Is it possible to construct an assignment expression using rlang? - r

I'm trying to use the rlang package to construct an expression that does an assignment, given a right-hand side expression (the value to assign) and a left-hand side expression (the place to assign it to). For example, let's say I want to construct and evaluate the expression a <- 5:
> library(rlang)
> a <- "Not 5"
> lhs <- quo(a)
> rhs <- quo(5)
> eval_tidy(quo( (!!lhs) <- (!!rhs)) ) # Error
Error in (~a) <- (~5) : could not find function "(<-"
> eval_tidy(quo(`<-`(!!lhs, !!rhs))) # Error
Error in ~a <- ~5 : could not find function "~<-"
> eval_tidy(quo(`<-`(!!f_rhs(lhs), !!rhs))) # No error, but no effect
[1] 5
> stopifnot(a == 5)
Error: a == 5 is not TRUE
> print(a)
[1] "Not 5"
As you can see, none of the above methods of constructing and evaluating this assignment have the desired effect. Is there any way to do this correctly?
Edit: Using assign instead of <- is not a good solution, because it only works for variables, not elements of objects. For example, it won't work for:
> a <- list(ShouldBeFive="Not 5")
> lhs <- quo(a$ShouldBeFive)
Edit 2: I have written a proof of concept that demonstrates what I'm trying to accomplish. It defines an assign_general function that allows arbitrary left-hand sides, e.g. assign_general(a[[1]], 5) is equivalent to a[[1]] <- 5. However, my implementation seems kind of hackish, I don't know what corner cases I may have missed, and I'm still not sure if there's a more direct way to do it, so I'm still interested to see if anyone has a better solution.

1) rlang::lang We can use rlang::lang like this:
library(rlang)
# inputs
a <- "Not 5"
lhs <- quote(a)
rhs <- 5
L <- lang("<-", lhs, rhs)
eval(L)
a
## [1] 5
2) call or without rlang use call in place of lang:
# inputs
a <- "Not 5"
lhs <- quote(a)
rhs <- 5
cc <- call("<-", lhs, rhs)
eval(cc)
a
## [1] 5
2a) Both of the above also work in the case that lhs is an appropriate expression. For example using the built-in data frame BOD:
# inputs
BOD2 <- BOD
lhs <- quote(BOD2$xyz)
rhs <- 5
cc <- call("<-", lhs, rhs)
eval(cc)
names(BOD2)
## [1] "Time" "demand" "xyz"
2b) assign_general
assign_general <- function(lhs, rhs, envir = parent.frame()) {
cc <- call("<-", substitute(lhs), substitute(rhs))
eval(cc, envir = envir)
}
# test
a <- 1:5
assign_general(a[3], 5)
a
## [1] 1 2 5 4 5
Some alternatives to the call statement would be:
cc <- substitute(call("<-", lhs, rhs))
or
cc <- substitute(lhs <- rhs)
2c) Of course this would be sufficient:
assign_general2 <- `<-`
a <- 1:5
assign_general2(a[3], 5)
## [1] 1 2 5 4 5
3) rlang version of assign_general An rlang implementation of assign_general in (2b) can be obtained by replacing call with lang and substitute with enexpr:
library(rlang)
assign_general3 <- function(lhs, rhs, envir = parent.frame()) {
L <- lang("<-", enexpr(lhs), enexpr(rhs))
eval(L, envir = envir)
}
# test
a <- 1:5
assign_general3(a[3], 5)
a
## [1] 1 2 5 4 5
4) strings Another possibility is to deparse the arguments into strings:
assign_general4 <- function(lhs, rhs, envir = parent.frame()) {
s <- paste(deparse(substitute(lhs)), "<-", deparse(substitute(rhs)))
p <- parse(text = s)
eval(p, envir = envir)
}
# test
a <- 1:5
assign_general4(a[3], 5)
a
## [1] 1 2 5 4 5

The advantage of meta programming is using expressions as strings and being able to perform assignments to an L-value which can also be declared as a string. The assign function is reusable in meta programming in some cases.
rhs <- "1 > 0"
assign("lhs", eval(eval_tidy(parse(text=rhs))))
lhs
[1] TRUE
Above you can see that both lhs and rhs are passed as strings and an expression is assigned to an L-value.

With a little bit of dark magic and some luck I was able to achieve what you are after:
library(rlang)
expr<-quote(x<-1) # just some sample assignment operator to modify
a <- list(ShouldBeFive="Not 5")
lhs <- quo(a[[1]])
rhs <- quo(5)
expr[[2]] <-UQE(eval(lhs))
expr[[3]] <-UQE(eval(rhs))
expr
>a[[1]] <- 5
eval(expr)
a$ShouldBeFive
>5
Here's hopefully cleaner alternative that does not depend on rlang:
b <- list(ShouldBeSix="Not 6")
lhs <- quote(b[[1]])
rhs <- quote(6)
eval(substitute(x <- value,list(x = lhs, value = eval(rhs))))
b$ShouldBeSix

Related

Is there a way to use do.call without explicitly providing arguments

Part of a custom function I am trying to create allows the user to provide a function as a parameter. For example
#Custom function
result <- function(.func){
do.call(.func, list(x,y))
}
#Data
x <- 1:2
y <- 0:1
#Call function
result(.func = function(x,y){ sum(x, y) })
However, the code above assumes that the user is providing a function with arguments x and y. Is there a way to use do.call (or something similar) so that the user can provide a function with different arguments? I think that the correct solution might be along the lines of:
#Custom function
result <- function(.func){
do.call(.func, formals(.func))
}
#Data
m <- 1:3
n <- 0:2
x <- 1:2
y <- 0:1
z <- c(4,6)
#Call function
result(.func = function(m,n){ sum(m, n) })
result(.func = function(x,y,z){ sum(x,y,z) })
But this is not it.
1) Use formals/names/mget to get the values in a list. An optional argument, envir, will allow the user to specify the environment that the variables are located in so it knows where to look. The default if not specified is the parent frame, i.e. the caller.
result1 <- function(.func, envir = parent.frame()) {
do.call(.func, mget(names(formals(.func)), envir))
}
m <- 1:3
n <- 0:2
x <- 1:2
y <- 0:1
z <- c(4,6)
result1(.func = function(m,n) sum(m, n) )
## [1] 9
result1(.func = function(x,y,z) sum(x,y,z) )
## [1] 14
result1(function(Time, demand) Time + demand, list2env(BOD))
## [1] 9.3 12.3 22.0 20.0 20.6 26.8
1a) Another possibility is to evaluate the body. This also works if envir is specified as a data frame whose columns are to be looked up.
result1a <- function(.func, envir = parent.frame()) {
eval(body(.func), envir)
}
result1a(.func = function(m,n) sum(m, n) )
## [1] 9
result1a(.func = function(x,y,z) sum(x,y,z) )
## [1] 14
result1a(function(Time, demand) Time + demand, BOD)
## [1] 9.3 12.3 22.0 20.0 20.6 26.8
2) Another design which is even simpler is to provide a one-sided formula interface. Formulas have environments so we can use that to look up the variables.
result2 <- function(fo, envir = environment(fo)) eval(fo[[2]], envir)
result2(~ sum(m, n))
## [1] 9
result2(~ sum(x,y,z))
## [1] 14
result2(~ Time + demand, BOD)
## [1] 9.3 12.3 22.0 20.0 20.6 26.8
3) Even simpler yet is to just pass the result of the computation as an argument.
result3 <- function(x) x
result3(sum(m, n))
## [1] 9
result3(sum(x,y,z))
## [1] 14
result3(with(BOD, Time + demand))
## [1] 9.3 12.3 22.0 20.0 20.6 26.8
This works.
#Custom function
result <- function(.func){
do.call(.func, lapply(formalArgs(.func), as.name))
}
#Data
m <- 1:3
n <- 0:2
x <- 1:2
y <- 0:1
z <- c(4,6)
#Call function
result(.func = function(m,n){ sum(m, n) })
result(.func = function(x,y,z){ sum(x,y,z) })
This seems like a bit of a pointless function, since the examples in your question imply that what you are trying to do is evaluate the body of the passed function using variables in the calling environment. You can certainly do this easily enough:
result <- function(.func){
eval(body(.func), envir = parent.frame())
}
This gives the expected results from your examples:
x <- 1:2
y <- 0:1
result(.func = function(x,y){ sum(x, y) })
#> [1] 4
and
m <- 1:3
n <- 0:2
x <- 1:2
y <- 0:1
z <- c(4,6)
result(.func = function(m,n){ sum(m, n) })
#> [1] 9
result(.func = function(x,y,z){ sum(x,y,z) })
#> [1] 14
But note that, when the user types:
result(.func = function(x,y){ ...user code... })
They get the same result they would already get if they didn't use your function and simply typed
...user code....
You could argue that it would be helpful with a pre-existing function like mean.default:
x <- 1:10
na.rm <- TRUE
trim <- 0
result(mean.default)
#> [1] 5.5
But this means users have to name their variables as the parameters being passed to the function, and this is just a less convenient way of calling the function.
It might be useful if you could demonstrate a use case where what you are proposing doesn't make the user's code longer or more complex.
You could also use ..., but like the other responses, I don't quite see the value, or perhaps I don't fully understand the use-case.
result <- function(.func, ...){
do.call(.func, list(...))
}
Create function
f1 <- function(a,b) sum(a,b)
Pass f1 and values to result()
result(f1, m,n)
Output:
[1] 9
Here is how I would do it based on your clarifying comments.
Basically since you say your function will take a data.frame as input, the function you are asking for essentially just reverses the order of arguments you pass to do.call()... which takes a function, then a list of arguments. A data.frame is just a special form of list where all elements (columns) are vectors of equal length (number of rows)
result <- function(.data, .func) {
# .data is a data.frame, which is a list of argument vectors of equal length
do.call(.func, .data)
}
result(data.frame(a=1, b=1:5), function(a, b) a * b)
result(data.frame(c=1:10, d=1:10), function(c, d) c * d)

Finding and writing environment

I am writing a R equivalent to Pythons 'pop' method. I know 99th percentile has one but I'd prefer my own (practice/understanding/consistency etc).
For reference, pop() takes an object and removes the first item from the object whilt also returning it. So
> l <- c(1,3,5)
> x <- pop(l)
> print(l)
> 3, 5
> print(x)
> 1
I am using assign() to replace the input object with one less the first value and returning said first value from the function.
My question is, how do I get the environment of the input object and use this environment within assign()?
I have tried using pryr::where() which returns 'R_GlobalEnv' but I can't use this value in assign(). Instead the only value I can get to work in assign() is 'globalenv()'.
Posted from mobile so let me know if something doesn't work.
You can implement this in base R, though it's not advised. R is a functional language and functions with side effects are not expected by end-users.
pop <- function(vec)
{
vec_name <- deparse(substitute(vec))
assign(vec_name, vec[-1], envir = parent.frame())
vec[1]
}
a <- c(2, 7, 9)
a
#> [1] 2 7 9
pop(a)
#> [1] 2
a
#> [1] 7 9
pop(a)
#> [1] 7
a
#> [1] 9
Created on 2020-08-15 by the reprex package (v0.3.0)
The following answer is based in this R-Help post, function pop with function getEnvOf from this SO post, both adapted to the question's problem.
getEnvOf <- function(what, which=rev(sys.parents())) {
what <- as.character(substitute(what))
for (frame in which)
if (exists(what, frame=frame, inherits=FALSE))
return(sys.frame(frame))
return(NULL)
}
pop <- function(x){
y <- as.character(substitute(x))
e <- getEnvOf(y)
if(length(x) > 0) {
val <- x[[length(x)]]
assign(y, x[-length(x)], envir = parent.env(e))
val
} else {
msg <- paste(sQuote(y), "length is not > 0")
warning(msg)
NULL
}
}
y <- c(1,3,5)
pop(y)
This also works with lists.
z <- list(1, 2, 5)
pop(z)
w <- list(1, c(2, 4, 6), 5)
pop(w)
#[1] 5
pop(w)
#[1] 2 4 6
pop(w)
#[1] 1
pop(w)
#NULL
#Warning message:
#In pop(w) : ‘w’ length is not > 0
You can do it using pryr::promise_info(l)$env, but it's a very un-R-like thing to do. Functions shouldn't have side effects.
For example,
pop <- function(l) {
info <- pryr::promise_info(l)
if (!is.name(info$code))
stop("Argument expression should be a name.")
result <- l[[1]] # work on lists too
assign(as.character(info$code), l[-1], envir = info$env)
result
}
l <- c(1, 3, 5)
pop(l)
#> Registered S3 method overwritten by 'pryr':
#> method from
#> print.bytes Rcpp
#> [1] 1
l
#> [1] 3 5
Created on 2020-08-15 by the reprex package (v0.3.0)
Edited to add: Interestingly, none of the three answers so far works in complicated situations like this one:
f <- function(x) {
cat("The pop(x) result is", pop(x), "\n")
cat("Now x is ", x, "\n")
cat("Now l is ", l, "\n")
}
l <- c(1, 3, 5)
f(l)
#RuiBarradas's answer gives
The pop(x) result is 5
Now x is 1 3 5
Now l is 1 3 5
(He pops the last value rather than the first which is not a big deal, but neither x nor l is modified.)
#AllanCameron's answer gives
The pop(x) result is 1
Now x is 3 5
Now l is 1 3 5
This is arguably correct (x got popped), but I think it would be nice to have l being popped, and that seems tricky.
My answer dies with this message:
Error in pop(x) : Argument expression should be a name.
which seems like a bug: obviously whether it's getting x or l, it really is a name. The problem seems to be in pryr::promise_info, which returns the compiled code that would return the value of x, rather than just the code for x. If I turn off JIT compiling by compiler::enableJIT(0), I get the same result as #AllanCameron. It's not clear to me how to unwind back the right amount to pop l instead of just x.

Why can't I assign to multiple variables using mapply/assign? [duplicate]

I want to assign multiple variables in a single line in R. Is it possible to do something like this?
values # initialize some vector of values
(a, b) = values[c(2,4)] # assign a and b to values at 2 and 4 indices of 'values'
Typically I want to assign about 5-6 variables in a single line, instead of having multiple lines. Is there an alternative?
I put together an R package zeallot to tackle this very problem. zeallot includes an operator (%<-%) for unpacking, multiple, and destructuring assignment. The LHS of the assignment expression is built using calls to c(). The RHS of the assignment expression may be any expression which returns or is a vector, list, nested list, data frame, character string, date object, or custom objects (assuming there is a destructure implementation).
Here is the initial question reworked using zeallot (latest version, 0.0.5).
library(zeallot)
values <- c(1, 2, 3, 4) # initialize a vector of values
c(a, b) %<-% values[c(2, 4)] # assign `a` and `b`
a
#[1] 2
b
#[1] 4
For more examples and information one can check out the package vignette.
There is a great answer on the Struggling Through Problems Blog
This is taken from there, with very minor modifications.
USING THE FOLLOWING THREE FUNCTIONS
(Plus one for allowing for lists of different sizes)
# Generic form
'%=%' = function(l, r, ...) UseMethod('%=%')
# Binary Operator
'%=%.lbunch' = function(l, r, ...) {
Envir = as.environment(-1)
if (length(r) > length(l))
warning("RHS has more args than LHS. Only first", length(l), "used.")
if (length(l) > length(r)) {
warning("LHS has more args than RHS. RHS will be repeated.")
r <- extendToMatch(r, l)
}
for (II in 1:length(l)) {
do.call('<-', list(l[[II]], r[[II]]), envir=Envir)
}
}
# Used if LHS is larger than RHS
extendToMatch <- function(source, destin) {
s <- length(source)
d <- length(destin)
# Assume that destin is a length when it is a single number and source is not
if(d==1 && s>1 && !is.null(as.numeric(destin)))
d <- destin
dif <- d - s
if (dif > 0) {
source <- rep(source, ceiling(d/s))[1:d]
}
return (source)
}
# Grouping the left hand side
g = function(...) {
List = as.list(substitute(list(...)))[-1L]
class(List) = 'lbunch'
return(List)
}
Then to execute:
Group the left hand side using the new function g()
The right hand side should be a vector or a list
Use the newly-created binary operator %=%
# Example Call; Note the use of g() AND `%=%`
# Right-hand side can be a list or vector
g(a, b, c) %=% list("hello", 123, list("apples, oranges"))
g(d, e, f) %=% 101:103
# Results:
> a
[1] "hello"
> b
[1] 123
> c
[[1]]
[1] "apples, oranges"
> d
[1] 101
> e
[1] 102
> f
[1] 103
Example using lists of different sizes:
Longer Left Hand Side
g(x, y, z) %=% list("first", "second")
# Warning message:
# In `%=%.lbunch`(g(x, y, z), list("first", "second")) :
# LHS has more args than RHS. RHS will be repeated.
> x
[1] "first"
> y
[1] "second"
> z
[1] "first"
Longer Right Hand Side
g(j, k) %=% list("first", "second", "third")
# Warning message:
# In `%=%.lbunch`(g(j, k), list("first", "second", "third")) :
# RHS has more args than LHS. Only first2used.
> j
[1] "first"
> k
[1] "second"
Consider using functionality included in base R.
For instance, create a 1 row dataframe (say V) and initialize your variables in it. Now you can assign to multiple variables at once V[,c("a", "b")] <- values[c(2, 4)], call each one by name (V$a), or use many of them at the same time (values[c(5, 6)] <- V[,c("a", "b")]).
If you get lazy and don't want to go around calling variables from the dataframe, you could attach(V) (though I personally don't ever do it).
# Initialize values
values <- 1:100
# V for variables
V <- data.frame(a=NA, b=NA, c=NA, d=NA, e=NA)
# Assign elements from a vector
V[, c("a", "b", "e")] = values[c(2,4, 8)]
# Also other class
V[, "d"] <- "R"
# Use your variables
V$a
V$b
V$c # OOps, NA
V$d
V$e
here is my idea. Probably the syntax is quite simple:
`%tin%` <- function(x, y) {
mapply(assign, as.character(substitute(x)[-1]), y,
MoreArgs = list(envir = parent.frame()))
invisible()
}
c(a, b) %tin% c(1, 2)
gives like this:
> a
Error: object 'a' not found
> b
Error: object 'b' not found
> c(a, b) %tin% c(1, 2)
> a
[1] 1
> b
[1] 2
this is not well tested though.
A potentially dangerous (in as much as using assign is risky) option would be to Vectorize assign:
assignVec <- Vectorize("assign",c("x","value"))
#.GlobalEnv is probably not what one wants in general; see below.
assignVec(c('a','b'),c(0,4),envir = .GlobalEnv)
a b
0 4
> b
[1] 4
> a
[1] 0
Or I suppose you could vectorize it yourself manually with your own function using mapply that maybe uses a sensible default for the envir argument. For instance, Vectorize will return a function with the same environment properties of assign, which in this case is namespace:base, or you could just set envir = parent.env(environment(assignVec)).
As others explained, there doesn't seem to be anything built in. ...but you could design a vassign function as follows:
vassign <- function(..., values, envir=parent.frame()) {
vars <- as.character(substitute(...()))
values <- rep(values, length.out=length(vars))
for(i in seq_along(vars)) {
assign(vars[[i]], values[[i]], envir)
}
}
# Then test it
vals <- 11:14
vassign(aa,bb,cc,dd, values=vals)
cc # 13
One thing to consider though is how to handle the cases where you e.g. specify 3 variables and 5 values or the other way around. Here I simply repeat (or truncate) the values to be of the same length as the variables. Maybe a warning would be prudent. But it allows the following:
vassign(aa,bb,cc,dd, values=0)
cc # 0
list2env(setNames(as.list(rep(2,5)), letters[1:5]), .GlobalEnv)
Served my purpose, i.e., assigning five 2s into first five letters.
Had a similar problem recently and here was my try using purrr::walk2
purrr::walk2(letters,1:26,assign,envir =parent.frame())
https://stat.ethz.ch/R-manual/R-devel/library/base/html/list2env.html:
list2env(
list(
a=1,
b=2:4,
c=rpois(10,10),
d=gl(3,4,LETTERS[9:11])
),
envir=.GlobalEnv
)
If your only requirement is to have a single line of code, then how about:
> a<-values[2]; b<-values[4]
I'm afraid that elegent solution you are looking for (like c(a, b) = c(2, 4)) unfortunatelly does not exist. But don't give up, I'm not sure! The nearest solution I can think of is this one:
attach(data.frame(a = 2, b = 4))
or if you are bothered with warnings, switch them off:
attach(data.frame(a = 2, b = 4), warn = F)
But I suppose you're not satisfied with this solution, I wouldn't be either...
R> values = c(1,2,3,4)
R> a <- values[2]; b <- values[3]; c <- values[4]
R> a
[1] 2
R> b
[1] 3
R> c
[1] 4
Another version with recursion:
let <- function(..., env = parent.frame()) {
f <- function(x, ..., i = 1) {
if(is.null(substitute(...))){
if(length(x) == 1)
x <- rep(x, i - 1);
stopifnot(length(x) == i - 1)
return(x);
}
val <- f(..., i = i + 1);
assign(deparse(substitute(x)), val[[i]], env = env);
return(val)
}
f(...)
}
example:
> let(a, b, 4:10)
[1] 4 5 6 7 8 9 10
> a
[1] 4
> b
[1] 5
> let(c, d, e, f, c(4, 3, 2, 1))
[1] 4 3 2 1
> c
[1] 4
> f
[1] 1
My version:
let <- function(x, value) {
mapply(
assign,
as.character(substitute(x)[-1]),
value,
MoreArgs = list(envir = parent.frame()))
invisible()
}
example:
> let(c(x, y), 1:2 + 3)
> x
[1] 4
> y
[1]
Combining some of the answers given here + a little bit of salt, how about this solution:
assignVec <- Vectorize("assign", c("x", "value"))
`%<<-%` <- function(x, value) invisible(assignVec(x, value, envir = .GlobalEnv))
c("a", "b") %<<-% c(2, 4)
a
## [1] 2
b
## [1] 4
I used this to add the R section here: http://rosettacode.org/wiki/Sort_three_variables#R
Caveat: It only works for assigning global variables (like <<-). If there is a better, more general solution, pls. tell me in the comments.
For a named list, use
list2env(mylist, environment())
For instance:
mylist <- list(foo = 1, bar = 2)
list2env(mylist, environment())
will add foo = 1, bar = 2 to the current environement, and override any object with those names. This is equivalent to
mylist <- list(foo = 1, bar = 2)
foo <- mylist$foo
bar <- mylist$bar
This works in a function, too:
f <- function(mylist) {
list2env(mylist, environment())
foo * bar
}
mylist <- list(foo = 1, bar = 2)
f(mylist)
However, it is good practice to name the elements you want to include in the current environment, lest you override another object... and so write preferrably
list2env(mylist[c("foo", "bar")], environment())
Finally, if you want different names for the new imported objects, write:
list2env(`names<-`(mylist[c"foo", "bar"]), c("foo2", "bar2")), environment())
which is equivalent to
foo2 <- mylist$foo
bar2 <- mylist$bar

Assign multiple new variables on LHS in a single line

I want to assign multiple variables in a single line in R. Is it possible to do something like this?
values # initialize some vector of values
(a, b) = values[c(2,4)] # assign a and b to values at 2 and 4 indices of 'values'
Typically I want to assign about 5-6 variables in a single line, instead of having multiple lines. Is there an alternative?
I put together an R package zeallot to tackle this very problem. zeallot includes an operator (%<-%) for unpacking, multiple, and destructuring assignment. The LHS of the assignment expression is built using calls to c(). The RHS of the assignment expression may be any expression which returns or is a vector, list, nested list, data frame, character string, date object, or custom objects (assuming there is a destructure implementation).
Here is the initial question reworked using zeallot (latest version, 0.0.5).
library(zeallot)
values <- c(1, 2, 3, 4) # initialize a vector of values
c(a, b) %<-% values[c(2, 4)] # assign `a` and `b`
a
#[1] 2
b
#[1] 4
For more examples and information one can check out the package vignette.
There is a great answer on the Struggling Through Problems Blog
This is taken from there, with very minor modifications.
USING THE FOLLOWING THREE FUNCTIONS
(Plus one for allowing for lists of different sizes)
# Generic form
'%=%' = function(l, r, ...) UseMethod('%=%')
# Binary Operator
'%=%.lbunch' = function(l, r, ...) {
Envir = as.environment(-1)
if (length(r) > length(l))
warning("RHS has more args than LHS. Only first", length(l), "used.")
if (length(l) > length(r)) {
warning("LHS has more args than RHS. RHS will be repeated.")
r <- extendToMatch(r, l)
}
for (II in 1:length(l)) {
do.call('<-', list(l[[II]], r[[II]]), envir=Envir)
}
}
# Used if LHS is larger than RHS
extendToMatch <- function(source, destin) {
s <- length(source)
d <- length(destin)
# Assume that destin is a length when it is a single number and source is not
if(d==1 && s>1 && !is.null(as.numeric(destin)))
d <- destin
dif <- d - s
if (dif > 0) {
source <- rep(source, ceiling(d/s))[1:d]
}
return (source)
}
# Grouping the left hand side
g = function(...) {
List = as.list(substitute(list(...)))[-1L]
class(List) = 'lbunch'
return(List)
}
Then to execute:
Group the left hand side using the new function g()
The right hand side should be a vector or a list
Use the newly-created binary operator %=%
# Example Call; Note the use of g() AND `%=%`
# Right-hand side can be a list or vector
g(a, b, c) %=% list("hello", 123, list("apples, oranges"))
g(d, e, f) %=% 101:103
# Results:
> a
[1] "hello"
> b
[1] 123
> c
[[1]]
[1] "apples, oranges"
> d
[1] 101
> e
[1] 102
> f
[1] 103
Example using lists of different sizes:
Longer Left Hand Side
g(x, y, z) %=% list("first", "second")
# Warning message:
# In `%=%.lbunch`(g(x, y, z), list("first", "second")) :
# LHS has more args than RHS. RHS will be repeated.
> x
[1] "first"
> y
[1] "second"
> z
[1] "first"
Longer Right Hand Side
g(j, k) %=% list("first", "second", "third")
# Warning message:
# In `%=%.lbunch`(g(j, k), list("first", "second", "third")) :
# RHS has more args than LHS. Only first2used.
> j
[1] "first"
> k
[1] "second"
Consider using functionality included in base R.
For instance, create a 1 row dataframe (say V) and initialize your variables in it. Now you can assign to multiple variables at once V[,c("a", "b")] <- values[c(2, 4)], call each one by name (V$a), or use many of them at the same time (values[c(5, 6)] <- V[,c("a", "b")]).
If you get lazy and don't want to go around calling variables from the dataframe, you could attach(V) (though I personally don't ever do it).
# Initialize values
values <- 1:100
# V for variables
V <- data.frame(a=NA, b=NA, c=NA, d=NA, e=NA)
# Assign elements from a vector
V[, c("a", "b", "e")] = values[c(2,4, 8)]
# Also other class
V[, "d"] <- "R"
# Use your variables
V$a
V$b
V$c # OOps, NA
V$d
V$e
here is my idea. Probably the syntax is quite simple:
`%tin%` <- function(x, y) {
mapply(assign, as.character(substitute(x)[-1]), y,
MoreArgs = list(envir = parent.frame()))
invisible()
}
c(a, b) %tin% c(1, 2)
gives like this:
> a
Error: object 'a' not found
> b
Error: object 'b' not found
> c(a, b) %tin% c(1, 2)
> a
[1] 1
> b
[1] 2
this is not well tested though.
A potentially dangerous (in as much as using assign is risky) option would be to Vectorize assign:
assignVec <- Vectorize("assign",c("x","value"))
#.GlobalEnv is probably not what one wants in general; see below.
assignVec(c('a','b'),c(0,4),envir = .GlobalEnv)
a b
0 4
> b
[1] 4
> a
[1] 0
Or I suppose you could vectorize it yourself manually with your own function using mapply that maybe uses a sensible default for the envir argument. For instance, Vectorize will return a function with the same environment properties of assign, which in this case is namespace:base, or you could just set envir = parent.env(environment(assignVec)).
As others explained, there doesn't seem to be anything built in. ...but you could design a vassign function as follows:
vassign <- function(..., values, envir=parent.frame()) {
vars <- as.character(substitute(...()))
values <- rep(values, length.out=length(vars))
for(i in seq_along(vars)) {
assign(vars[[i]], values[[i]], envir)
}
}
# Then test it
vals <- 11:14
vassign(aa,bb,cc,dd, values=vals)
cc # 13
One thing to consider though is how to handle the cases where you e.g. specify 3 variables and 5 values or the other way around. Here I simply repeat (or truncate) the values to be of the same length as the variables. Maybe a warning would be prudent. But it allows the following:
vassign(aa,bb,cc,dd, values=0)
cc # 0
list2env(setNames(as.list(rep(2,5)), letters[1:5]), .GlobalEnv)
Served my purpose, i.e., assigning five 2s into first five letters.
Had a similar problem recently and here was my try using purrr::walk2
purrr::walk2(letters,1:26,assign,envir =parent.frame())
https://stat.ethz.ch/R-manual/R-devel/library/base/html/list2env.html:
list2env(
list(
a=1,
b=2:4,
c=rpois(10,10),
d=gl(3,4,LETTERS[9:11])
),
envir=.GlobalEnv
)
If your only requirement is to have a single line of code, then how about:
> a<-values[2]; b<-values[4]
I'm afraid that elegent solution you are looking for (like c(a, b) = c(2, 4)) unfortunatelly does not exist. But don't give up, I'm not sure! The nearest solution I can think of is this one:
attach(data.frame(a = 2, b = 4))
or if you are bothered with warnings, switch them off:
attach(data.frame(a = 2, b = 4), warn = F)
But I suppose you're not satisfied with this solution, I wouldn't be either...
R> values = c(1,2,3,4)
R> a <- values[2]; b <- values[3]; c <- values[4]
R> a
[1] 2
R> b
[1] 3
R> c
[1] 4
Another version with recursion:
let <- function(..., env = parent.frame()) {
f <- function(x, ..., i = 1) {
if(is.null(substitute(...))){
if(length(x) == 1)
x <- rep(x, i - 1);
stopifnot(length(x) == i - 1)
return(x);
}
val <- f(..., i = i + 1);
assign(deparse(substitute(x)), val[[i]], env = env);
return(val)
}
f(...)
}
example:
> let(a, b, 4:10)
[1] 4 5 6 7 8 9 10
> a
[1] 4
> b
[1] 5
> let(c, d, e, f, c(4, 3, 2, 1))
[1] 4 3 2 1
> c
[1] 4
> f
[1] 1
My version:
let <- function(x, value) {
mapply(
assign,
as.character(substitute(x)[-1]),
value,
MoreArgs = list(envir = parent.frame()))
invisible()
}
example:
> let(c(x, y), 1:2 + 3)
> x
[1] 4
> y
[1]
Combining some of the answers given here + a little bit of salt, how about this solution:
assignVec <- Vectorize("assign", c("x", "value"))
`%<<-%` <- function(x, value) invisible(assignVec(x, value, envir = .GlobalEnv))
c("a", "b") %<<-% c(2, 4)
a
## [1] 2
b
## [1] 4
I used this to add the R section here: http://rosettacode.org/wiki/Sort_three_variables#R
Caveat: It only works for assigning global variables (like <<-). If there is a better, more general solution, pls. tell me in the comments.
For a named list, use
list2env(mylist, environment())
For instance:
mylist <- list(foo = 1, bar = 2)
list2env(mylist, environment())
will add foo = 1, bar = 2 to the current environement, and override any object with those names. This is equivalent to
mylist <- list(foo = 1, bar = 2)
foo <- mylist$foo
bar <- mylist$bar
This works in a function, too:
f <- function(mylist) {
list2env(mylist, environment())
foo * bar
}
mylist <- list(foo = 1, bar = 2)
f(mylist)
However, it is good practice to name the elements you want to include in the current environment, lest you override another object... and so write preferrably
list2env(mylist[c("foo", "bar")], environment())
Finally, if you want different names for the new imported objects, write:
list2env(`names<-`(mylist[c"foo", "bar"]), c("foo2", "bar2")), environment())
which is equivalent to
foo2 <- mylist$foo
bar2 <- mylist$bar

How to assign from a function which returns more than one value?

Still trying to get into the R logic... what is the "best" way to unpack (on LHS) the results from a function returning multiple values?
I can't do this apparently:
R> functionReturningTwoValues <- function() { return(c(1, 2)) }
R> functionReturningTwoValues()
[1] 1 2
R> a, b <- functionReturningTwoValues()
Error: unexpected ',' in "a,"
R> c(a, b) <- functionReturningTwoValues()
Error in c(a, b) <- functionReturningTwoValues() : object 'a' not found
must I really do the following?
R> r <- functionReturningTwoValues()
R> a <- r[1]; b <- r[2]
or would the R programmer write something more like this:
R> functionReturningTwoValues <- function() {return(list(first=1, second=2))}
R> r <- functionReturningTwoValues()
R> r$first
[1] 1
R> r$second
[1] 2
--- edited to answer Shane's questions ---
I don't really need giving names to the result value parts. I am applying one aggregate function to the first component and an other to the second component (min and max. if it was the same function for both components I would not need splitting them).
(1) list[...]<- I had posted this over a decade ago on r-help. Since then it has been added to the gsubfn package. It does not require a special operator but does require that the left hand side be written using list[...] like this:
library(gsubfn) # need 0.7-0 or later
list[a, b] <- functionReturningTwoValues()
If you only need the first or second component these all work too:
list[a] <- functionReturningTwoValues()
list[a, ] <- functionReturningTwoValues()
list[, b] <- functionReturningTwoValues()
(Of course, if you only needed one value then functionReturningTwoValues()[[1]] or functionReturningTwoValues()[[2]] would be sufficient.)
See the cited r-help thread for more examples.
(2) with If the intent is merely to combine the multiple values subsequently and the return values are named then a simple alternative is to use with :
myfun <- function() list(a = 1, b = 2)
list[a, b] <- myfun()
a + b
# same
with(myfun(), a + b)
(3) attach Another alternative is attach:
attach(myfun())
a + b
ADDED: with and attach
I somehow stumbled on this clever hack on the internet ... I'm not sure if it's nasty or beautiful, but it lets you create a "magical" operator that allows you to unpack multiple return values into their own variable. The := function is defined here, and included below for posterity:
':=' <- function(lhs, rhs) {
frame <- parent.frame()
lhs <- as.list(substitute(lhs))
if (length(lhs) > 1)
lhs <- lhs[-1]
if (length(lhs) == 1) {
do.call(`=`, list(lhs[[1]], rhs), envir=frame)
return(invisible(NULL))
}
if (is.function(rhs) || is(rhs, 'formula'))
rhs <- list(rhs)
if (length(lhs) > length(rhs))
rhs <- c(rhs, rep(list(NULL), length(lhs) - length(rhs)))
for (i in 1:length(lhs))
do.call(`=`, list(lhs[[i]], rhs[[i]]), envir=frame)
return(invisible(NULL))
}
With that in hand, you can do what you're after:
functionReturningTwoValues <- function() {
return(list(1, matrix(0, 2, 2)))
}
c(a, b) := functionReturningTwoValues()
a
#[1] 1
b
# [,1] [,2]
# [1,] 0 0
# [2,] 0 0
I don't know how I feel about that. Perhaps you might find it helpful in your interactive workspace. Using it to build (re-)usable libraries (for mass consumption) might not be the best idea, but I guess that's up to you.
... you know what they say about responsibility and power ...
Usually I wrap the output into a list, which is very flexible (you can have any combination of numbers, strings, vectors, matrices, arrays, lists, objects int he output)
so like:
func2<-function(input) {
a<-input+1
b<-input+2
output<-list(a,b)
return(output)
}
output<-func2(5)
for (i in output) {
print(i)
}
[1] 6
[1] 7
I put together an R package zeallot to tackle this problem. zeallot includes a multiple assignment or unpacking assignment operator, %<-%. The LHS of the operator is any number of variables to assign, built using calls to c(). The RHS of the operator is a vector, list, data frame, date object, or any custom object with an implemented destructure method (see ?zeallot::destructure).
Here are a handful of examples based on the original post,
library(zeallot)
functionReturningTwoValues <- function() {
return(c(1, 2))
}
c(a, b) %<-% functionReturningTwoValues()
a # 1
b # 2
functionReturningListOfValues <- function() {
return(list(1, 2, 3))
}
c(d, e, f) %<-% functionReturningListOfValues()
d # 1
e # 2
f # 3
functionReturningNestedList <- function() {
return(list(1, list(2, 3)))
}
c(f, c(g, h)) %<-% functionReturningNestedList()
f # 1
g # 2
h # 3
functionReturningTooManyValues <- function() {
return(as.list(1:20))
}
c(i, j, ...rest) %<-% functionReturningTooManyValues()
i # 1
j # 2
rest # list(3, 4, 5, ..)
Check out the package vignette for more information and examples.
functionReturningTwoValues <- function() {
results <- list()
results$first <- 1
results$second <-2
return(results)
}
a <- functionReturningTwoValues()
I think this works.
There's no right answer to this question. I really depends on what you're doing with the data. In the simple example above, I would strongly suggest:
Keep things as simple as possible.
Wherever possible, it's a best practice to keep your functions vectorized. That provides the greatest amount of flexibility and speed in the long run.
Is it important that the values 1 and 2 above have names? In other words, why is it important in this example that 1 and 2 be named a and b, rather than just r[1] and r[2]? One important thing to understand in this context is that a and b are also both vectors of length 1. So you're not really changing anything in the process of making that assignment, other than having 2 new vectors that don't need subscripts to be referenced:
> r <- c(1,2)
> a <- r[1]
> b <- r[2]
> class(r)
[1] "numeric"
> class(a)
[1] "numeric"
> a
[1] 1
> a[1]
[1] 1
You can also assign the names to the original vector if you would rather reference the letter than the index:
> names(r) <- c("a","b")
> names(r)
[1] "a" "b"
> r["a"]
a
1
[Edit] Given that you will be applying min and max to each vector separately, I would suggest either using a matrix (if a and b will be the same length and the same data type) or data frame (if a and b will be the same length but can be different data types) or else use a list like in your last example (if they can be of differing lengths and data types).
> r <- data.frame(a=1:4, b=5:8)
> r
a b
1 1 5
2 2 6
3 3 7
4 4 8
> min(r$a)
[1] 1
> max(r$b)
[1] 8
If you want to return the output of your function to the Global Environment, you can use list2env, like in this example:
myfun <- function(x) { a <- 1:x
b <- 5:x
df <- data.frame(a=a, b=b)
newList <- list("my_obj1" = a, "my_obj2" = b, "myDF"=df)
list2env(newList ,.GlobalEnv)
}
myfun(3)
This function will create three objects in your Global Environment:
> my_obj1
[1] 1 2 3
> my_obj2
[1] 5 4 3
> myDF
a b
1 1 5
2 2 4
3 3 3
Lists seem perfect for this purpose. For example within the function you would have
x = desired_return_value_1 # (vector, matrix, etc)
y = desired_return_value_2 # (vector, matrix, etc)
returnlist = list(x,y...)
} # end of function
main program
x = returnlist[[1]]
y = returnlist[[2]]
Yes to your second and third questions -- that's what you need to do as you cannot have multiple 'lvalues' on the left of an assignment.
How about using assign?
functionReturningTwoValues <- function(a, b) {
assign(a, 1, pos=1)
assign(b, 2, pos=1)
}
You can pass the names of the variable you want to be passed by reference.
> functionReturningTwoValues('a', 'b')
> a
[1] 1
> b
[1] 2
If you need to access the existing values, the converse of assign is get.
[A]
If each of foo and bar is a single number, then there's nothing wrong with c(foo,bar); and you can also name the components: c(Foo=foo,Bar=bar). So you could access the components of the result 'res' as res[1], res[2]; or, in the named case, as res["Foo"], res["BAR"].
[B]
If foo and bar are vectors of the same type and length, then again there's nothing wrong with returning cbind(foo,bar) or rbind(foo,bar); likewise nameable. In the 'cbind' case, you would access foo and bar as res[,1], res[,2] or as res[,"Foo"], res[,"Bar"]. You might also prefer to return a dataframe rather than a matrix:
data.frame(Foo=foo,Bar=bar)
and access them as res$Foo, res$Bar. This would also work well if foo and bar were of the same length but not of the same type (e.g. foo is a vector of numbers, bar a vector of character strings).
[C]
If foo and bar are sufficiently different not to combine conveniently as above, then you shuld definitely return a list.
For example, your function might fit a linear model and
also calculate predicted values, so you could have
LM<-lm(....) ; foo<-summary(LM); bar<-LM$fit
and then you would return list(Foo=foo,Bar=bar) and then access the summary as res$Foo, the predicted values as res$Bar
source: http://r.789695.n4.nabble.com/How-to-return-multiple-values-in-a-function-td858528.html
Year 2021 and this is something I frequently use.
tidyverse package has a function called lst that assigns name to the list elements when creating the list.
Post which I use list2env() to assign variable or use the list directly
library(tidyverse)
fun <- function(){
a<-1
b<-2
lst(a,b)
}
list2env(fun(), envir=.GlobalEnv)#unpacks list key-values to variable-values into the current environment
This is only for the sake of completeness and not because I personally prefer it. You can pipe %>% the result, evaluate it with curly braces {} and write variables to the parent environment using double-arrow <<-.
library(tidyverse)
functionReturningTwoValues() %>% {a <<- .[1]; b <<- .[2]}
UPDATE:
Your can also use the multiple assignment operator from the zeallot package:: %<-%
c(a, b) %<-% list(0, 1)
I will post a function that returns multiple objects by way of vectors:
Median <- function(X){
X_Sort <- sort(X)
if (length(X)%%2==0){
Median <- (X_Sort[(length(X)/2)]+X_Sort[(length(X)/2)+1])/2
} else{
Median <- X_Sort[(length(X)+1)/2]
}
return(Median)
}
That was a function I created to calculate the median. I know that there's an inbuilt function in R called median() but nonetheless I programmed it to build other function to calculate the quartiles of a numeric data-set by using the Median() function I just programmed. The Median() function works like this:
If a numeric vector X has an even number of elements (i.e., length(X)%%2==0), the median is calculated by averaging the elements sort(X)[length(X)/2] and sort(X)[(length(X)/2+1)].
If Xdoesn't have an even number of elements, the median is sort(X)[(length(X)+1)/2].
On to the QuartilesFunction():
QuartilesFunction <- function(X){
X_Sort <- sort(X) # Data is sorted in ascending order
if (length(X)%%2==0){
# Data number is even
HalfDN <- X_Sort[1:(length(X)/2)]
HalfUP <- X_Sort[((length(X)/2)+1):length(X)]
QL <- Median(HalfDN)
QU <- Median(HalfUP)
QL1 <- QL
QL2 <- QL
QU1 <- QU
QU2 <- QU
QL3 <- QL
QU3 <- QU
Quartiles <- c(QL1,QU1,QL2,QU2,QL3,QU3)
names(Quartiles) = c("QL (1)", "QU (1)", "QL (2)", "QU (2)","QL (3)", "QU (3)")
} else{ # Data number is odd
# Including the median
Half1DN <- X_Sort[1:((length(X)+1)/2)]
Half1UP <- X_Sort[(((length(X)+1)/2)):length(X)]
QL1 <- Median(Half1DN)
QU1 <- Median(Half1UP)
# Not including the median
Half2DN <- X_Sort[1:(((length(X)+1)/2)-1)]
Half2UP <- X_Sort[(((length(X)+1)/2)+1):length(X)]
QL2 <- Median(Half2DN)
QU2 <- Median(Half2UP)
# Methods (1) and (2) averaged
QL3 <- (QL1+QL2)/2
QU3 <- (QU1+QU2)/2
Quartiles <- c(QL1,QU1,QL2,QU2,QL3,QU3)
names(Quartiles) = c("QL (1)", "QU (1)", "QL (2)", "QU (2)","QL (3)", "QU (3)")
}
return(Quartiles)
}
This function returns the quartiles of a numeric vector by using three methods:
Discarding the median for the calculation of the quartiles when the number of elements of the numeric vector Xis odd.
Keeping the median for the calculation of the quartiles when the number of elements of the numeric vector Xis odd.
Averaging the results obtained by using methods 1 and 2.
When the number of elements in the numeric vector X is even, the three methods coincide.
The result of the QuartilesFunction() is a vector that depicts the first and third quartiles calculated by using the three methods outlined.
With R 3.6.1, I can do the following
fr2v <- function() { c(5,3) }
a_b <- fr2v()
(a_b[[1]]) # prints "5"
(a_b[[2]]) # prints "3"
To obtain multiple outputs from a function and keep them in the desired format you can save the outputs to your hard disk (in the working directory) from within the function and then load them from outside the function:
myfun <- function(x) {
df1 <- ...
df2 <- ...
save(df1, file = "myfile1")
save(df2, file = "myfile2")
}
load("myfile1")
load("myfile2")

Resources