Kernel CDF estimate: integral drops to zero - r

I want to integrate a kernel density estimate in order to get a kernel estimate of the cdf.
This is my code:
set.seed(1)
z <- rnorm(250)
pdf <- approxfun(density(z, bw = "SJ"), yleft = 0, yright = 0)
cdf <- function(b) {
integrate(pdf, -Inf, b)$value
}
x <- seq(-20, 20, 0.1)
plot(x, sapply(x, cdf), type = "l", xlab = "x", ylab = "density", ylim= c(0, 1))
Which produces the following plot
As you can see, the cdf drops to zero at ~18, which clearly should not happen.
Why does this happen and how can I avoid it?

Use a large finite number for your left integration endpoint, instead of -infinity.
cdf <- function(b)
{
integrate(pdf, -20, b)$value
}
x <- seq(-20, 20, 0.1)
plot(x, sapply(x, cdf), type="l", xlab="x", ylab="density", ylim=c(0, 1))
The reason is basically because R's numerical integration routine isn't that sophisticated, and sometimes fails when infinite endpoints are supplied. (The help says that using explicit infinite intervals can be better than large finite endpoints. In this case, that advice doesn't work.)

Related

Plot curve with multiple parameters

I want to make a plot using curve for multiple parameters.
For example, say I have the following distribution function for the binomial distribution:
I can plot curve for a probability mass function likeso:
curve(factorial(10)/(factorial(5)*factorial(5))*y^5*(1-y)^5, from=0, to = 1)
Because we want 0 < y < 1, however this won't work for multiple variables as from = 0, to = 1 will only apply for a single variable.
So - how can I get curve to work for something like:
curve(factorial(10)/(factorial(10-x)*factorial(x))*y^x*(1-y)^{10-x}, from=0, to = 1)
But also to indicate the the distribution function for x is less than or equal to 5, so from = 0, to = 5?
I guess you can use dbinom directly
curve(dbinom(5, 10, y), xname = "y")
or if you need to vary x, you can try
sapply(0:10, function(k) curve(dbinom(k, 10, y), xname = "y", add = TRUE, ylim = c(0, 1)))
You could loop over a sequence from 0 to 5.
curve(factorial(10)/(factorial(5)*factorial(5))*x^5*(1-x)^5, from=0, to=1,
ylim=c(0, 1), type='n')
invisible(lapply(seq.int(.005, 5, .005), \(y)
curve(factorial(10)/(factorial(10 - x)*factorial(x))*y^x*(1 - y)^{10 - x},
add=TRUE))
)
The invisible avoids cluttering of the console.

Fitting a sigmoid curve using a logistic function in R

I have data that follows a sigmoid curve and I would like fit a logistic function to extract the three (or two) parameters for each participant. I have found some methods online, but I'm not sure which is the correct option.
This tutorial explains that you should use the nls() function like this:
fitmodel <- nls(y~a/(1 + exp(-b * (x-c))), start=list(a=1,b=.5,c=25))
## get the coefficients using the coef function
params=coef(fitmodel)
... where you clearly need the starting values to find the best-fitting values (?).
And then this post explains that to get the starting values, you can use a "selfstarting model can estimate good starting values for you, so you don't have to specify them":
fit <- nls(y ~ SSlogis(x, Asym, xmid, scal), data = data.frame(x, y))
However somewhere else I also read that you should use the SSlogis function for fitting a logistic function. Please could someone confirm whether these two steps are the best way to go about it? Or should I use values that I have extracted from previous similar data for the starting values?
Additionally, what should I do if I don't want the logistic function to be defined by the asymptote at all?
Thank you!
There isn't a best way but SSlogis does eliminate having to set starting values whereas if you specify the formula you have more control over the parameterization.
If the question is really how to fix a at a predetermined level, here the value 1, without rewriting the formula then set a before running nls and omit it from the starting values.
a <- 1
fo <- y ~ a / (1 + exp(-b * (x-c)))
nls(fo, start = list(b = 0.5, c = 25))
Alternately this substitutes a=1 into formula fo giving fo2 without having to rewrite the formula yourself.
fo2 <- do.call("substitute", list(fo, list(a = 1)))
nls(fo2, start = list(b = 0.5, c = 25))
As #G. Grothendieck writes, there is no general "best way", it always depends on you particular aims. Use of SSLogis is a good idea, as you don't need to specify start values, but a definition of an own function is more flexible. See the following example, where we use heuristics to derive start values ourselves instead of specifying them manually. Then we fit a logistic model and as a small bonus, the Baranyi growth model with an explicit lag phase.
# time (t)
x <- c(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20)
# Algae cell counts (Mio cells per ml)
y <- c(0.88, 1.02, 1.43, 2.79, 4.61, 7.12,
6.47, 8.16, 7.28, 5.67, 6.91)
## we now plot the data linearly and logarithmically
## the layout function is another way to subdivide the plotting area
nf <- layout(matrix(c(1,2,3,3), 2, 2, byrow = TRUE), respect = TRUE)
layout.show(nf) # this shows how the plotting area is subdivided
plot(x, y)
plot(x, log(y))
## we see that the first points show the steepest increase,
## so we can estimate a start value of the growth rate
r <- (log(y[5]) - log(y[1])) / (x[5] - x[1])
abline(a=log(y[1]), b=r)
## this way, we have a heuristics for all start parameters:
## r: steepest increase of y in log scale
## K: maximum value
## N0: first value
## we can check this by plotting the function with the start values
f <- function(x, r, K, N0) {K /(1 + (K/N0 - 1) * exp(-r *x))}
plot(x, y, pch=16, xlab="time (days)", ylab="algae (Mio cells)")
lines(x, f(x, r=r, K=max(y), N0=y[1]), col="blue")
pstart <- c(r=r, K=max(y), N0=y[1])
aFit <- nls(y ~ f(x, r, K,N0), start = pstart, trace=TRUE)
x1 <- seq(0, 25, length = 100)
lines(x1, predict(aFit, data.frame(x = x1)), col = "red")
legend("topleft",
legend = c("data", "start parameters", "fitted parameters"),
col = c("black", "blue", "red"),
lty = c(0, 1, 1),
pch = c(16, NA, NA))
summary(aFit)
(Rsquared <- 1 - var(residuals(aFit))/var(y))
## =============================================================================
## Approach with Baranyi-Roberts model
## =============================================================================
## sometimes, a logistic is not good enough. In this case, use another growth
## model
baranyi <- function(x, r, K, N0, h0) {
A <- x + 1/r * log(exp(-r * x) + exp(-h0) - exp(-r * x - h0))
y <- exp(log(N0) + r * A - log(1 + (exp(r * A) - 1)/exp(log(K) - log(N0))))
y
}
pstart <- c(r=0.5, K=7, N0=1, h0=2)
fit2 <- nls(y ~ baranyi(x, r, K, N0, h0), start = pstart, trace=TRUE)
lines(x1, predict(fit2, data.frame(x = x1)), col = "forestgreen", lwd=2)
legend("topleft",
legend = c("data", "logistic model", "Baranyi-Roberts model"),
col = c("black", "red", "forestgreen"),
lty = c(0, 1, 1),
pch = c(16, NA, NA))

Getting values from kernel density estimation in R

I am trying to get density estimates for the log of stock prices in R. I know I can plot it using plot(density(x)). However, I actually want values for the function.
I'm trying to implement the kernel density estimation formula. Here's what I have so far:
a <- read.csv("boi_new.csv", header=FALSE)
S = a[,3] # takes column of increments in stock prices
dS=S[!is.na(S)] # omits first empty field
N = length(dS) # Sample size
rseed = 0 # Random seed
x = rep(c(1:5),N/5) # Inputted data
set.seed(rseed) # Sets random seed for reproducibility
QL <- function(dS){
h = density(dS)$bandwidth
r = log(dS^2)
f = 0*x
for(i in 1:N){
f[i] = 1/(N*h) * sum(dnorm((x-r[i])/h))
}
return(f)
}
QL(dS)
Any help would be much appreciated. Been at this for days!
You can pull the values directly from the density function:
x = rnorm(100)
d = density(x, from=-5, to = 5, n = 1000)
d$x
d$y
Alternatively, if you really want to write your own kernel density function, here's some code to get you started:
Set the points z and x range:
z = c(-2, -1, 2)
x = seq(-5, 5, 0.01)
Now we'll add the points to a graph
plot(0, 0, xlim=c(-5, 5), ylim=c(-0.02, 0.8),
pch=NA, ylab="", xlab="z")
for(i in 1:length(z)) {
points(z[i], 0, pch="X", col=2)
}
abline(h=0)
Put Normal density's around each point:
## Now we combine the kernels,
x_total = numeric(length(x))
for(i in 1:length(x_total)) {
for(j in 1:length(z)) {
x_total[i] = x_total[i] +
dnorm(x[i], z[j], sd=1)
}
}
and add the curves to the plot:
lines(x, x_total, col=4, lty=2)
Finally, calculate the complete estimate:
## Just as a histogram is the sum of the boxes,
## the kernel density estimate is just the sum of the bumps.
## All that's left to do, is ensure that the estimate has the
## correct area, i.e. in this case we divide by $n=3$:
plot(x, x_total/3,
xlim=c(-5, 5), ylim=c(-0.02, 0.8),
ylab="", xlab="z", type="l")
abline(h=0)
This corresponds to
density(z, adjust=1, bw=1)
The plots above give:

How to plot a normal distribution by labeling specific parts of the x-axis?

I am using the following code to create a standard normal distribution in R:
x <- seq(-4, 4, length=200)
y <- dnorm(x, mean=0, sd=1)
plot(x, y, type="l", lwd=2)
I need the x-axis to be labeled at the mean and at points three standard deviations above and below the mean. How can I add these labels?
The easiest (but not general) way is to restrict the limits of the x axis. The +/- 1:3 sigma will be labeled as such, and the mean will be labeled as 0 - indicating 0 deviations from the mean.
plot(x,y, type = "l", lwd = 2, xlim = c(-3.5,3.5))
Another option is to use more specific labels:
plot(x,y, type = "l", lwd = 2, axes = FALSE, xlab = "", ylab = "")
axis(1, at = -3:3, labels = c("-3s", "-2s", "-1s", "mean", "1s", "2s", "3s"))
Using the code in this answer, you could skip creating x and just use curve() on the dnorm function:
curve(dnorm, -3.5, 3.5, lwd=2, axes = FALSE, xlab = "", ylab = "")
axis(1, at = -3:3, labels = c("-3s", "-2s", "-1s", "mean", "1s", "2s", "3s"))
But this doesn't use the given code anymore.
If you like hard way of doing something without using R built in function or you want to do this outside R, you can use the following formula.
x<-seq(-4,4,length=200)
s = 1
mu = 0
y <- (1/(s * sqrt(2*pi))) * exp(-((x-mu)^2)/(2*s^2))
plot(x,y, type="l", lwd=2, col = "blue", xlim = c(-3.5,3.5))
An extremely inefficient and unusual, but beautiful solution, which works based on the ideas of Monte Carlo simulation, is this:
simulate many draws (or samples) from a given distribution (say the normal).
plot the density of these draws using rnorm. The rnorm function takes as arguments (A,B,C) and returns a vector of A samples from a normal distribution centered at B, with standard deviation C.
Thus to take a sample of size 50,000 from a standard normal (i.e, a normal with mean 0 and standard deviation 1), and plot its density, we do the following:
x = rnorm(50000,0,1)
plot(density(x))
As the number of draws goes to infinity this will converge in distribution to the normal. To illustrate this, see the image below which shows from left to right and top to bottom 5000,50000,500000, and 5 million samples.
In general case, for example: Normal(2, 1)
f <- function(x) dnorm(x, 2, 1)
plot(f, -1, 5)
This is a very general, f can be defined freely, with any given parameters, for example:
f <- function(x) dbeta(x, 0.1, 0.1)
plot(f, 0, 1)
I particularly love Lattice for this goal. It easily implements graphical information such as specific areas under a curve, the one you usually require when dealing with probabilities problems such as find P(a < X < b) etc.
Please have a look:
library(lattice)
e4a <- seq(-4, 4, length = 10000) # Data to set up out normal
e4b <- dnorm(e4a, 0, 1)
xyplot(e4b ~ e4a, # Lattice xyplot
type = "l",
main = "Plot 2",
panel = function(x,y, ...){
panel.xyplot(x,y, ...)
panel.abline( v = c(0, 1, 1.5), lty = 2) #set z and lines
xx <- c(1, x[x>=1 & x<=1.5], 1.5) #Color area
yy <- c(0, y[x>=1 & x<=1.5], 0)
panel.polygon(xx,yy, ..., col='red')
})
In this example I make the area between z = 1 and z = 1.5 stand out. You can move easily this parameters according to your problem.
Axis labels are automatic.
This is how to write it in functions:
normalCriticalTest <- function(mu, s) {
x <- seq(-4, 4, length=200) # x extends from -4 to 4
y <- (1/(s * sqrt(2*pi))) * exp(-((x-mu)^2)/(2*s^2)) # y follows the formula
of the normal distribution: f(Y)
plot(x,y, type="l", lwd=2, xlim = c(-3.5,3.5))
abline(v = c(-1.96, 1.96), col="red") # draw the graph, with 2.5% surface to
either side of the mean
}
normalCriticalTest(0, 1) # draw a normal distribution with vertical lines.
Final result:

How do I run a high pass or low pass filter on data points in R?

I am a beginner in R and I have tried to find information about the following without finding anything.
The green graph in the picture is composed by the red and yellow graphs. But let's say that I only have the data points of something like the green graph. How do I extract the low/high frequencies (i.e. approximately the red/yellow graphs) using a low pass/high pass filter?
Update: The graph was generated with
number_of_cycles = 2
max_y = 40
x = 1:500
a = number_of_cycles * 2*pi/length(x)
y = max_y * sin(x*a)
noise1 = max_y * 1/10 * sin(x*a*10)
plot(x, y, type="l", col="red", ylim=range(-1.5*max_y,1.5*max_y,5))
points(x, y + noise1, col="green", pch=20)
points(x, noise1, col="yellow", pch=20)
Update 2: Using the Butterworth filter in the signal package suggested I get the following:
library(signal)
bf <- butter(2, 1/50, type="low")
b <- filter(bf, y+noise1)
points(x, b, col="black", pch=20)
bf <- butter(2, 1/25, type="high")
b <- filter(bf, y+noise1)
points(x, b, col="black", pch=20)
The calculations was a bit work, signal.pdf gave next to no hints about what values W should have, but the original octave documentation at least mentioned radians which got me going. The values in my original graph was not chosen with any specific frequency in mind, so I ended up with the following not so simple frequencies: f_low = 1/500 * 2 = 1/250, f_high = 1/500 * 2*10 = 1/25 and the sampling frequency f_s = 500/500 = 1. Then I chose a f_c somewhere inbetween the low and high frequencies for the low/high pass filters (1/100 and 1/50 respectively).
I bumped into similar problem recently and did not find the answers here particularly helpful. Here is an alternative approach.
Let´s start by defining the example data from the question:
number_of_cycles = 2
max_y = 40
x = 1:500
a = number_of_cycles * 2*pi/length(x)
y = max_y * sin(x*a)
noise1 = max_y * 1/10 * sin(x*a*10)
y <- y + noise1
plot(x, y, type="l", ylim=range(-1.5*max_y,1.5*max_y,5), lwd = 5, col = "green")
So the green line is the dataset we want to low-pass and high-pass filter.
Side note: The line in this case could be expressed as a function by using cubic spline (spline(x,y, n = length(x))), but with real world data this would rarely be the case, so let's assume that it is not possible to express the dataset as a function.
The easiest way to smooth such data I have came across is to use loess or smooth.spline with appropriate span/spar. According to statisticians loess/smooth.spline is probably not the right approach here, as it does not really present a defined model of the data in that sense. An alternative is to use Generalized Additive Models (gam() function from package mgcv). My argument for using loess or smoothed spline here is that it is easier and does not make a difference as we are interested in the visible resulting pattern. Real world datasets are more complicated than in this example and finding a defined function for filtering several similar datasets might be difficult. If the visible fit is good, why to make it more complicated with R2 and p values? To me the application is visual for which loess/smoothed splines are appropriate methods. Both of the methods assume polynomial relationships with the difference that loess is more flexible also using higher degree polynomials, while cubic spline is always cubic (x^2). Which one to use depends on trends in a dataset. That said, the next step is to apply a low-pass filter on the dataset by using loess() or smooth.spline():
lowpass.spline <- smooth.spline(x,y, spar = 0.6) ## Control spar for amount of smoothing
lowpass.loess <- loess(y ~ x, data = data.frame(x = x, y = y), span = 0.3) ## control span to define the amount of smoothing
lines(predict(lowpass.spline, x), col = "red", lwd = 2)
lines(predict(lowpass.loess, x), col = "blue", lwd = 2)
Red line is the smoothed spline filter and blue the loess filter. As you see results differ slightly. I guess one argument of using GAM would be to find the best fit, if the trends really were this clear and consistent among datasets, but for this application both of these fits are good enough for me.
After finding a fitting low-pass filter, the high-pass filtering is as simple as subtracting the low-pass filtered values from y:
highpass <- y - predict(lowpass.loess, x)
lines(x, highpass, lwd = 2)
This answer comes late, but I hope it helps someone else struggling with similar problem.
Use filtfilt function instead of filter (package signal) to get rid of signal shift.
library(signal)
bf <- butter(2, 1/50, type="low")
b1 <- filtfilt(bf, y+noise1)
points(x, b1, col="red", pch=20)
One method is using the fast fourier transform implemented in R as fft. Here is an example of a high pass filter. From the plots above, the idea implemented in this example is to get the serie in yellow starting from the serie in green (your real data).
# I've changed the data a bit so it's easier to see in the plots
par(mfrow = c(1, 1))
number_of_cycles = 2
max_y = 40
N <- 256
x = 0:(N-1)
a = number_of_cycles * 2 * pi/length(x)
y = max_y * sin(x*a)
noise1 = max_y * 1/10 * sin(x*a*10)
plot(x, y, type="l", col="red", ylim=range(-1.5*max_y,1.5*max_y,5))
points(x, y + noise1, col="green", pch=20)
points(x, noise1, col="yellow", pch=20)
### Apply the fft to the noisy data
y_noise = y + noise1
fft.y_noise = fft(y_noise)
# Plot the series and spectrum
par(mfrow = c(1, 2))
plot(x, y_noise, type='l', main='original serie', col='green4')
plot(Mod(fft.y_noise), type='l', main='Raw serie - fft spectrum')
### The following code removes the first spike in the spectrum
### This would be the high pass filter
inx_filter = 15
FDfilter = rep(1, N)
FDfilter[1:inx_filter] = 0
FDfilter[(N-inx_filter):N] = 0
fft.y_noise_filtered = FDfilter * fft.y_noise
par(mfrow = c(2, 1))
plot(x, noise1, type='l', main='original noise')
plot(x, y=Re( fft( fft.y_noise_filtered, inverse=TRUE) / N ) , type='l',
main = 'filtered noise')
Per request of OP:
The signal package contains all kinds of filters for signal processing. Most of it is comparable to / compatible with the signal processing functions in Matlab/Octave.
Check out this link where there's R code for filtering (medical signals). It's by Matt Shotwell and the site is full of interesting R/stats info with a medical bent:
biostattmat.com
The package fftfilt contains lots of filtering algorithms that should help too.
I also struggled to figure out how the W parameter in the butter function maps on to the filter cut-off, in part because the documentation for filter and filtfilt is incorrect as of posting (it suggests that W = .1 would result in a 10 Hz lp filter when combined with filtfilt when signal sampling rate Fs = 100, but actually, it's only a 5 Hz lp filter -- the half-amplitude cut-off is 5 Hz when use filtfilt, but the half-power cut-off is 5 Hz when you only apply the filter once, using the filter function). I'm posting some demo code I wrote below that helped me confirm how this is all working, and that you could use to check a filter is doing what you want.
#Example usage of butter, filter, and filtfilt functions
#adapted from https://rdrr.io/cran/signal/man/filtfilt.html
library(signal)
Fs <- 100; #sampling rate
bf <- butter(3, 0.1);
#when apply twice with filtfilt,
#results in a 0 phase shift
#5 Hz half-amplitude cut-off LP filter
#
#W * (Fs/2) == half-amplitude cut-off when combined with filtfilt
#
#when apply only one time, using the filter function (non-zero phase shift),
#W * (Fs/2) == half-power cut-off
t <- seq(0, .99, len = 100) # 1 second sample
#generate a 5 Hz sine wave
x <- sin(2*pi*t*5)
#filter it with filtfilt
y <- filtfilt(bf, x)
#filter it with filter
z <- filter(bf, x)
#plot original and filtered signals
plot(t, x, type='l')
lines(t, y, col="red")
lines(t,z,col="blue")
#estimate signal attenuation (proportional reduction in signal amplitude)
1 - mean(abs(range(y[t > .2 & t < .8]))) #~50% attenuation at 5 Hz using filtfilt
1 - mean(abs(range(z[t > .2 & t < .8]))) #~30% attenuation at 5 Hz using filter
#demonstration that half-amplitude cut-off is 6 Hz when apply filter only once
x6hz <- sin(2*pi*t*6)
z6hz <- filter(bf, x6hz)
1 - mean(abs(range(z6hz[t > .2 & t < .8]))) #~50% attenuation at 6 Hz using filter
#plot the filter attenuation profile (for when apply one time, as with "filter" function):
hf <- freqz(bf, Fs = Fs);
plot(c(0, 20, 20, 0, 0), c(0, 0, 1, 1, 0), type = "l",
xlab = "Frequency (Hz)", ylab = "Attenuation (abs)")
lines(hf$f[hf$f<=20], abs(hf$h)[hf$f<=20])
plot(c(0, 20, 20, 0, 0), c(0, 0, -50, -50, 0),
type = "l", xlab = "Frequency (Hz)", ylab = "Attenuation (dB)")
lines(hf$f[hf$f<=20], 20*log10(abs(hf$h))[hf$f<=20])
hf$f[which(abs(hf$h) - .5 < .001)[1]] #half-amplitude cutoff, around 6 Hz
hf$f[which(20*log10(abs(hf$h))+6 < .2)[1]] #half-amplitude cutoff, around 6 Hz
hf$f[which(20*log10(abs(hf$h))+3 < .2)[1]] #half-power cutoff, around 5 Hz
there is a package on CRAN named FastICA, this computes the approximation of the independent source signals, however in order to compute both signals you need a matrix of at least 2xn mixed observations (for this example), this algorithm can't determine the two indpendent signals with just 1xn vector. See the example below. hope this can help you.
number_of_cycles = 2
max_y = 40
x = 1:500
a = number_of_cycles * 2*pi/length(x)
y = max_y * sin(x*a)
noise1 = max_y * 1/10 * sin(x*a*10)
plot(x, y, type="l", col="red", ylim=range(-1.5*max_y,1.5*max_y,5))
points(x, y + noise1, col="green", pch=20)
points(x, noise1, col="yellow", pch=20)
######################################################
library(fastICA)
S <- cbind(y,noise1)#Assuming that "y" source1 and "noise1" is source2
A <- matrix(c(0.291, 0.6557, -0.5439, 0.5572), 2, 2) #This is a mixing matrix
X <- S %*% A
a <- fastICA(X, 2, alg.typ = "parallel", fun = "logcosh", alpha = 1,
method = "R", row.norm = FALSE, maxit = 200,
tol = 0.0001, verbose = TRUE)
par(mfcol = c(2, 3))
plot(S[,1 ], type = "l", main = "Original Signals",
xlab = "", ylab = "")
plot(S[,2 ], type = "l", xlab = "", ylab = "")
plot(X[,1 ], type = "l", main = "Mixed Signals",
xlab = "", ylab = "")
plot(X[,2 ], type = "l", xlab = "", ylab = "")
plot(a$S[,1 ], type = "l", main = "ICA source estimates",
xlab = "", ylab = "")
plot(a$S[, 2], type = "l", xlab = "", ylab = "")
I am not sure if any filter is the best way for You. More useful instrument for that aim is the fast Fourier transformation.

Resources