye_x)
filtered_data$right_eye_y = as.numeric(filtered_data$right_eye_y)
#1 eye-data
filtered_data$eye_x <- (filtered_data$left_eye_x+filtered_data$right_eye_x)/2
filtered_data$eye_y <- (filtered_data$left_eye_y+filtered_data$right_eye_y)/2
#Pixels
filtered_data$eye_x <- (filtered_data$eye_x)*1920
filtered_data$eye_y <- (filtered_data$eye_y)*1080
#SD and Mean + min-max
mean_eye_x<- mean(filtered_data$eye_x)
mean_eye_y <- mean(filtered_data$eye_y)
sd_eye_x <- sd(filtered_data$eye_x)
sd_eye_y <- sd(filtered_data$eye_y)
min_eye_x <- min(filtered_data$eye_x)
min_eye_y <- min(filtered_data$eye_y)
max_eye_x <- max(filtered_data$eye_x)
max_eye_y <- max(filtered_data$eye_y)
#add everything to new file
validity_list[[i]] <- c(validity_left, validity_right,
mean_eye_x, mean_eye_y,
min_eye_x, min_eye_y,
max_eye_x, max_eye_y)
}
#new document
write.table(validity_list,
file = "Master T&O/Thesis /Loop/Validity/validity_loop.csv",
col.names = TRUE, row.names = FALSE)
I managed to get a new data frame in R, which contains the value of my validity_list as a matrix form.
#FOR LOOP poging 2
set <- setwd("/Users/Sarah/Documents/Master T&O/Thesis /Loop")
file_list <- list.files(set, pattern = ".csv", all.files = TRUE)
validity_list <- vector("list", "length" = length(file_list))
for(i in seq_along(file_list)){
filename = file_list[i]
#read files
data_frame = read.csv(filename, sep = ",", dec = ".", header = TRUE, stringsAsFactors = FALSE)
#what has to be done
#validity
validity_left <- mean(is.numeric(data_frame$left_gaze_point_validity))
validity_right <-mean(is.numeric(data_frame$right_gaze_point_validity))
#Zuiver dataframe (validity ==1)
to_keep = which(data_frame$left_gaze_point_validity == 1 & data_frame$right_gaze_point_validity==1)
filtered_data = data_frame[to_keep,]
filtered_data$left_eye_x = as.numeric(filtered_data$left_eye_x)
filtered_data$left_eye_y = as.numeric(filtered_data$left_eye_y)
filtered_data$right_eye_x = as.numeric(filtered_data$right_eye_x)
filtered_data$right_eye_y = as.numeric(filtered_data$right_eye_y)
#1 eye-data
filtered_data$eye_x <- (filtered_data$left_eye_x+filtered_data$right_eye_x)/2
filtered_data$eye_y <- (filtered_data$left_eye_y+filtered_data$right_eye_y)/2
#Pixels
filtered_data$eye_x <- (filtered_data$eye_x)*1920
filtered_data$eye_y <- (filtered_data$eye_y)*1080
#SD and Mean + min-max
mean_eye_x<- mean(filtered_data$eye_x)
mean_eye_y <- mean(filtered_data$eye_y)
sd_eye_x <- sd(filtered_data$eye_x)
sd_eye_y <- sd(filtered_data$eye_y)
min_eye_x <- min(filtered_data$eye_x)
min_eye_y <- min(filtered_data$eye_y)
max_eye_x <- max(filtered_data$eye_x)
max_eye_y <- max(filtered_data$eye_y)
#add everything to new file
validity_list[[i]] <- c(validity_left, validity_right,mean_eye_x, mean_eye_y, min_eye_x,max_eye_x,min_eye_y,max_eye_y)
validity_matrix <- matrix(unlist(validity_list), ncol = 8, byrow = TRUE)
}
#new document
write.table(validity_matrix, file = "/Users/Sarah/Documents/Master T&O/Thesis /Loop/Validity/validity_loop.csv", dec = ".")
The only problem I have now, is the fact that my values for the validity_list items are wrong, but that's another problem and I'm trying to fix it!
If I get it then the following line grabs all your data together:
validity_list[[i]] <- c (validity_left, validity_right,mean_eye_x,
mean_eye_y, min_eye_x,max_eye_x,min_eye_y,max_eye_y).
if it's like in python then I would have:
validity_list = (validity_left, validity_right,mean_eye_x,
mean_eye_y, min_eye_x,max_eye_x,min_eye_y,max_eye_y)
... whereas the '=' tell the interpreter that everything behind it is a tuple '(', data, ')' ...which makes it one single dataset and if I then write it... it would be end up in one column. If you do a pick using a for-loop I would get "validity_left" writing in a separate column. In your case adding this to your below code an option?
for item in validity_list:
function to process item..etc.

Stream processing large csv file in R

I need to make a couple of relatively simple changes to a very large csv file (c.8.5GB). I tried initially using various reader functions: read.csv, readr::read.csv, data.table::fread. However: they all run out of memory.
I'm thinking I need to use a stream processing approach instead; read a chunk, update it, write it, repeat. I found this answer which is on the right lines; however I don't how to terminate the loop (I'm relatively new to R).
So I have 2 questions:
What's the right way to make the while loop work?
Is there a better way (for some definition of 'better')? e.g. is there some way to do this using dplyr & pipes?
Current code as follows:
src_fname <- "testdata/model_input.csv"
tgt_fname <- "testdata/model_output.csv"
#Changes needed in file: rebase identifiers, set another col to constant value
rebase_data <- function(data, offset) {
data$'Unique Member ID' <- data$'Unique Member ID' - offset
data$'Client Name' <- "TestClient2"
return(data)
}
CHUNK_SIZE <- 1000
src_conn = file(src_fname, "r")
data <- read.csv(src_conn, nrows = CHUNK_SIZE, check.names=FALSE)
cols <- colnames(data)
offset <- data$'Unique Member ID'[1] - 1
data <- rebase_data(data, offset)
#1st time through, write the headers
tgt_conn = file(tgt_fname, "w")
write.csv(data,tgt_conn, row.names=FALSE)
#loop over remaining data
end = FALSE
while(end == FALSE) {
data <- read.csv(src_conn, nrows = CHUNK_SIZE, check.names=FALSE, col.names = cols)
data <- rebase_data(data, offset)
#write.csv doesn't support col.names=FALSE; so use write.table which does
write.table(data, tgt_conn, row.names=FALSE, col.names=FALSE, sep=",")
# ??? How to test for EOF and set end = TRUE if so ???
# This doesn't work, presumably because nrow() != CHUNK_SIZE on final loop?
if (nrow(data) < CHUNK_SIZE) {
end <- TRUE
}
}
close(src_conn)
close(tgt_conn)
Thanks for any pointers.
Sorry to poke a 2-year-old thread, but now with readr::read_csv_chunked (auto-loaded along with dplyr when loading tidyverse), we could also do like:
require(tidyverse)
## For non-exploratory code, as #antoine-sac suggested, use:
# require(readr) # for function `read_csv_chunked` and `read_csv`
# require(dplyr) # for the pipe `%>%` thus less parentheses
src_fname = "testdata/model_input.csv"
tgt_fname = "testdata/model_output.csv"
CHUNK_SIZE = 1000
offset = read_csv(src_fname, n_max=1)$comm_code %>% as.numeric() - 1
rebase.chunk = function(df, pos) {
df$comm_code = df$comm_code %>% as.numeric() - offset
df$'Client Name' = "TestClient2"
is.append = ifelse(pos > 1, T, F)
df %>% write_csv(
tgt_fname,
append=is.append
)
}
read_csv_chunked(
src_fname,
callback=SideEffectChunkCallback$new(rebase.chunk),
chunk_size = chunck.size,
progress = T # optional, show progress bar
)
Here the tricky part is to set is.append based on parameter pos, which indicates the start row number of the data frame df within original file. Within readr::write_csv, when append=F the header (columns name) will be written to file, otherwise not.
Try this out:
library("chunked")
read_chunkwise(src_fname, chunk_size=CHUNK_SIZE) %>%
rebase_data(offset) %>%
write_chunkwise(tgt_fname)
You may need to fiddle a bit with the colnames to get exactly what you want.
(Disclaimer: haven't tried the code)
Note that there is no vignette with the package but the standard usage is described on github: https://github.com/edwindj/chunked/
OK I found a solution, as follows:
# src_fname <- "testdata/model_input.csv"
# tgt_fname <- "testdata/model_output.csv"
CHUNK_SIZE <- 20000
#Changes needed in file: rebase identifiers, set another col to constant value
rebase_data <- function(data, offset) {
data$'Unique Member ID' <- data$'Unique Member ID' - offset
data$'Client Name' <- "TestClient2"
return(data)
}
#--------------------------------------------------------
# Get the structure first to speed things up
#--------------------------------------------------------
structure <- read.csv(src_fname, nrows = 2, check.names = FALSE)
cols <- colnames(structure)
offset <- structure$'Unique Member ID'[1] - 1
#Open the input & output files for reading & writing
src_conn = file(src_fname, "r")
tgt_conn = file(tgt_fname, "w")
lines_read <- 0
end <- FALSE
read_header <- TRUE
write_header <- TRUE
while(end == FALSE) {
data <- read.csv(src_conn, nrows = CHUNK_SIZE, check.names=FALSE, col.names = cols, header = read_header)
if (nrow(data) > 0) {
lines_read <- lines_read + nrow(data)
print(paste0("lines read this chunk: ", nrow(data), ", lines read so far: ", lines_read))
data <- rebase_data(data, offset)
#write.csv doesn't support col.names=FALSE; so use write.table which does
write.table(data, tgt_conn, row.names=FALSE, col.names=write_header, sep = ",")
}
if (nrow(data) < CHUNK_SIZE) {
end <- TRUE
}
read_header <- FALSE
write_header <- FALSE
}
close(src_conn)
close(tgt_conn)

Read numeric input as string R

So, i have this input csv of the form,
id,No.,V,S,D
1,0100000109,623,233,331
2,0200000109,515,413,314
3,0600000109,611,266,662
I need to read the No. Column as it is(i.e., as a character). I know i can use something like this for that:
data <- read.csv("input.csv", colClasses = c("MSISDN" = "character"))
I have a code that i'm using to read the csv file in chunks:
chunk_size <- 2
con <- file("input.csv", open = "r")
data_frame <- read.csv(con,nrows = chunk_size,colClasses = c("MSISDN" = "character"),quote="",header = TRUE,)
header <- names(data_frame)
print(header)
print(data_frame)
if(nrow(data_frame) == chunk_size) {
repeat {
data_frame <- read.csv(con,nrows = chunk_size, header = FALSE, quote="")
names(data_frame)<-c(header)
print(header)
print(data_frame)
if(nrow(data_frame) < chunk_size) {
break
}
}
}
close(con)
But, here what the issue i'm facing is that, the first chunk will only read the No. Column as a character, the rest of the chunks will not.
How can i resolve this?
PS: the original input file has about 150+ columns and about 20 Million rows.
You can read the data as string with readLines and split it:
fileName <- "input.csv"
df <- do.call(rbind.data.frame, strsplit(readLines(fileName), ",")[-1]) # skipping headlines
colnames(df) <- c("id","No.","V","S","D") #adding headlines
or the direct approach with read.csv:
fileName <- "input.csv"
col <- c("integer","character","integer","integer","integer")
df <- read.csv(file = fileName,
sep = ",",
colClasses=col,
header = TRUE,
stringsAsFactors = FALSE)
You need to give the column type colClasses in the read.csv() inside the repeat procedure.
You no longer have the header so you need to define an unnamed vector to specify the colClasses.
Let's say the size of colClasses is 150.
myColClasses=rep("numeric",150)
myColClasses[2] <- "character"
repeat {
data_frame <- read.csv(con,nrows = chunk_size, colClasses=myColClasses, header = FALSE, quote="")
...

try to create new variable using loop in R,but failed

I am a new user to R.I have already imported all data from all my txt file using the code down below,but i want to create a new variable when importing data,the variable is called case.The value of case for the first row is 1 and for the rest is 0.
And when i try to run the code,the console did not say anytime wrong ,the data has been imported, but the new variable wasn't created.I don't know why.
for(i in Filenames){
perpos <- which(strsplit(i, "")[[1]]==".")
data=assign(
gsub(" ","",substr(i, 1, perpos-1)),
read.table(paste(filepath,i,sep=""),fill=TRUE,header=TRUE,quote ="",row.names = NULL,sep="\t")
)
strsplit(i, "")
filename = strsplit(as.character(i),"\\.txt")
data$case = ifelse(data$NAME=="filename",1,0)
}
Thanks guys! I used #joosts's code and made some ajustment. The code down below works just fine.
fn <- paste(filepath,Filenames,sep="")
mylist <- lapply(fn, read.table,fill = TRUE, header = TRUE, quote = "",row.names = NULL, sep = "\t",stringsAsFactors=FALSE)
for(i in 1:length(Filenames)){
mylist[[i]]<- cbind(mylist[[i]], case = 0)
if(nrow(mylist[[i]])>0) {
mylist[[i]]$case[1] <- 1
}
mylist[[i]]<- cbind(mylist[[i]], ID = i)
}
do.call(rbind, mylist)
I am assuming you want to read in multiple text files, with each file containing the same columns (in the same order). In order to combine multiple dataframes (the things that result from calling read.data()), you should call the function rbind().
And I assume your code to get a filename without the extension is slightly overcomplex...
for(file in filenames) {
sanitized_filename <- gsub(" ", "", strsplit(file, "\\.")[[1]][1])
file.frame <- read.table(paste(filepath, file, sep=""), fill = TRUE, header = TRUE, quote = "", row.names = NULL, sep = "\t")
file.frame <- cbind(file.frame, name = I(sanitized_filename), case = 0)
if(nrow(file.frame)>0) {
file.frame$case[1] <- 1
}
data <- ifelse(exists("data"), rbind(data, file.frame), file.frame)
}

Resources