function to remove all observations that contain a "prohibited" value - R - r

I have an large dataset looking like:
There are overall 43 different values for PID. I have identified PIDs that need to be removed and summarized them in a vector:
I want to remove all observations (rows) from my data set that contain one of the PIDs from the vecotor NullNK. I have tried writing a function for it, but i get an error ( i have never written functiones before):
for (i in length(NullNK)){
SR_DynUeber_einfam <- SR_DynUeber_einfam [-which(SR_DynUeber_einfam$PID == NullNK(i)),]
}
How can i efficently remove the observations from my original data set that are containing PIDs from NullNK vector?
What is wrong with my function?
Thanks!

For basic operations like this, for loops are often not needed. This does what you are looking for:
SR_DynUeber_einfam[!SR_DynUeber_einfam$PID %in% NullNK,]
One mistake in your function is NullNK(i). You should subset from a vector with NullNK[i] in R.
Hope this helps!

Related

Renaming Columns with index with a For Loop in R

I am writing this post to ask for some advice for looping code to rename columns by index.
I have a data set that has scale item columns positioned next to each other. Unfortunately, they are oddly named.
I want to re-name each column in this format: SimRac1, SimRac2, SimRac3.... and so on. I know the location of the columns (Columns number 30 to 37). I know these scale items are ordered in such a way that they can be named and numbered in increased order from left to right.
The code I currently have works, but is not efficient. There are other scales, in different locations, that also need to be renamed in a similar fashion. This would result in dozens of code rows.
See below code.
names(Total)[30] <- "SimRac1"
names(Total)[31] <- "SimRac2"
names(Total)[32] <- "SimRac3"
names(Total)[33] <- "SimRac4"
names(Total)[34] <- "SimRac5"
names(Total)[35] <- "SimRac6"
names(Total)[36] <- "SimRac7"
names(Total)[37] <- "SimRac8"
I want to loop this code so that I only have a chunk of code that does the work.
I was thinking perhaps a "for loop" would help.
Hence, the below code
for (i in Total[,30:37]){
names(Total)[i] <- "SimRac(1:8)"
}
This, unfortunately does not work. This chunk of code runs without error, but it doesn't do anything.
Do advice.
In the OP's code, "SimRac(1:8)" is a constant. To have dynamic names, use paste0.
We do not need a loop here. We can use a vectorized function to create the names, then assign the names to a subset of names(Total)
names(Total)[30:37]<-paste0('SimRac', 1:8)

Using For Loop in R to loop through a dataframe

I have a function called Produce_Output. It takes an X variable and a Y variable then in R carries out some calculations, SQL data retrievals, saves a plot to a file location etc. the function itself doesn't produce anything but triggers other actions.
I want to run this function through a data frame which has been setup for it. The dataframe has 8464 obs and 2 variables. I would like to use the function and pass each 2 variables to the function an observation at a time.
calling the function as follows
for (Data_To_Process) {
Produce_Output(TableA$Column1, TableA$Column2)
}
I get the following error
Error in $<-.data.frame(*tmp*, "OND", value = c(3379L, 3121L,
1699L, : replacement has 8464 rows, data has 3
I read a post on here about the data having NULLs, I've checked that and it doesn't. I also don't understand what it replacing what with. I just want it to process the first row, then the next... then the next... as I said the function has no output but triggers other procedures using the two values inserted. Any help would be appreciated.
Rui Barradas - You are perfectly correct that was the issue. I was aware of the index method for the loop but had only access to instances where one column was being used so didn't understand how to reference other columns in the syntax. Thanks for your help
"You are passing the entire columns, not rows. It could be something like for(i in 1:nrow(TableA)){Produce_Output(TableA$Column1[i], TableA$Column2[i])}"

Only last iteration of loop is saved

I have a list of dataframes (subspec2) which I want to loop through to get the columns with the maximum value from each dataframe, and write these to a new dataframe. I wrote the following loop:
good.data<-data.frame(matrix(nrow=401, ncol=78)) #create empty dataframe
for (i in length(subspec2)) ##subspec2 is the list of dataframes
{
max.name<-names(which.max(apply(subspec2[[i]],MARGIN=2,max))) #find column name with max value
good.data[,i]<-subspec2[[i]][max.name] #write the contents of this column into dataframe
}
This seems to work but only returns values in the last column, nothing else appears to have been saved. Many threads point out the df must be outside the loop, but that is not the problem here.
What am I doing wrong?
Thank you!
I believe you need to change for (i in length(subspec2)) to for (i in 1:length(subspec2)). The former will only do 1 iteration, where i = length(subspec2) whereas the latter iterates over multiple is.
(I am pretty sure that is your issue, but one thing that is great to do is to create a reproducible example so I can run your code to double check, for example I am not exactly sure what subspec2 looks like, and I am not able to run your code as it is, a great resource for this is the reprex package).

Looping in R to create transformed variables

I have a dataset of 80 variables, and I want to loop though a subset of 50 of them and construct returns. I have a list of the names of the variables for which I want to construct returns, and am attempting to use the dplyr command mutate to construct the variables in a loop. Specifically my code is:
for (i in returnvars) {
alldta <- mutate(alldta,paste("r",i,sep="") = (i - lag(i,1))/lag(i,1))}
where returnvars is my list, and alldta is my dataset. When I run this code outside the loop with just one of the `i' values, it works fine. The code for that looks like this:
alldta <- mutate(alldta,rVar = (Var- lag(Var,1))/lag(Var,1))
However, when I run it in the loop (e.g., attempting to do the previous line of code 50 times for 50 different variables), I get the following error:
Error: unexpected '=' in:
"for (i in returnvars) {
alldta <- mutate(alldta,paste("r",i,sep="") ="
I am unsure why this issue is coming up. I have looked into a number of ways to try and do this, and have attempted solutions that use lapply as well, without success.
Any help would be much appreciated! If there is an easy way to do this with one of the apply commands as well, that would be great. I did not provide a dataset because my question is not data specific, I'm simply trying to understand, as a relative R beginner, how to construct many transformed variables at once and add them to my data frame.
EDIT: As per Frank's comment, I updated the code to the following:
for (i in returnvars) {
varname <- paste("r",i,sep="")
alldta <- mutate(alldta,varname = (i - lag(i,1))/lag(i,1))}
This fixes the previous error, but I am still not referencing the variable correctly, so I get the error
Error in "Var" - lag("Var", 1) :
non-numeric argument to binary operator
Which I assume is because R sees my variable name Var as a string, rather than as a variable. How would I correctly reference the variable in my dataset alldta? I tried get(i) and alldta$get(i), both without success.
I'm also still open to (and actively curious about), more R-style ways to do this entire process, as opposed to using a loop.
Using mutate inside a loop might not be a good idea either. I am not sure if mutate makes a copy of the data frame but its generally not a good practice to grow a data frame inside a loop. Instead create a separate data frame with the output and then name the columns based on your logic.
result = do.call(rbind,lapply(returnvars,function(i) {...})
names(result) = paste("r",returnvars,sep="")
After playing around with this more, I discovered (thanks to Frank's suggestion), that the following works:
extended <- alldta # Make a copy of my dataset
for (i in returnvars) {
varname <- paste("r",i,sep="")
extended[[varname]] = (extended[[i]] - lag(extended[[i]],1))/lag(extended[[i]],1)}
This is still not very R-styled in that I am using a loop, but for a task that is only repeating about 50 times, this shouldn't be a large issue.

Executing for loop in R

I am pretty new to R and have a couple of questions about a loop I am attemping to execute. I will try explain myself as best as possible reguarding what I wish the loop to do.
for(i in (1988:1999,2000:2006)){
yearerrors=NULL
binding=do.call("rbind.fill",x[grep(names(x), pattern ="1988.* 4._ data=")])
cmeans=lapply(binding[,2:ncol(binding)],mean)
datcmeans=as.data.frame(cmeans)
finvec=datcmeans[1,]
kk=0
result=RMSE2(yields[(kk+1):(kk+ncol(binding))],finvec)
kk=kk+ncol(binding)
yearerrors=c(result)
}
yearerrors
First I wish for the loop to iterate over file names of data.
Specifically over the years 1988-2006 in the place where 1988 is
placed right now in the binding statement. x is a list of data files
inputted into R and the 1988 is part of the file name. So, I have
file names starting with 1988,1989,...,2006.
yields is a numeric vector and I would like to input the indices of
the vector into the function RMSE2 as indicated in the loop. For
example, over the first iteration I wish for the indices 1 to the
number of columns in binding to be used. Then for the next iteration
I want the first index to be 1 more than what the previous iteration
ended with and continue to a number equal to the number of columns in the next binding
statement. I just don't know if what I have written will accomplish
this.
Finally, I wish to store each of these results in the vector
yearerrors and then access this vector afterwards.
Thanks so much in advance!
OK, there's a heck of a lot of guesswork here because the structure of your data is extremely unclear, I have no idea what the RMSE2 function is (and you've given no detail). Based on your question the other day, I'm going to assume that your data is in .csv files. I'm going to have a stab at your problem.
I would start by building the combined dataframe while reading the files in, not doing one then the other. Like so:
#Set your working directory to the folder containing the .csv files
#I'm assuming they're all in the form "YEAR.something.csv" based on your pattern matching
filenames <- list.files(".", pattern="*.csv") #if you only want to match a specific year then add it to the pattern match
years <- gsub("([0-9]+).*", "\\1", filenames)
df <- mdply(filenames, read.csv)
df$year <- as.numeric(years[df$X1]) #Adds the year
#Your column mean dataframe didn't work for me
cmeans <- as.data.frame(t(colMeans(df[,2:ncol(df)])))
It then gets difficult to know what you're trying to achieve. Since your datcmeans is a one row data.frame, datcmeans[1,] doesn't change anything. So if a one row from a dataframe (or a numeric vector) is an argument required for your RMSE2 function, you can just pass it datcmeans (cmeans in my example).
Your code from then is pretty much indecipherable to me. Without know what yields looks like, or how RMSE2 works, it's pretty much impossible to help more.
If you're going to do a loop here, I'll say that setting kk=kk+ncol(binding) at the end of the first iteration is not going to help you, since you've set kk=0, kk is not going to be equal to ncol(binding), which is, I'm guessing, not what you want. Here's my guess at what you need here (assuming looping is required).
yearerrors=vector("numeric", ncol(df)) #Create empty vector ahead of loop
for(i in 1:ncol(df)) {
yearerrors[i] <- RMSE2(yields[i:ncol(df)], finvec)
}
yearerrors
I honestly can't imagine a function that would work like this, but it seems the most logical adaption of your code.

Resources