Slice data.frame and join back old data.frame without slice - r

I am slicing a data.frame by removing 50% of rows with lowest revenue, now I want to join back old data.frame so I can compare result with slice against result before slice.
I have a solution but looking for a more elegant.
require(dplyr)
> #creating my data.frame with revenue for id and subid
> df <- data.frame(id = gl(n = 2, k= 5, length = 10),
+ subid = gl(n = 6, k = 2, length = 10),
+ rev = rnorm(10, 100, 15))
> df
id subid rev
1 1 1 102.80694
2 1 1 77.88691
3 1 2 122.71019
4 1 2 67.13475
5 1 3 93.21146
6 2 3 91.48368
7 2 4 103.05535
8 2 4 82.27343
9 2 5 106.03651
10 2 5 81.14182
>
> #keep only subid with 50% highest turnover within each id
> df_sliced <- df %>%
+ arrange(id, desc(rev)) %>%
+ group_by(id) %>%
+ slice(seq(n()*0.5)) %>%
+ group_by(id) %>%
+ summarise(rev_sliced = sum(rev))
>
> df_sliced
Source: local data frame [2 x 2]
id rev_sliced
(fctr) (dbl)
1 1 225.5171
2 2 209.0919
>
> #now I want to join back and compare my sliced result with result before slice.
> df_desired <- df %>%
+ group_by(id) %>%
+ summarise(rev = sum(rev)) %>%
+ cbind(df_sliced) #this will obviously also give me two columns with id. Desired result is with only one column for id.
>
> df_desired
id rev id rev_sliced
1 1 463.7503 1 225.5171
2 2 463.9908 2 209.0919
I have not solved how to use join and not how to have everything in one chain.

For the sliced sum, you can calculate the sum of rev that is above the 50% quantile as follows; then you can calculate both in the same summarize expression without the need of a join:
df %>%
group_by(id) %>%
summarise(rev_sliced = sum(rev[rev > quantile(rev, 0.5)]),
rev = sum(rev))
# A tibble: 2 x 3
# id rev_sliced rev
# <int> <dbl> <dbl>
#1 1 225.5171 463.7502
#2 2 209.0919 463.9908

Related

Interpolation of values from list

I have a dataframe containing the results of a competition. In this example competitors b and c have tied for second place. The actual dataframe is very large and could contain multiple ties.
df <- data.frame(name = letters[1:4],
place = c(1, 2, 2, 4))
I also have point values for the respective places, where first place gets 4 points, 2nd gets 3, 3rd gets 1 and 4th gets 0.
points <- c(4, 3, 1, 0)
names(points) <- 1:4
I can match points to place to get each competitor's score
df %>%
mutate(score = points[place])
name place score
1 a 1 4
2 b 2 3
3 c 2 3
4 d 4 0
What I would like to do though is award points to b and c that are the mean of the point values for 2nd and 3rd, such that each receives 2 points like this:
name place score
1 a 1 4
2 b 2 2
3 c 2 2
4 d 4 0
How can I accomplish this programmatically?
A solution using nested data frames and purrr.
library(dplyr)
library(tidyr)
library(purrr)
df <- data.frame(name = letters[1:4],
place = c(1, 2, 2, 4))
points <- c(4, 3, 1, 0)
names(points) <- 1:4
# a function to help expand the dataframe based on the number of ties
expand_all <- function(x,n){
x:(x+n-1)
}
df %>%
group_by(place) %>%
tally() %>%
mutate(new_place = purrr::map2(place,n, expand_all)) %>%
unnest(new_place) %>%
mutate(score = points[new_place]) %>%
group_by(place) %>%
summarize(score = mean(score)) %>%
inner_join(df)
Robert Wilson's answer gave me an idea. Rather than mapping over nested dataframes the rank function from base can get to the same result
df %>%
mutate(new_place = rank(place, ties.method = "first")) %>%
mutate(score = points[new_place]) %>%
group_by(place) %>%
summarize(score = mean(score)) %>%
inner_join(df)
place score name
<dbl> <dbl> <chr>
1 1 4 a
2 2 2 b
3 2 2 c
4 4 0 d
This can be accomplished in few lines with an ifelse() statement inside of a mutate():
df %>%
group_by(place) %>%
mutate(n_ties = n()) %>%
ungroup %>%
mutate(score = (points[place] + ifelse(n_ties > 1, 1, 0))/ n_ties)
# A tibble: 4 x 4
name place n_ties score
<chr> <dbl> <int> <dbl>
1 a 1 1 4
2 b 2 2 2
3 c 2 2 2
4 d 4 1 0

Filter group only when both levels are present

This feels like it should be more straightforward and I'm just missing something. The goal is to filter the data into a new df where both var values 1 & 2 are represented in the group
here's some toy data:
grp <- c(rep("A", 3), rep("B", 2), rep("C", 2), rep("D", 1), rep("E",2))
var <- c(1,1,2,1,1,2,1,2,2,2)
id <- c(1:10)
df <- as.data.frame(cbind(id, grp, var))
only grp A and C should be present in the new data because they are the only ones where var 1 & 2 are present.
I tried dplyr, but obviously '&' won't work since it's not row based and '|' just returns the same df:
df.new <- df %>% group_by(grp) %>% filter(var==1 & var==2) #returns no rows
Here is another dplyr method. This can work for more than two factor levels in var.
library(dplyr)
df2 <- df %>%
group_by(grp) %>%
filter(all(levels(var) %in% var)) %>%
ungroup()
df2
# # A tibble: 5 x 3
# id grp var
# <fct> <fct> <fct>
# 1 1 A 1
# 2 2 A 1
# 3 3 A 2
# 4 6 C 2
# 5 7 C 1
We can condition on there being at least one instance of var == 1 and at least one instance of var == 2 by doing the following:
library(tidyverse)
df1 <- data_frame(grp, var, id) # avoids coercion to character/factor
df1 %>%
group_by(grp) %>%
filter(sum(var == 1) > 0 & sum(var == 2) > 0)
grp var id
<chr> <dbl> <int>
1 A 1 1
2 A 1 2
3 A 2 3
4 C 2 6
5 C 1 7

How can I create a column that cumulatively adds the sum of two previous rows based on conditions?

I tried asking this question before but was it was poorly stated. This is a new attempt cause I haven't solved it yet.
I have a dataset with winners, losers, date, winner_points and loser_points.
For each row, I want two new columns, one for the winner and one for the loser that shows how many points they have scored so far (as both winners and losers).
Example data:
winner <- c(1,2,3,1,2,3,1,2,3)
loser <- c(3,1,1,2,1,1,3,1,2)
date <- c("2017-10-01","2017-10-02","2017-10-03","2017-10-04","2017-10-05","2017-10-06","2017-10-07","2017-10-08","2017-10-09")
winner_points <- c(2,1,2,1,2,1,2,1,2)
loser_points <- c(1,0,1,0,1,0,1,0,1)
test_data <- data.frame(winner, loser, date = as.Date(date), winner_points, loser_points)
I want the output to be:
winner_points_sum <- c(0, 0, 1, 3, 1, 3, 5, 3, 5)
loser_points_sum <- c(0, 2, 2, 1, 4, 5, 4, 7, 4)
test_data <- data.frame(winner, loser, date = as.Date(date), winner_points, loser_points, winner_points_sum, loser_points_sum)
How I've solved it thus far is to do a for loop such as:
library(dplyr)
test_data$winner_points_sum_loop <- 0
test_data$loser_points_sum_loop <- 0
for(i in row.names(test_data)) {
test_data[i,]$winner_points_sum_loop <-
(
test_data %>%
dplyr::filter(winner == test_data[i,]$winner & date < test_data[i,]$date) %>%
dplyr::summarise(points = sum(winner_points, na.rm = TRUE))
+
test_data %>%
dplyr::filter(loser == test_data[i,]$winner & date < test_data[i,]$date) %>%
dplyr::summarise(points = sum(loser_points, na.rm = TRUE))
)
}
test_data$winner_points_sum_loop <- unlist(test_data$winner_points_sum_loop)
Any suggestions how to tackle this problem? The queries take quite some time when the row numbers add up. I've tried elaborating with the AVE function, I can do it for one column to sum a players point as winner but can't figure out how to add their points as loser.
winner <- c(1,2,3,1,2,3,1,2,3)
loser <- c(3,1,1,2,1,1,3,1,2)
date <- c("2017-10-01","2017-10-02","2017-10-03","2017-10-04","2017-10-05","2017-10-06","2017-10-07","2017-10-08","2017-10-09")
winner_points <- c(2,1,2,1,2,1,2,1,2)
loser_points <- c(1,0,1,0,1,0,1,0,1)
test_data <- data.frame(winner, loser, date = as.Date(date), winner_points, loser_points)
library(dplyr)
library(tidyr)
test_data %>%
unite(winner, winner, winner_points) %>% # unite winner columns
unite(loser, loser, loser_points) %>% # unite loser columns
gather(type, pl_pts, winner, loser, -date) %>% # reshape
separate(pl_pts, c("player","points"), convert = T) %>% # separate columns
arrange(date) %>% # order dates (in case it's not)
group_by(player) %>% # for each player
mutate(sum_points = cumsum(points) - points) %>% # get points up to that date
ungroup() %>% # forget the grouping
unite(pl_pts_sumpts, player, points, sum_points) %>% # unite columns
spread(type, pl_pts_sumpts) %>% # reshape
separate(loser, c("loser", "loser_points", "loser_points_sum"), convert = T) %>% # separate columns and give appropriate names
separate(winner, c("winner", "winner_points", "winner_points_sum"), convert = T) %>%
select(winner, loser, date, winner_points, loser_points, winner_points_sum, loser_points_sum) # select the order you prefer
# # A tibble: 9 x 7
# winner loser date winner_points loser_points winner_points_sum loser_points_sum
# * <int> <int> <date> <int> <int> <int> <int>
# 1 1 3 2017-10-01 2 1 0 0
# 2 2 1 2017-10-02 1 0 0 2
# 3 3 1 2017-10-03 2 1 1 2
# 4 1 2 2017-10-04 1 0 3 1
# 5 2 1 2017-10-05 2 1 1 4
# 6 3 1 2017-10-06 1 0 3 5
# 7 1 3 2017-10-07 2 1 5 4
# 8 2 1 2017-10-08 1 0 3 7
# 9 3 2 2017-10-09 2 1 5 4
I finally understood what you want. And I took an approach of getting cumulative points of each player at each point in time and then joining it to the original test_data data frame.
winner <- c(1,2,3,1,2,3,1,2,3)
loser <- c(3,1,1,2,1,1,3,1,2)
date <- c("2017-10-01","2017-10-02","2017-10-03","2017-10-04","2017-10-05","2017-10-06","2017-10-07","2017-10-08","2017-10-09")
winner_points <- c(2,1,2,1,2,1,2,1,2)
loser_points <- c(1,0,1,0,1,0,1,0,1)
test_data <- data.frame(winner, loser, date = as.Date(date), winner_points, loser_points)
library(dplyr)
library(tidyr)
cum_points <- test_data %>%
gather(end_game_status, player_id, winner, loser) %>%
gather(which_point, how_many_points, winner_points, loser_points) %>%
filter(
(end_game_status == "winner" & which_point == "winner_points") |
(end_game_status == "loser" & which_point == "loser_points")) %>%
arrange(date = as.Date(date)) %>%
group_by(player_id) %>%
mutate(cumulative_points = cumsum(how_many_points)) %>%
mutate(cumulative_points_sofar = lag(cumulative_points, default = 0))
select(player_id, date, cumulative_points)
output <- test_data %>%
left_join(cum_points, by = c('date', 'winner' = 'player_id')) %>%
rename(winner_points_sum = cumulative_points_sofar) %>%
left_join(cum_points, by = c('date', 'loser' = 'player_id')) %>%
rename(loser_points_sum = cumulative_points_sofar)
output
The difference to the previous question of the OP is that the OP is now asking for the cumulative sum of points each player has scored so far, i.e., before the actual date. Furthermore, the sample data set now contains a date column which uniquely identifies each row.
So, my previous approach can be used here as well, with some modifications. The solution below reshapes the data from wide to long format whereby two value variables are reshaped simultaneously, computes the cumulative sums for each player id , and finally reshapes from long back to wide format, again. In order to sum only points scored before the actual date, the rows are lagged by one.
It is important to note that the winner and loser columns contain the respective player ids.
library(data.table)
cols <- c("winner", "loser")
setDT(test_data)[
# reshape multiple value variables simultaneously from wide to long format
, melt(.SD, id.vars = "date",
measure.vars = list(cols, paste0(cols, "_points")),
value.name = c("id", "points"))][
# rename variable column
, variable := forcats::lvls_revalue(variable, cols)][
# order by date and cumulate the lagged points by id
order(date), points_sum := cumsum(shift(points, fill = 0)), by = id][
# reshape multiple value variables simultaneously from long to wide format
, dcast(.SD, date ~ variable, value.var = c("id", "points", "points_sum"))]
date id_winner id_loser points_winner points_loser points_sum_winner points_sum_loser
1: 2017-10-01 1 3 2 1 0 0
2: 2017-10-02 2 1 1 0 0 2
3: 2017-10-03 3 1 2 1 1 2
4: 2017-10-04 1 2 1 0 3 1
5: 2017-10-05 2 1 2 1 1 4
6: 2017-10-06 3 1 1 0 3 5
7: 2017-10-07 1 3 2 1 5 4
8: 2017-10-08 2 1 1 0 3 7
9: 2017-10-09 3 2 2 1 5 4

Create a list of all values of a variable grouped by another variable in R

I have a data frame that contains two variables, like this:
df <- data.frame(group=c(1,1,1,2,2,3,3,4),
type=c("a","b","a", "b", "c", "c","b","a"))
> df
group type
1 1 a
2 1 b
3 1 a
4 2 b
5 2 c
6 3 c
7 3 b
8 4 a
I want to produce a table showing for each group the combination of types it has in the data frame as one variable e.g.
group alltypes
1 1 a, b
2 2 b, c
3 3 b, c
4 4 a
The output would always list the types in the same order (e.g. groups 2 and 3 get the same result) and there would be no repetition (e.g. group 1 is not "a, b, a").
I tried doing this using dplyr and summarize, but I can't work out how to get it to meet these two conditions - the code I tried was:
> df %>%
+ group_by(group) %>%
+ summarise(
+ alltypes = paste(type, collapse=", ")
+ )
# A tibble: 4 × 2
group alltypes
<dbl> <chr>
1 1 a, b, a
2 2 b, c
3 3 c, b
4 4 a
I also tried turning type into a set of individual counts, but not sure if that's actually useful:
> df %>%
+ group_by(group, type) %>%
+ tally %>%
+ spread(type, n, fill=0)
Source: local data frame [4 x 4]
Groups: group [4]
group a b c
* <dbl> <dbl> <dbl> <dbl>
1 1 2 1 0
2 2 0 1 1
3 3 0 1 1
4 4 1 0 0
Any suggestions would be greatly appreciated.
I think you were very close. You could call the sort and unique functions to make sure your result adheres to your conditions as follows:
df %>% group_by(group) %>%
summarize(type = paste(sort(unique(type)),collapse=", "))
returns:
# A tibble: 4 x 2
group type
<int> <chr>
1 1 a, b
2 2 b, c
3 3 b, c
4 4 a
To expand on Florian's answer this could be extended to generating an ordered list based on values in your data set. An example could be determining the order of dates:
library(lubridate)
library(tidyverse)
# Generate random dates
set.seed(123)
Date = ymd("2018-01-01") + sort(sample(1:200, 10))
A = ymd("2018-01-01") + sort(sample(1:200, 10))
B = ymd("2018-01-01") + sort(sample(1:200, 10))
C = ymd("2018-01-01") + sort(sample(1:200, 10))
# Combine to data set
data = bind_cols(as.data.frame(Date), as.data.frame(A), as.data.frame(B), as.data.frame(C))
# Get order of dates for each row
data %>%
mutate(D = Date) %>%
gather(key = Var, value = D, -Date) %>%
arrange(Date, D) %>%
group_by(Date) %>%
summarize(Ord = paste(Var, collapse=">"))
Somewhat tangential to the original question but hopefully helpful to someone.

R - Find a sequence of row elements based on time constraints in a dataframe

Consider the following dataframe (ordered by id and time):
df <- data.frame(id = c(rep(1,7),rep(2,5)), event = c("a","b","b","b","a","b","a","a","a","b","a","a"), time = c(1,3,6,12,24,30,32,1,2,6,17,24))
df
id event time
1 1 a 1
2 1 b 3
3 1 b 6
4 1 b 12
5 1 a 24
6 1 b 30
7 1 a 42
8 2 a 1
9 2 a 2
10 2 b 6
11 2 a 17
12 2 a 24
I want to count how many times a given sequence of events appears in each "id" group. Consider the following sequence with time constraints:
seq <- c("a", "b", "a")
time_LB <- c(0, 2, 12)
time_UB <- c(Inf, 8, 18)
It means that event "a" can start at any time, event "b" must start no earlier than 2 and no later than 8 after event "a", another event "a" must start no earlier than 12 and no later than 18 after event "b".
Some rules for creating sequences:
Events don't need to be consecutive with respect to "time" column. For example, seq can be constructed from rows 1, 3, and 5.
To be counted, sequences must have different first event. For example, if seq = rows 8, 10, and 11 was counted, then seq = rows 8, 10, and 12 must not be counted.
The events may be included in many constructed sequences if they do not violate the second rule. For example, we count both sequences: rows 1, 3, 5 and rows 5, 6, 7.
The expected result:
df1
id count
1 1 2
2 2 2
There are some related questions in R - Identify a sequence of row elements by groups in a dataframe and Finding rows in R dataframe where a column value follows a sequence.
Is it a way to solve the problem using "dplyr"?
I believe this is what you're looking for. It gives you the desired output. Note that there is a typo in your original question where you have a 32 instead of a 42 when you define the time column in df. I say this is a typo because it doesn't match your output immediately below the definition of df. I changed the 32 to a 42 in the code below.
library(dplyr)
df <- data.frame(id = c(rep(1,7),rep(2,5)), event = c("a","b","b","b","a","b","a","a","a","b","a","a"), time = c(1,3,6,12,24,30,42,1,2,6,17,24))
seq <- c("a", "b", "a")
time_LB <- c(0, 2, 12)
time_UB <- c(Inf, 8, 18)
df %>%
full_join(df,by='id',suffix=c('1','2')) %>%
full_join(df,by='id') %>%
rename(event3 = event, time3 = time) %>%
filter(event1 == seq[1] & event2 == seq[2] & event3 == seq[3]) %>%
filter(time1 %>% between(time_LB[1],time_UB[1])) %>%
filter((time2-time1) %>% between(time_LB[2],time_UB[2])) %>%
filter((time3-time2) %>% between(time_LB[3],time_UB[3])) %>%
group_by(id,time1) %>%
slice(1) %>% # slice 1 row for each unique id and time1 (so no duplicate time1s)
group_by(id) %>%
count()
Here's the output:
# A tibble: 2 x 2
id n
<dbl> <int>
1 1 2
2 2 2
Also, if you omit the last 2 parts of the dplyr pipe that do the counting (to see the sequences it is matching), you get the following sequences:
Source: local data frame [4 x 7]
Groups: id, time1 [4]
id event1 time1 event2 time2 event3 time3
<dbl> <fctr> <dbl> <fctr> <dbl> <fctr> <dbl>
1 1 a 1 b 6 a 24
2 1 a 24 b 30 a 42
3 2 a 1 b 6 a 24
4 2 a 2 b 6 a 24
EDIT IN RESPONSE TO COMMENT REGARDING GENERALIZING THIS: Yes it is possible to generalize this to arbitrary length sequences but requires some R voodoo. Most notably, note the use of Reduce, which allows you to apply a common function on a list of objects as well as foreach, which I'm borrowing from the foreach package to do some arbitrary looping. Here's the code:
library(dplyr)
library(foreach)
df <- data.frame(id = c(rep(1,7),rep(2,5)), event = c("a","b","b","b","a","b","a","a","a","b","a","a"), time = c(1,3,6,12,24,30,42,1,2,6,17,24))
seq <- c("a", "b", "a")
time_LB <- c(0, 2, 12)
time_UB <- c(Inf, 8, 18)
multi_full_join = function(df1,df2) {full_join(df1,df2,by='id')}
df_list = foreach(i=1:length(seq)) %do% {df}
df2 = Reduce(multi_full_join,df_list)
names(df2)[grep('event',names(df2))] = paste0('event',seq_along(seq))
names(df2)[grep('time',names(df2))] = paste0('time',seq_along(seq))
df2 = df2 %>% mutate_if(is.factor,as.character)
df2 = df2 %>%
mutate(seq_string = Reduce(paste0,df2 %>% select(grep('event',names(df2))) %>% as.list)) %>%
filter(seq_string == paste0(seq,collapse=''))
time_diff = df2 %>% select(grep('time',names(df2))) %>%
t %>%
as.data.frame() %>%
lapply(diff) %>%
unlist %>% matrix(ncol=2,byrow=TRUE) %>%
as.data.frame
foreach(i=seq_along(time_diff),.combine=data.frame) %do%
{
time_diff[[i]] %>% between(time_LB[i+1],time_UB[i+1])
} %>%
Reduce(`&`,.) %>%
which %>%
slice(df2,.) %>%
filter(time1 %>% between(time_LB[1],time_UB[1])) %>% # deal with time1 bounds, which we skipped over earlier
group_by(id,time1) %>%
slice(1) # slice 1 row for each unique id and time1 (so no duplicate time1s)
This outputs the following:
Source: local data frame [4 x 8]
Groups: id, time1 [4]
id event1 time1 event2 time2 event3 time3 seq_string
<dbl> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr>
1 1 a 1 b 6 a 24 aba
2 1 a 24 b 30 a 42 aba
3 2 a 1 b 6 a 24 aba
4 2 a 2 b 6 a 24 aba
If you want just the counts, you can group_by(id) then count() as in the original code snippet.
Perhaps it's easier to represent event sequences as strings and use regex:
df.str = lapply(split(df, df$id), function(d) {
z = rep('-', tail(d,1)$time); z[d$time] = as.character(d$event); z })
df.str = lapply(df.str, paste, collapse='')
# > df.str
# $`1`
# [1] "a-b--b-----b-----------a-----b-----------a"
#
# $`2`
# [1] "aa---b----------a------a"
df1 = lapply(df.str, function(s) length(gregexpr('(?=a.{1,7}b.{11,17}a)', s, perl=T)[[1]]))
> data.frame(id=names(df1), count=unlist(df1))
# id count
# 1 1 2
# 2 2 2

Resources