Split a cubic Bézier curve at a point - math

This question and this question both show how to split a cubic Bézier curve at a particular parameterized value 0 ≤ t ≤ 1 along the curve, composing the original curve shape from two new segments. I need to split my Bézier curve at a point along the curve whose coordinate I know, but not the parameterized value t for the point.
For example, consider Adobe Illustrator, where the user can click on a curve to add a point into the path, without affecting the shape of the path.
Assuming I find the point on the curve closest to where the user clicks, how do I calculate the control points from this? Is there a formula to split a Bézier curve given a point on the curve?
Alternatively (and less desirably), given a point on the curve, is there a way to determine the parameterized value t corresponding to that point (other than using De Casteljau's algorithm in a binary search)?
My Bézier curve happens to only be in 2D, but a great answer would include the vector math needed to apply in arbitrary dimensions.

It is possible, and perhaps simpler, to determine the parametric value of a point on the curve without using De Casteljau's algorithm, but you will have to use heuristics to find a good starting value and similarly approximate the result.
One possible, and fairly simple way is to use Newton's method such that:
tn+1 = tn - ( bx(tn) - cx ) / bx'(tn)
Where bx(t) refers to the x component of some Bezier curve in polynomial form with the control points x0, x1, x2 and x3, bx'(t) is the first derivative and cx is a point on the curve such that:
cx = bx(t) | 0 < t < 1
the coefficients of bx(t) are:
A = -x0 + 3x1 - 3x2 + x3
B = 3x0 - 6x1 + 3x2
C = -3x0 + 3x1
D = x0
and:
bx(t) = At3 + Bt2 + Ct + D,
bx'(t) = 3At2 + 2Bt + C
Now finding a good starting value to plug into Newton's method is the tricky part. For most curves which do not contain loops or cusps, you can simply use the formula:
tn = ( cx - x0 ) / ( x3 - x0 ) | x0 < x1 < x2 < x3
Now you already have:
bx(tn) ≈ cx
So applying one or more iterations of Newton's method will give a better approximation of t for cx.
Note that the Newton Raphson algorithm has quadratic convergence. In most cases a good starting value will result in negligible improvement after two iterations, i.e. less than half a pixel.
Finally it's worth noting that cubic Bezier curves have exact solutions for finding extrema via finding roots of the first derivative. So curves which are problematic can simply be subdivided at their extrema to remove loops or cusps, then better results can be obtained by analyzing the resulting section in question. Subdividing cubics in this way will satisfy the above constraint.

Related

Bend a mesh along spline

I am trying to bend a mesh along a spline curve and currently out of ideas … at first I thought I just add spline point vectors to mesh's vertices , but I am looking for more optimized version of it …
so guys …
How can I bend a mesh along a spline, so that mesh, with some forward axis vector follows the spline and bends according to it and also repeat along the spline …
???
I believe there are many ways to do what you want. Some years ago I worked out an approach using Conformal Geometric Algebra. Of course you can do it using conventional 3D math as its described in Instant Mesh Deformation and Deformation styles for spline-based skeletal animation papers.
A simple method is as follows:
Your spline function is a function S(t): R -> R^3, it takes a scalar between [0:1] and give you points in R^3.
Project each mesh vertex on the spline curve. The projection is orthogonal in the sense that it follows the direction of a normal vector to the curve. So your mesh vertex v_i is projected to a point v'_i in the spline where S(t_i) = v'_i. Form a vector p_i = v_i - v'_i (which is normal to the curve) so each mesh vertex can be expressed as:
v_i = S(t_i) + p_i
Compute an orthogonal coordinate system at "each point" of the spline. That coordinate system is known as Frenet-Serret frame. The first vector to determine is the tangent to the curve. It is uniquely defined as the derivative of S(t) so tangent T = S(t)/dt. The other two vectors, the normal N and binormal B, can be computed in different ways, check the above reference papers for that.
Express the vector p_i (from step 1) in terms of the Frenet-Serret frame at point S(t_i). Such that the vector p_i is a linear combination of T, N and B. Create a matrix A with columns T, N and B. You need to find x_i such that:
A x_i = p_i
That can be solved by inverting the matrix A (actually taking the transpose should suffice). So each mesh vertex can be computed as:
v_i = S(t_i) + A x_i
You can store the pair (t_i, x_i) instead of v_i (you don't need to store v_i anymore since you can compute it from t_i and x_i).
To deform the mesh deformation the spline control points must be translated, then you need to recompute the Frenet-Serret frame of each spline point (taking the derivative of the S(t) to compute T and updating the N and B as suggested in above reference papers). Once you have the updated T, N and B, you can define the matrix A and then compute the mesh vertex positions using formula from step 3.
Results can be seen in pictures of the above mentioned papers.

how to find tangent at time t in natural cubic spline

I used Tim Lamber's algorithm to draw a natural spline cubic curve.
NatCubic class
NatCubic class compute the coefficients of the cubics (a b c d) of an array of points.
a + b*u + c*u^2 + d*u^3 0<=u <1
and Cubic class compute the points on the curve at time t in [0-1].
b in Cubic class is the derivatives at the knots at i
My question is: how to find the tangent at t >0 <1
Thank you!
PS :
for clarify my question, I search the tangent at time t, eg 0.5
to using pre-computed coeficients (abcd) of each control point.
This is to avoid calculating the point(t+1) to find the tangent by, y(i +1) - y(i-1)
sorry for my poor english.
you can see in this picture that I want to do
Sont know if I well understood your question.
(EDIT)
Slope = b + 2c*u + 3d*u^2
then for the tanget use
(y - yo) = m * (x - x0)
where y0 is your spline value at point x0
and m is the slope at x0

What mathematical methods work for interpolation 2d to 2d functions?

So we have a matrix like
12,32
24,12
...
with length 2xN and another
44,32
44,19
...
with length 2xN and there is some function f(x, y) that returns z[1], z[2]. That 2 matrices that we were given represent known value pairs for x,y and z[1],z[2]. What are interpolation formulas that would help in such case?
If you solve the problem for one return value, you can find two functions f_1(x,y) and f_2(x,y) by interpolation, and compose your function as f(x, y) = [f_1(x,y), f_2(x,y)]. Just pick any method for solving the interpolation function suitable for your problem.
For the actual interpolation problem in two dimensions, there are a lot of ways you can handle this. If simple is what you require, you can go with linear interpolation. If you are OK with piecewise functions, you can go for bezier curves, or splines. Or, if data is uniform, you could get away with a simple polynomial interpolation (well, not quite trivial when in 2D, but easy enough).
EDIT: More information and some links.
A piecewise solution is possible using Bilinear interpolation (wikipedia).
For polynomial interpolation, if your data is on a grid, you can use the following algorithm (I cannot find the reference for it, it is from memory).
If the data points are on a k by l grid, rewrite your polynomial as follows:
f(x,y) = cx_1(x)*y^(k-1) + cx_2(x)*y^(k-2) + ... + cx_k(x)
Here, each coefficient cx_i(x) is also a polynomial of degree l. The first step is to find k polynomials of degree l by interpolating each row or column of the grid. When this is done, you have l coefficient sets (or, in other words, l polynomials) as interpolation points for each cx_i(x) polynomials as cx_i(x0), cx_i(x1), ..., cx_i(xl) (giving you a total of l*k points). Now, you can determine these polynomials using the above constants as the interpolation points, which give you the resulting f(x,y).
The same method is used for bezier curves or splines. The only difference is that you use control points instead of polynomial coefficients. You first get a set of splines that will generate your data points, and then you interpolate the control points of these intermediate curves to get the control points of the surface curve.
Let me add an example to clarify the above algorithm. Let's have the following data points:
0,0 => 1
0,1 => 2
1,0 => 3
1,1 => 4
We start by fitting two polynomials: one for data points (0,0) and (0,1), and another for (1, 0) and (1, 1):
f_0(x) = x + 1
f_1(x) = x + 3
Now, we interpolate in the other direction to determine the coefficients.When we read these polynomial coefficients vertically, we need two polynomials. One evaluates to 1 at both 0 and 1; and another that evaluates to 1 at 0, and 3 at 1:
cy_1(y) = 1
cy_2(y) = 2*y + 1
If we combine these into f(x,y), we get:
f(x,y) = cy_1(y)*x + cy_2(y)
= 1*x + (2*y + 1)*1
= x + 2*y + 1

How to make sure if a polynomial curve is monotonic under interval [a,b]?

If I got a polynomial curve, and I want to find all monotonic curve segments and corresponding intervals by programming.
What's the best way to do this...
I want to avoid solving equation like f'(x) = 0;
Using some nice numerical ways to do this,like bi-section, is preferred.
f'(x) expression is available.
Thanks.
Add additional details. For example, I get a curve in 2d space, and its polynomial is
x: f(t)
y: g(t)
t is [0,1]
So, if I want to get its monotonic curve segment, I must know the position of t where its tangent vector is (1,0).
One direct way to resolve this is to setup an equation "f'(x) = 0".
But I want to use the most efficient way to do this.
For example, I try to use recursive ways to find this.
Divide the range [0,1] to four parts, and check whether the four tangents projection on vector (1,0) are in same direction, and two points are close enough. If not, continue to divide the range into 4 parts, until they are in same direction in (1,0) and (0,1), and close enough.
I think you will have to find the roots of f'(x) using a numerical method (feel free to implement any root-seeking algorithm you want, Wikipedia has a list). The roots will be those points where the gradient reaches zero; say x1, x2, x3.
You then have a set of intervals (-inf, x1) (x1, x2) etc, continuity of a polynomial ensures that the gradient will be always positive or always negative between a particular pair of points.
So evaluating the gradient sign at a point within each interval will tell you whether that interval is monotically increasing or not. If you don't care for a "strictly" increasing section, you could patch together adjacent intervals which have positive gradient (as a point of inflection will show up as one of the f'(x)=0 roots).
As an alternative to computing the roots of f', you can also use Sturm Sequences.
They allow counting the number of roots (here, the roots of f') in an interval.
The monotic curve segments are delimited by the roots of f'(x). You can find the roots by using an iterative algorithm like Newton's method.

Fitting polynomials to data

Is there a way, given a set of values (x,f(x)), to find the polynomial of a given degree that best fits the data?
I know polynomial interpolation, which is for finding a polynomial of degree n given n+1 data points, but here there are a large number of values and we want to find a low-degree polynomial (find best linear fit, best quadratic, best cubic, etc.). It might be related to least squares...
More generally, I would like to know the answer when we have a multivariate function -- points like (x,y,f(x,y)), say -- and want to find the best polynomial (p(x,y)) of a given degree in the variables. (Specifically a polynomial, not splines or Fourier series.)
Both theory and code/libraries (preferably in Python, but any language is okay) would be useful.
Thanks for everyone's replies. Here is another attempt at summarizing them. Pardon if I say too many "obvious" things: I knew nothing about least squares before, so everything was new to me.
NOT polynomial interpolation
Polynomial interpolation is fitting a polynomial of degree n given n+1 data points, e.g. finding a cubic that passes exactly through four given points. As said in the question, this was not want I wanted—I had a lot of points and wanted a small-degree polynomial (which will only approximately fit, unless we've been lucky)—but since some of the answers insisted on talking about it, I should mention them :) Lagrange polynomial, Vandermonde matrix, etc.
What is least-squares?
"Least squares" is a particular definition/criterion/"metric" of "how well" a polynomial fits. (There are others, but this is simplest.) Say you are trying to fit a polynomial
p(x,y) = a + bx + cy + dx2 + ey2 + fxy
to some given data points (xi,yi,Zi) (where "Zi" was "f(xi,yi)" in the question). With least-squares the problem is to find the "best" coefficients (a,b,c,d,e,f), such that what is minimized (kept "least") is the "sum of squared residuals", namely
S = ∑i (a + bxi + cyi + dxi2 + eyi2 + fxiyi - Zi)2
Theory
The important idea is that if you look at S as a function of (a,b,c,d,e,f), then S is minimized at a point at which its gradient is 0. This means that for example ∂S/∂f=0, i.e. that
∑i2(a + … + fxiyi - Zi)xiyi = 0
and similar equations for a, b, c, d, e.
Note that these are just linear equations in a…f. So we can solve them with Gaussian elimination or any of the usual methods.
This is still called "linear least squares", because although the function we wanted was a quadratic polynomial, it is still linear in the parameters (a,b,c,d,e,f). Note that the same thing works when we want p(x,y) to be any "linear combination" of arbitrary functions fj, instead of just a polynomial (= "linear combination of monomials").
Code
For the univariate case (when there is only variable x — the fj are monomials xj), there is Numpy's polyfit:
>>> import numpy
>>> xs = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> ys = [1.1, 3.9, 11.2, 21.5, 34.8, 51, 70.2, 92.3, 117.4, 145.5]
>>> p = numpy.poly1d(numpy.polyfit(xs, ys, deg=2))
>>> print p
2
1.517 x + 2.483 x + 0.4927
For the multivariate case, or linear least squares in general, there is SciPy. As explained in its documentation, it takes a matrix A of the values fj(xi). (The theory is that it finds the Moore-Penrose pseudoinverse of A.) With our above example involving (xi,yi,Zi), fitting a polynomial means the fj are the monomials x()y(). The following finds the best quadratic (or best polynomial of any other degree, if you change the "degree = 2" line):
from scipy import linalg
import random
n = 20
x = [100*random.random() for i in range(n)]
y = [100*random.random() for i in range(n)]
Z = [(x[i]+y[i])**2 + 0.01*random.random() for i in range(n)]
degree = 2
A = []
for i in range(n):
A.append([])
for xd in range(degree+1):
for yd in range(degree+1-xd):
A[i].append((x[i]**xd)*(y[i]**yd)) #f_j(x_i)
c,_,_,_ = linalg.lstsq(A,Z)
j = 0
for xd in range(0,degree+1):
for yd in range(0,degree+1-xd):
print " + (%.2f)x^%dy^%d" % (c[j], xd, yd),
j += 1
prints
+ (0.01)x^0y^0 + (-0.00)x^0y^1 + (1.00)x^0y^2 + (-0.00)x^1y^0 + (2.00)x^1y^1 + (1.00)x^2y^0
so it has discovered that the polynomial is x2+2xy+y2+0.01. [The last term is sometimes -0.01 and sometimes 0, which is to be expected because of the random noise we added.]
Alternatives to Python+Numpy/Scipy are R and Computer Algebra Systems: Sage, Mathematica, Matlab, Maple. Even Excel might be able to do it. Numerical Recipes discusses methods to implement it ourselves (in C, Fortran).
Concerns
It is strongly influenced by how the points are chosen. When I had x=y=range(20) instead of the random points, it always produced 1.33x2+1.33xy+1.33y2, which was puzzling... until I realised that because I always had x[i]=y[i], the polynomials were the same: x2+2xy+y2 = 4x2 = (4/3)(x2+xy+y2). So the moral is that it is important to choose the points carefully to get the "right" polynomial. (If you can chose, you should choose Chebyshev nodes for polynomial interpolation; not sure if the same is true for least squares as well.)
Overfitting: higher-degree polynomials can always fit the data better. If you change the degree to 3 or 4 or 5, it still mostly recognizes the same quadratic polynomial (coefficients are 0 for higher-degree terms) but for larger degrees, it starts fitting higher-degree polynomials. But even with degree 6, taking larger n (more data points instead of 20, say 200) still fits the quadratic polynomial. So the moral is to avoid overfitting, for which it might help to take as many data points as possible.
There might be issues of numerical stability I don't fully understand.
If you don't need a polynomial, you can obtain better fits with other kinds of functions, e.g. splines (piecewise polynomials).
Yes, the way this is typically done is by using least squares. There are other ways of specifying how well a polynomial fits, but the theory is simplest for least squares. The general theory is called linear regression.
Your best bet is probably to start with Numerical Recipes.
R is free and will do everything you want and more, but it has a big learning curve.
If you have access to Mathematica, you can use the Fit function to do a least squares fit. I imagine Matlab and its open source counterpart Octave have a similar function.
For (x, f(x)) case:
import numpy
x = numpy.arange(10)
y = x**2
coeffs = numpy.polyfit(x, y, deg=2)
poly = numpy.poly1d(coeffs)
print poly
yp = numpy.polyval(poly, x)
print (yp-y)
Bare in mind that a polynomial of higher degree ALWAYS fits the data better. Polynomials of higher degree typically leads to highly improbable functions (see Occam's Razor), though (overfitting). You want to find a balance between simplicity (degree of polynomial) and fit (e.g. least square error). Quantitatively, there are tests for this, the Akaike Information Criterion or the Bayesian Information Criterion. These tests give a score which model is to be prefered.
If you want to fit the (xi, f(xi)) to an polynomial of degree n then you would set up a linear least squares problem with the data (1, xi, xi, xi^2, ..., xi^n, f(xi) ). This will return a set of coefficients (c0, c1, ..., cn) so that the best fitting polynomial is *y = c0 + c1 * x + c2 * x^2 + ... + cn * x^n.*
You can generalize this two more than one dependent variable by including powers of y and combinations of x and y in the problem.
Lagrange polynomials (as #j w posted) give you an exact fit at the points you specify, but with polynomials of degree more than say 5 or 6 you can run into numerical instability.
Least squares gives you the "best fit" polynomial with error defined as the sum of squares of the individual errors. (take the distance along the y-axis between the points you have and the function that results, square them, and sum them up) The MATLAB polyfit function does this, and with multiple return arguments, you can have it automatically take care of scaling/offset issues (e.g. if you have 100 points all between x=312.1 and 312.3, and you want a 6th degree polynomial, you're going to want to calculate u = (x-312.2)/0.1 so the u-values are distributed between -1 and +=).
NOTE that the results of least-squares fits are strongly influenced by the distribution of x-axis values. If the x-values are equally spaced, then you'll get larger errors at the ends. If you have a case where you can choose the x values and you care about the maximum deviation from your known function and an interpolating polynomial, then the use of Chebyshev polynomials will give you something that is close to the perfect minimax polynomial (which is very hard to calculate). This is discussed at some length in Numerical Recipes.
Edit: From what I gather, this all works well for functions of one variable. For multivariate functions it is likely to be much more difficult if the degree is more than, say, 2. I did find a reference on Google Books.
at college we had this book which I still find extremely useful: Conte, de Boor; elementary numerical analysis; Mc Grow Hill. The relevant paragraph is 6.2: Data Fitting.
example code comes in FORTRAN, and the listings are not very readable either, but the explanations are deep and clear at the same time. you end up understanding what you are doing, not just doing it (as is my experience of Numerical Recipes).
I usually start with Numerical Recipes but for things like this I quickly have to grab Conte-de Boor.
maybe better posting some code... it's a bit stripped down, but the most relevant parts are there. it relies on numpy, obviously!
def Tn(n, x):
if n==0:
return 1.0
elif n==1:
return float(x)
else:
return (2.0 * x * Tn(n - 1, x)) - Tn(n - 2, x)
class ChebyshevFit:
def __init__(self):
self.Tn = Memoize(Tn)
def fit(self, data, degree=None):
"""fit the data by a 'minimal squares' linear combination of chebyshev polinomials.
cfr: Conte, de Boor; elementary numerical analysis; Mc Grow Hill (6.2: Data Fitting)
"""
if degree is None:
degree = 5
data = sorted(data)
self.range = start, end = (min(data)[0], max(data)[0])
self.halfwidth = (end - start) / 2.0
vec_x = [(x - start - self.halfwidth)/self.halfwidth for (x, y) in data]
vec_f = [y for (x, y) in data]
mat_phi = [numpy.array([self.Tn(i, x) for x in vec_x]) for i in range(degree+1)]
mat_A = numpy.inner(mat_phi, mat_phi)
vec_b = numpy.inner(vec_f, mat_phi)
self.coefficients = numpy.linalg.solve(mat_A, vec_b)
self.degree = degree
def evaluate(self, x):
"""use Clenshaw algorithm
http://en.wikipedia.org/wiki/Clenshaw_algorithm
"""
x = (x-self.range[0]-self.halfwidth) / self.halfwidth
b_2 = float(self.coefficients[self.degree])
b_1 = 2 * x * b_2 + float(self.coefficients[self.degree - 1])
for i in range(2, self.degree):
b_1, b_2 = 2.0 * x * b_1 + self.coefficients[self.degree - i] - b_2, b_1
else:
b_0 = x*b_1 + self.coefficients[0] - b_2
return b_0
Remember, there's a big difference between approximating the polynomial and finding an exact one.
For example, if I give you 4 points, you could
Approximate a line with a method like least squares
Approximate a parabola with a method like least squares
Find an exact cubic function through these four points.
Be sure to select the method that's right for you!
It's rather easy to scare up a quick fit using Excel's matrix functions if you know how to represent the least squares problem as a linear algebra problem. (That depends on how reliable you think Excel is as a linear algebra solver.)
The lagrange polynomial is in some sense the "simplest" interpolating polynomial that fits a given set of data points.
It is sometimes problematic because it can vary wildly between data points.

Resources