I am fairly new to igraph in R and to clustering/partitioning algorithms in general.
I have a general question on clusters. My idea is to build a contiguous cluster from a (directed) graph based on an attribute. What I try to achieve is something very similar to https://www.sixhat.net/finding-communities-in-networks-with-r-and-igraph.html. However, I am not sure I understand the functions (e.g. cluster_walktrap()) correctly. (I know there are some clustering methods that work on directed graphs, and some that don't.)
As an example: I use the network net from http://kateto.net/networks-r-igraph. Assuming I would like to end up with contiguous clusters based on the attribute audience.size (contrary to a clustering based on the betweeness), how would I use a clustering function from igraph?
cluster_walktrap(net, weights = E(net)$audience.size, steps = 4)?
How do I interpret the weight in this case?
MWE with data from: http://www.kateto.net/wordpress/wp-content/uploads/2016/01/netscix2016.zip
library(igraph)
nodes <- read.csv("Dataset1-Media-Example-NODES.csv", header=T, as.is=T)
links <- read.csv("Dataset1-Media-Example-EDGES.csv", header=T, as.is=T)
net <- graph_from_data_frame(d=links, vertices=nodes, directed=T)
net <- simplify(net, remove.multiple = F, remove.loops = T)
cluster_walktrap(net, weights = E(net)$audience.size, steps = 4)
Thank you very much!
Related
Could you please help me?
I love plotting networks with igraph for R. One nice feature is drawing polygons around the communities detected by a given algorithm.
When you use one of the community detection algorithms built in igraph, that's pretty straightforward. Like in this example with a random bipartite graph:
library(igraph)
graph <- sample_bipartite(10, 10, p = 0.5)
graph
graph.lou = cluster_louvain(graph)
graph.lou$membership
length(graph.lou$membership)
plot(graph.lou, graph)
But how can I use another kind of input to draw those polygons?
For instance, I usually calculate modularity using the package bipartite for R, because it has other algorithms that are better suited for two-mode networks.
So I'm trying to use the output from bipartite as an input for drawing community polygons in igraph. As in the following example:
library(bipartite)
matrix <- as_incidence_matrix(graph)
matrix
matrix.bec = computeModules(matrix, method = "Beckett")
modules <- module2constraints(matrix.bec)
modules
length(modules)
plot(modules, graph)
From the output of the computeModules function I'm able to extract a vector with community memberships using the module2constraints function. When I try to use it as a plotting input, I get this error message:
Error in xy.coords(x, y, xlabel, ylabel, log) :
'x' and 'y' lengths differ
Is it possible to use this output from bipartite in igraph, so polygons are automatically drawn around the communities?
I've looked into the documentation, searched here on StackOverflow, experimented some tricks, but found no solution.
Thank you very much!
I've found a solution, with help given in another question!
Actually, another way to draw polygons around communities in igraph for R is by using the argument mark.groups of the function plot.
However, this argument accepts only lists of community membership. So, if you want to use an output of the package bipartite in the format of a vector together with an igraph object, you need to convert it to a list first.
The info contained in the vector modules described in the original question needs to be complemented with vertex names and first become a data frame, then a list:
number <- seq(1:10)
row <- "row"
rowlabels <- paste(row, number, sep = "")
column <- "col"
columnlabels <- paste(column, number, sep = "")
matrix <- matrix(data = rbinom(100,size=1,prob=0.5), nrow = 10, ncol = 10,
dimnames = list(rowlabels, columnlabels))
library(bipartite)
matrix.bec <- computeModules(matrix, method = "Beckett")
modules <- module2constraints(matrix.bec)
df <- data.frame(c(rownames(matrix), colnames(matrix)), modules)
colnames(df) <- c("vertices", "modules")
list <- split(df$vertices, df$modules)
Now the object list can be used as a drawing input together with an igraph object:
library(igraph)
graph <- graph_from_incidence_matrix(matrix, directed = F)
plot(graph,
mark.groups = list)
That's one way to make bipartite and igraph talk to one another!
Thank you very much!
I am calculating louvain communities on graphs of communications data, where vertices represent performers on a big project. The graphs represent different communication methods (e.g., email, phone).
We want to try to identify teams of performers from their communication data. Since performers have preferences for different communication methods, the graphs are of different sizes and may have some unique vertices which may not be present in both. When I try to compare the community objects from the respective graphs, igraph::compare() throws an exception. See toy reprex below.
I considered a dplyr::full_join() or inner_join() of the vertex lists before constructing the graph & community objects to make them the same size, but worry about the impact of doing so on the resulting cluster_louvain() solutions.
Any ideas on how I can compare the community objects to one another from these different communication methods? Thanks in advance!
library(tidyverse, warn.conflicts = FALSE)
library(igraph, warn.conflicts = FALSE)
nodes <- as_tibble(list(id = c("sample1", "sample2", "sample3")))
edge <- as_tibble(list(from = "sample1",
to = "sample2"))
net <- graph_from_data_frame(d = edge, vertices = nodes, directed = FALSE)
com <- cluster_louvain(net)
nodes2 <- as_tibble(list(id = c("sample1","sample21", "sample22","sample23"
)))
edge2 <- as_tibble(list(from = c("sample1", "sample21"),
to = c("sample21", "sample22")))
net2 <- graph_from_data_frame(d = edge2, vertices = nodes2, directed = FALSE)
com2 <- cluster_louvain(net2)
# # uncomment to see graph plots
# plot.igraph(net, mark.groups = com)
# plot.igraph(net2, mark.groups = com2)
compare(com, com2)
#> Error in i_compare(comm1, comm2, method): At community.c:3106 : community membership vectors have different lengths, Invalid value
Created on 2019-02-22 by the reprex package (v0.2.1)
You will not (I don't believe) be able to compare clustering algorithms from two different graphs that contain two different sets of nodes. Practically you can't do it in igraph and conceptually its hard because the way clustering algorithms are compared is by considering all pairs of nodes in a graph and checking whether they are placed in the same cluster or a different cluster in each of the two clustering approaches. If both clustering approaches typically put the same nodes together and the same nodes apart then they are considered more similar.1
I suppose another valid way to approach the problem would be to evaluate how similar the clustering schemes are for purely the set of nodes that are the intersection of the two graphs. You'll have to decide what makes more sense in your setting. I'll show how to do it using the union of nodes rather than the intersection.
So you need all the same nodes in both graphs in order to make the comparison. In fact, I think the easier way to do it is to put all the same nodes in one graph and have different edge types. Then you can compute your clusters for each edge type separately and then make the comparison. The reprex below is hopefully clear:
# repeat your set-up
library(tidyverse, warn.conflicts = FALSE)
library(igraph, warn.conflicts = FALSE)
nodes <- as_tibble(list(id = c("sample1", "sample2", "sample3")))
edge <- as_tibble(list(from = "sample1",
to = "sample2"))
nodes2 <- as_tibble(list(id = c("sample1","sample21", "sample22","sample23")))
edge2 <- as_tibble(list(from = c("sample1", "sample21"),
to = c("sample21", "sample22")))
# approach from a single graph
# concatenate edges
edges <- rbind(edge, edge2)
# create an edge attribute indicating network type
edges$type <- c("phone", "email", "email")
# the set of nodes (across both graphs)
nodes <- unique(rbind(nodes, nodes2))
g <- graph_from_data_frame(d = edges, vertices = nodes, directed = F)
# We cluster over the graph without the email edges
com_phone <- cluster_louvain(g %>% delete_edges(E(g)[E(g)$type=="email"]))
plot(g, mark.groups = com_phone)
# Now we can cluster over the graph without the phone edges
com_email <- cluster_louvain(g %>% delete_edges(E(g)[E(g)$type=="phone"]))
plot(g, mark.groups = com_email)
# Now we can compare
compare(com_phone, com_email)
#> [1] 0.7803552
As you can see from the plots we pick out the same initial clustering structure you found in the separate graphs with the additions of the extra isolated nodes.
1: Obviously this is a pretty vague explanation. The default algorithm used in compare is from this paper, which has a nice discussion.
I've been following documentation tutorials and even lecture tutorials step by step. But for some reason the output of my plot is like this:
The output doesn't make any sense to me. There clearly is no structure, or communities in this current plot, as you can see that the bigger circles are all overlapping. Shouldn't this, in this case, return only a single community? Additionally the modularity of my network is ~0.02 which would again, suggest there is no community structure. But why does it return 3 communities?
this is my code: (exactly same as in documentation, with different dataset)
m <- data.matrix(df)
g <- graph_from_adjacency_matrix(m, mode = "undirected")
#el <- get.edgelist(g)
wc <- cluster_walktrap(g)
modularity(wc)
membership(wc)
plot(wc,g)
my data set looks is a 500x500 adjacency matrix in the form of a csv, with a 1-500 column and index names corresponding to a person.
I tried understanding the community class and using different types of variables for the plot, e.g. membership(wc)[2] etc. My thought is that the coloring is simply wrong, but nothing Ive tried so far seems to fix the issue.
You can have inter-community connections. You're working with a graph of 500 nodes and they can have multiple connections. There will be a large number of connections between nodes of different communities, but if you conduct a random walk you're most likely to traverse connections between nodes of the same community.
If you separate the communities in the plot (using #G5W's code (igraph) Grouped layout based on attribute) you can see the different groups.
set.seed(4321)
g <- sample_gnp(500, .25)
plot(g, vertex.label = '', vertex.size = 5)
wc <- cluster_walktrap(g)
V(g)$community <- membership(wc)
E(g)$weight = 1
g_grouped = g
for(i in unique(V(g)$community)){
groupV = which(V(g)$community == i)
g_grouped = add_edges(g_grouped, combn(groupV, 2), attr=list(weight = 2))
}
l <- layout_nicely(g_grouped)
plot( wc,g, layout = l, vertex.label = '', vertex.size = 5, edge.width = .1)
Red edges are intercommunity connections and black edges are intracommunity edges
I have an interaction network and I used the following code to make an adjacency matrix and subsequently calculate the dissimilarity between the nodes of the network and then cluster them to form modules:
ADJ1=abs(adjacent-mat)^6
dissADJ1<-1-ADJ1
hierADJ<-hclust(as.dist(dissADJ1), method = "average")
Now I would like those modules to appear when I plot the igraph.
g<-simplify(graph_from_adjacency_matrix(adjacent-mat, weighted=T))
plot.igraph(g)
However the only thing that I have found thus far to translate hclust output to graph is as per the following tutorial: http://gastonsanchez.com/resources/2014/07/05/Pretty-tree-graph/
phylo_tree = as.phylo(hierADJ)
graph_edges = phylo_tree$edge
graph_net = graph.edgelist(graph_edges)
plot(graph_net)
which is useful for hierarchical lineage but rather I just want the nodes that closely interact to cluster as follows:
Can anyone recommend how to use a command such as components from igraph to get these clusters to show?
igraph provides a bunch of different layout algorithms which are used to place nodes in the plot.
A good one to start with for a weighted network like this is the force-directed layout (implemented by layout.fruchterman.reingold in igraph).
Below is a example of using the force-directed layout using some simple simulated data.
First, we create some mock data and clusters, along with some "noise" to make it more realistic:
library('dplyr')
library('igraph')
library('RColorBrewer')
set.seed(1)
# generate a couple clusters
nodes_per_cluster <- 30
n <- 10
nvals <- nodes_per_cluster * n
# cluster 1 (increasing)
cluster1 <- matrix(rep((1:n)/4, nodes_per_cluster) +
rnorm(nvals, sd=1),
nrow=nodes_per_cluster, byrow=TRUE)
# cluster 2 (decreasing)
cluster2 <- matrix(rep((n:1)/4, nodes_per_cluster) +
rnorm(nvals, sd=1),
nrow=nodes_per_cluster, byrow=TRUE)
# noise cluster
noise <- matrix(sample(1:2, nvals, replace=TRUE) +
rnorm(nvals, sd=1.5),
nrow=nodes_per_cluster, byrow=TRUE)
dat <- rbind(cluster1, cluster2, noise)
colnames(dat) <- paste0('n', 1:n)
rownames(dat) <- c(paste0('cluster1_', 1:nodes_per_cluster),
paste0('cluster2_', 1:nodes_per_cluster),
paste0('noise_', 1:nodes_per_cluster))
Next, we can use Pearson correlation to construct our adjacency matrix:
# create correlation matrix
cor_mat <- cor(t(dat))
# shift to [0,1] to separate positive and negative correlations
adj_mat <- (cor_mat + 1) / 2
# get rid of low correlations and self-loops
adj_mat <- adj_mat^3
adj_mat[adj_mat < 0.5] <- 0
diag(adj_mat) <- 0
Cluster the data using hclust and cutree:
# convert to dissimilarity matrix and cluster using hclust
dissim_mat <- 1 - adj_mat
dend <- dissim_mat %>%
as.dist %>%
hclust
clusters = cutree(dend, h=0.65)
# color the nodes
pal = colorRampPalette(brewer.pal(11,"Spectral"))(length(unique(clusters)))
node_colors <- pal[clusters]
Finally, create an igraph graph from the adjacency matrix and plot it using the fruchterman.reingold layout:
# create graph
g <- graph.adjacency(adj_mat, mode='undirected', weighted=TRUE)
# set node color and plot using a force-directed layout (fruchterman-reingold)
V(g)$color <- node_colors
coords_fr = layout.fruchterman.reingold(g, weights=E(g)$weight)
# igraph plot options
igraph.options(vertex.size=8, edge.width=0.75)
# plot network
plot(g, layout=coords_fr, vertex.color=V(g)$color)
In the above code, I generated two "clusters" of correlated rows, and a third group of "noise".
Hierarchical clustering (hclust + cuttree) is used to assign the data points to clusters, and they are colored based on cluster membership.
The result looks like this:
For some more examples of clustering and plotting graphs with igraph, checkout: http://michael.hahsler.net/SMU/LearnROnYourOwn/code/igraph.html
You haven't shared some toy data for us to play with and suggest improvements to code, but your question states that you are only interested in plotting your clusters distinctly - that is, graphical presentation.
Although igraph comes with some nice force directed layout algorithms, such as layout.fruchterman.reingold, layout_with_kk, etc., they can, in presence of a large number of nodes, quickly become difficult to interpret and make sense of at all.
Like this:
With these traditional methods of visualising networks,
the layout algorithms, rather than the data, determine the visualisation
similar networks may end up being visualised very differently
large number of nodes will make the visualisation difficult to interpret
Instead, I find Hive Plots to be better at displaying important network properties, which, in your instance, are the cluster and the edges.
In your case, you can:
Plot each cluster on a different straight line
order the placement of nodes intelligently, so that nodes with certain properties are placed at the very end or start of each straight line
Colour the edges to identify direction of edge
To achieve this you will need to:
use the ggnetwork package to turn your igraph object into a dataframe
map your clusters to the nodes present in this dataframe
generate coordinates for the straight lines and map these to each cluster
use ggplot to visualise
There is also a hiveR package in R, should you wish to use a packaged solution. You might also find another visualisation technique for graphs very useful: BioFabric
Basically I have tried a few different ways of clustering. I can usually get to a point in iGraph where each node is labeled with a cluster. I can then identify all the nodes within a single cluster. However, this loses their edges.
I'd have to re-iterate back over the original dataset for all the nodes in cluster 1 to get only those where both nodes+the edge are within the cluster. I'd have to do this for every cluster.
This seems like a painfully long process and there is probably a shortcut my google-fu is missing.
So, is there an easy way to, after clustering or performing community detection processes, to maintain an individual cluster/community as its own smaller graph -- that is, retaining all nodes AND edges between them?
You can use delete.vertices() to create a subgraph. Example:
library(igraph)
set.seed(123)
# create random graph
g <- barabasi.game(100, directed = F)
plot(g, layout=layout.fruchterman.reingold)
# do community detection
wc <- multilevel.community(g)
V(g)$community <- membership(wc)
# make community 1 subgraph
g_sub <- delete.vertices(g, V(g)[community != 1])
plot(g_sub, layout=layout.fruchterman.reingold)
An alternative:
#Create random network
d <- sample_gnm(n=50,m=40)
#Identify the communities
dc <- cluster_walktrap(d)
#Induce a subgraph out of the first community
dc_1 <- induced.subgraph(d,dc[[1]])
#plot that specific community
plot(dc_1)