Related
I have this LSDV model using the "lm()" function and adding the country dummy variables minus the intercept. Then I made robust standard errors in order to fix heteroskedasticity and autocorrelation:
msubv2 <- lm(subv ~ preelec + elec + postelec + ideo + ali +
crec_pib + pob + pob16 + pob64 + factor(ccaa)-1, data = datos)
rsecoef_msubv2 <- coeftest(msubv2, vcovHAC(msubv2))
This is the code I used in order to implement the new coefficients in a regression output with stargazer() by the way:
cov12 <- vcovHAC(msubv2)
rsesubv2 <- sqrt(diag(cov12))
Now I want to plot these new coefficients of the explanatory variables "preelec", "elec" and "postelec" using either ggplot2() or coefplot() from the namesake package. However, as my object which contains the new coefficients is not an "lm" object, when I use those functions I get an error.
Hence, I just want to know how can I convert the object rsecoef_msubv2 into an "lm" object, or just another way to plot the coefficients for those 3 variables.
P.S. Ok, so this is a subset of my data. It must be converted into a panel data
structure(list(ccaa = structure(c(1L, 1L, 2L, 2L, 3L, 3L, 4L,
4L, 5L, 5L, 6L, 6L, 7L, 7L, 8L, 8L, 9L, 9L, 10L, 10L, 11L, 11L,
12L, 12L, 13L, 13L, 14L, 14L, 15L, 15L, 16L, 16L, 17L, 17L), .Label = c("ANDALUCIA",
"ARAGON", "ASTURIAS", "BALEARES", "CANARIAS", "CANTABRIA", "CASTILLA LA-MANCHA",
"CASTILLA Y LEÓN", "CATALUÑA", "EXTREMADURA", "GALICIA", "LA RIOJA",
"MADRID", "MURCIA", "NAVARRA", "PAIS VASCO", "VALENCIA"), class = "factor"),
year = structure(c(1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L), .Label = c("1986", "1987",
"1988", "1989", "1990", "1991", "1992", "1993", "1994", "1995",
"1996", "1997", "1998", "1999", "2000", "2001", "2002", "2003",
"2004", "2005", "2006", "2007", "2008", "2009", "2010", "2011",
"2012", "2013", "2014", "2015", "2016", "2017"), class = "factor"),
ccaa_year = structure(c("AND86", "AND87", "ARA86", "ARA87",
"AST86", "AST87", "BAL86", "BAL87", "ISC86", "ISC87", "CANT86",
"CANT87", "CLM86", "CLM87", "CYL86", "CYL87", "CAT86", "CAT87",
"EXT86", "EXT87", "GAL86", "GAL87", "RIO86", "RIO87", "MAD86",
"MAD87", "MUR86", "MUR87", "NAV86", "NAV87", "PAV86", "PAV87",
"VAL86", "VAL87"), index = structure(list(ccaa = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L), .Label = c("ANDALUCIA", "ARAGON",
"ASTURIAS", "BALEARES", "CANARIAS", "CANTABRIA", "CASTILLA LA-MANCHA",
"CASTILLA Y LEÓN", "CATALUÑA", "EXTREMADURA", "GALICIA",
"LA RIOJA", "MADRID", "MURCIA", "NAVARRA", "PAIS VASCO",
"VALENCIA"), class = "factor"), year = structure(c(1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L,
28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L,
21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L,
27L, 28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L,
20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L,
32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L,
26L, 27L, 28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L), .Label = c("1986",
"1987", "1988", "1989", "1990", "1991", "1992", "1993", "1994",
"1995", "1996", "1997", "1998", "1999", "2000", "2001", "2002",
"2003", "2004", "2005", "2006", "2007", "2008", "2009", "2010",
"2011", "2012", "2013", "2014", "2015", "2016", "2017"), class = "factor")), row.names = c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L,
27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L,
39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L,
51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L,
63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L,
75L, 76L, 77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L,
87L, 88L, 89L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L,
99L, 100L, 101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L,
109L, 110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L,
119L, 120L, 121L, 122L, 123L, 124L, 125L, 126L, 127L, 128L,
129L, 130L, 131L, 132L, 133L, 134L, 135L, 136L, 137L, 138L,
139L, 140L, 141L, 142L, 143L, 144L, 145L, 146L, 147L, 148L,
149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L, 157L, 158L,
159L, 160L, 161L, 162L, 163L, 164L, 165L, 166L, 167L, 168L,
169L, 170L, 171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L,
179L, 180L, 181L, 182L, 183L, 184L, 185L, 186L, 187L, 188L,
189L, 190L, 191L, 192L, 193L, 194L, 195L, 196L, 197L, 198L,
199L, 200L, 201L, 202L, 203L, 204L, 205L, 206L, 207L, 208L,
209L, 210L, 211L, 212L, 213L, 214L, 215L, 216L, 217L, 218L,
219L, 220L, 221L, 222L, 223L, 224L, 225L, 226L, 227L, 228L,
229L, 230L, 231L, 232L, 233L, 234L, 235L, 236L, 237L, 238L,
239L, 240L, 241L, 242L, 243L, 244L, 245L, 246L, 247L, 248L,
249L, 250L, 251L, 252L, 253L, 254L, 255L, 256L, 257L, 258L,
259L, 260L, 261L, 262L, 263L, 264L, 265L, 266L, 267L, 268L,
269L, 270L, 271L, 272L, 273L, 274L, 275L, 276L, 277L, 278L,
279L, 280L, 281L, 282L, 283L, 284L, 285L, 286L, 287L, 288L,
321L, 322L, 323L, 324L, 325L, 326L, 327L, 328L, 329L, 330L,
331L, 332L, 333L, 334L, 335L, 336L, 337L, 338L, 339L, 340L,
341L, 342L, 343L, 344L, 345L, 346L, 347L, 348L, 349L, 350L,
351L, 352L, 353L, 354L, 355L, 356L, 357L, 358L, 359L, 360L,
361L, 362L, 363L, 364L, 365L, 366L, 367L, 368L, 369L, 370L,
371L, 372L, 373L, 374L, 375L, 376L, 377L, 378L, 379L, 380L,
381L, 382L, 383L, 384L, 513L, 514L, 515L, 516L, 517L, 518L,
519L, 520L, 521L, 522L, 523L, 524L, 525L, 526L, 527L, 528L,
529L, 530L, 531L, 532L, 533L, 534L, 535L, 536L, 537L, 538L,
539L, 540L, 541L, 542L, 543L, 544L, 385L, 386L, 387L, 388L,
389L, 390L, 391L, 392L, 393L, 394L, 395L, 396L, 397L, 398L,
399L, 400L, 401L, 402L, 403L, 404L, 405L, 406L, 407L, 408L,
409L, 410L, 411L, 412L, 413L, 414L, 415L, 416L, 417L, 418L,
419L, 420L, 421L, 422L, 423L, 424L, 425L, 426L, 427L, 428L,
429L, 430L, 431L, 432L, 433L, 434L, 435L, 436L, 437L, 438L,
439L, 440L, 441L, 442L, 443L, 444L, 445L, 446L, 447L, 448L,
449L, 450L, 451L, 452L, 453L, 454L, 455L, 456L, 457L, 458L,
459L, 460L, 461L, 462L, 463L, 464L, 465L, 466L, 467L, 468L,
469L, 470L, 471L, 472L, 473L, 474L, 475L, 476L, 477L, 478L,
479L, 480L, 481L, 482L, 483L, 484L, 485L, 486L, 487L, 488L,
489L, 490L, 491L, 492L, 493L, 494L, 495L, 496L, 497L, 498L,
499L, 500L, 501L, 502L, 503L, 504L, 505L, 506L, 507L, 508L,
509L, 510L, 511L, 512L, 289L, 290L, 291L, 292L, 293L, 294L,
295L, 296L, 297L, 298L, 299L, 300L, 301L, 302L, 303L, 304L,
305L, 306L, 307L, 308L, 309L, 310L, 311L, 312L, 313L, 314L,
315L, 316L, 317L, 318L, 319L, 320L), class = c("pindex",
"data.frame")), class = c("pseries", "character")), subv = structure(c(16.7302560676507,
20.4606384605254, 10.3964123452188, 6.36288798106429, 9.16543765426987,
8.40335369638951, 7.95058549475298, 7.07913989487299, 21.1288836451444,
18.6147451720256, 11.613581886766, 7.75476195855383, 24.3052882852147,
21.1325248124902, 7.19278302770739, 7.20350705287662, 25.860092626368,
23.3847976914879, 11.0315837047611, 17.5546273201597, 14.0537729379123,
14.8129830488661, 10.2404482920113, 6.98585616360406, 29.2092515156566,
17.1150774779986, 8.82174329305509, 7.9138138292632, 12.9945592447864,
13.0334015804209, 1.31541109940362, 2.11013964638404, 17.6289233833167,
19.691143771018), index = structure(list(ccaa = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L), .Label = c("ANDALUCIA", "ARAGON",
"ASTURIAS", "BALEARES", "CANARIAS", "CANTABRIA", "CASTILLA LA-MANCHA",
"CASTILLA Y LEÓN", "CATALUÑA", "EXTREMADURA", "GALICIA",
"LA RIOJA", "MADRID", "MURCIA", "NAVARRA", "PAIS VASCO",
"VALENCIA"), class = "factor"), year = structure(c(1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L,
28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L,
21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L,
27L, 28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L,
20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L,
32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L,
26L, 27L, 28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
31L, 32L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L), .Label = c("1986",
"1987", "1988", "1989", "1990", "1991", "1992", "1993", "1994",
"1995", "1996", "1997", "1998", "1999", "2000", "2001", "2002",
"2003", "2004", "2005", "2006", "2007", "2008", "2009", "2010",
"2011", "2012", "2013", "2014", "2015", "2016", "2017"), class = "factor")), row.names = c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L,
27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L,
39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L,
51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L,
63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L,
75L, 76L, 77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L,
87L, 88L, 89L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L,
99L, 100L, 101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L,
109L, 110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L,
119L, 120L, 121L, 122L, 123L, 124L, 125L, 126L, 127L, 128L,
129L, 130L, 131L, 132L, 133L, 134L, 135L, 136L, 137L, 138L,
139L, 140L, 141L, 142L, 143L, 144L, 145L, 146L, 147L, 148L,
149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L, 157L, 158L,
159L, 160L, 161L, 162L, 163L, 164L, 165L, 166L, 167L, 168L,
169L, 170L, 171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L,
179L, 180L, 181L, 182L, 183L, 184L, 185L, 186L, 187L, 188L,
189L, 190L, 191L, 192L, 193L, 194L, 195L, 196L, 197L, 198L,
199L, 200L, 201L, 202L, 203L, 204L, 205L, 206L, 207L, 208L,
209L, 210L, 211L, 212L, 213L, 214L, 215L, 216L, 217L, 218L,
219L, 220L, 221L, 222L, 223L, 224L, 225L, 226L, 227L, 228L,
229L, 230L, 231L, 232L, 233L, 234L, 235L, 236L, 237L, 238L,
239L, 240L, 241L, 242L, 243L, 244L, 245L, 246L, 247L, 248L,
249L, 250L, 251L, 252L, 253L, 254L, 255L, 256L, 257L, 258L,
259L, 260L, 261L, 262L, 263L, 264L, 265L, 266L, 267L, 268L,
269L, 270L, 271L, 272L, 273L, 274L, 275L, 276L, 277L, 278L,
279L, 280L, 281L, 282L, 283L, 284L, 285L, 286L, 287L, 288L,
321L, 322L, 323L, 324L, 325L, 326L, 327L, 328L, 329L, 330L,
331L, 332L, 333L, 334L, 335L, 336L, 337L, 338L, 339L, 340L,
341L, 342L, 343L, 344L, 345L, 346L, 347L, 348L, 349L, 350L,
351L, 352L, 353L, 354L, 355L, 356L, 357L, 358L, 359L, 360L,
361L, 362L, 363L, 364L, 365L, 366L, 367L, 368L, 369L, 370L,
371L, 372L, 373L, 374L, 375L, 376L, 377L, 378L, 379L, 380L,
381L, 382L, 383L, 384L, 513L, 514L, 515L, 516L, 517L, 518L,
519L, 520L, 521L, 522L, 523L, 524L, 525L, 526L, 527L, 528L,
529L, 530L, 531L, 532L, 533L, 534L, 535L, 536L, 537L, 538L,
539L, 540L, 541L, 542L, 543L, 544L, 385L, 386L, 387L, 388L,
389L, 390L, 391L, 392L, 393L, 394L, 395L, 396L, 397L, 398L,
399L, 400L, 401L, 402L, 403L, 404L, 405L, 406L, 407L, 408L,
409L, 410L, 411L, 412L, 413L, 414L, 415L, 416L, 417L, 418L,
419L, 420L, 421L, 422L, 423L, 424L, 425L, 426L, 427L, 428L,
429L, 430L, 431L, 432L, 433L, 434L, 435L, 436L, 437L, 438L,
439L, 440L, 441L, 442L, 443L, 444L, 445L, 446L, 447L, 448L,
449L, 450L, 451L, 452L, 453L, 454L, 455L, 456L, 457L, 458L,
459L, 460L, 461L, 462L, 463L, 464L, 465L, 466L, 467L, 468L,
469L, 470L, 471L, 472L, 473L, 474L, 475L, 476L, 477L, 478L,
479L, 480L, 481L, 482L, 483L, 484L, 485L, 486L, 487L, 488L,
489L, 490L, 491L, 492L, 493L, 494L, 495L, 496L, 497L, 498L,
499L, 500L, 501L, 502L, 503L, 504L, 505L, 506L, 507L, 508L,
509L, 510L, 511L, 512L, 289L, 290L, 291L, 292L, 293L, 294L,
295L, 296L, 297L, 298L, 299L, 300L, 301L, 302L, 303L, 304L,
305L, 306L, 307L, 308L, 309L, 310L, 311L, 312L, 313L, 314L,
315L, 316L, 317L, 318L, 319L, 320L), class = c("pindex",
"data.frame")), class = c("pseries", "numeric")), elec = c(1L,
0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L,
0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L,
0L, 0L, 1L), preelec = c(0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L,
1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L,
0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L), postelec = c(0L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L), ideo = c(0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L,
1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L), ali = c(1L, 1L,
1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L,
0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L,
1L, 1L)), class = c("grouped_df", "tbl_df", "tbl", "data.frame"
), row.names = c(NA, -34L), groups = structure(list(ccaa = structure(1:17, .Label = c("ANDALUCIA",
"ARAGON", "ASTURIAS", "BALEARES", "CANARIAS", "CANTABRIA", "CASTILLA LA-MANCHA",
"CASTILLA Y LEÓN", "CATALUÑA", "EXTREMADURA", "GALICIA", "LA RIOJA",
"MADRID", "MURCIA", "NAVARRA", "PAIS VASCO", "VALENCIA"), class = "factor"),
.rows = structure(list(1:2, 3:4, 5:6, 7:8, 9:10, 11:12, 13:14,
15:16, 17:18, 19:20, 21:22, 23:24, 25:26, 27:28, 29:30,
31:32, 33:34), ptype = integer(0), class = c("vctrs_list_of",
"vctrs_vctr", "list"))), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -17L), .drop = TRUE))
P.S. I just need something like this
P.S. Finally I think I found a solution. The coefficients plot can be performed with the fuction "ggcoef" from the "GGally" package, which enables us to include as an object the coeftest() argument. Then we can procede like this:
First we create an object for our coeftest():
matrix_coeftestmsubv2 <- coeftest(msubv2, vcovHAC(msubv2))
After that we just create the plot with "ggcoef()":
ggcoef(matrix_coefmsubv2) + coord_flip()
Nevertheless, I still have some doubts regarding how to keep certain variables from the model, how to order them in the X Axis and how to add a line to connect the coefficients points, but I think I'll make a new post in order to get an answer.
So I found a definitive solution, I'm going to share it with you all. The function we need is dwplot() which belongs to the "dotwhisker" package. This one allows us to include a "coeftest" object and uses "ggplot2" to custom the graph easily. However, I recommend to convert the coeftest object into a dataframe because it makes it easier to delete the variables we don't need.
First we need to convert the object rsecoef_msubv2 into a dataframe:
library(dotwhisker)
rsecoef_msubv2 <- as.data.frame(rsecoef_msubv2)
After that we delete the rows we don't need, in my case:
tidycoefisubv <- tidycoefisubv[-c(4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26), ]
Finally we just create the plot using "dwplot". In this example I flipped the position of the axis, changed the color of the background and the font and size of the text of both axis.
dwplot(tidycoefisubv, vars_order = c("Postelectoral", "Electoral", "Preelectoral")) +
coord_flip() + theme_bw() + theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), text = element_text(size = 10),
axis.text.y = element_text(size=10, color="black"), axis.text.x = element_text(size=10,
color="black"),legend.position = "none") + labs(x = "Transferencias per cápita", y = NULL)
And this is the result:
An output table of one of my codes looks like this:
> head(act.byHour_corr)
hour date activity
1: 0 Activity on 6/20/2018 59
2: 1 Activity on 6/20/2018 74
3: 2 Activity on 6/20/2018 2683
4: 3 Activity on 6/20/2018 4341
5: 4 Activity on 6/20/2018 3676
6: 5 Activity on 6/20/2018 2143
The column hour represents the hours of the day from 0 to 23 and the data in date is chronologically organized. Unfortunately, when the data comes to the point where the next month 7/dd/2018 is reached, date is not chronologically organized anymore:
> head(act.byHour_corr[287:293])
hour date activity
1: 22 Activity on 7/1/2018 400
2: 23 Activity on 7/1/2018 201
3: 0 Activity on 7/10/2018 705
4: 1 Activity on 7/10/2018 47
5: 2 Activity on 7/10/2018 605
6: 3 Activity on 7/10/2018 257
You can see that 7/10/2018 and its associated values come after 7/1/2018 instead of that being 7/2/2018.
If that helps I can provide my dataset below:
> dput(act.byHour_corr)
structure(list(hour = c(0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L,
23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L,
20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L,
0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L,
21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L,
21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L,
21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L,
21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L,
21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L,
21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L,
21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L,
21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L,
21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L), date = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 23L, 23L, 23L, 23L, 23L, 23L, 23L,
23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L,
23L, 23L, 23L, 23L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L,
24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L,
24L, 24L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L,
25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L,
26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L,
26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 27L, 27L,
27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L,
27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 28L, 28L, 28L, 28L,
28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L,
28L, 28L, 28L, 28L, 28L, 28L, 28L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L,
30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L,
30L, 30L, 30L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L,
31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L,
31L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L,
32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 33L,
33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L,
33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 34L, 34L, 34L,
34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L,
34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 35L, 35L, 35L, 35L, 35L,
35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L,
35L, 35L, 35L, 35L, 35L, 35L, 36L, 36L, 36L, 36L, 36L, 36L, 36L,
36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L,
36L, 36L, 36L, 36L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L,
38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L,
39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L,
39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 41L, 41L, 41L, 41L,
41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L,
41L, 41L, 41L, 41L, 41L, 41L, 41L, 42L, 42L, 42L, 42L, 42L, 42L,
42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L,
42L, 42L, 42L, 42L, 42L), class = "factor", .Label = c("Activity on 6/20/2018",
"Activity on 6/21/2018", "Activity on 6/22/2018", "Activity on 6/23/2018",
"Activity on 6/24/2018", "Activity on 6/25/2018", "Activity on 6/26/2018",
"Activity on 6/27/2018", "Activity on 6/28/2018", "Activity on 6/29/2018",
"Activity on 6/30/2018", "Activity on 7/1/2018", "Activity on 7/10/2018",
"Activity on 7/11/2018", "Activity on 7/12/2018", "Activity on 7/13/2018",
"Activity on 7/14/2018", "Activity on 7/15/2018", "Activity on 7/16/2018",
"Activity on 7/17/2018", "Activity on 7/18/2018", "Activity on 7/19/2018",
"Activity on 7/2/2018", "Activity on 7/20/2018", "Activity on 7/21/2018",
"Activity on 7/22/2018", "Activity on 7/23/2018", "Activity on 7/24/2018",
"Activity on 7/25/2018", "Activity on 7/26/2018", "Activity on 7/27/2018",
"Activity on 7/28/2018", "Activity on 7/29/2018", "Activity on 7/3/2018",
"Activity on 7/30/2018", "Activity on 7/31/2018", "Activity on 7/4/2018",
"Activity on 7/5/2018", "Activity on 7/6/2018", "Activity on 7/7/2018",
"Activity on 7/8/2018", "Activity on 7/9/2018")), activity = c(59L,
74L, 2683L, 4341L, 3676L, 2143L, 3890L, 3887L, 1299L, 1492L,
3449L, 2200L, 1563L, 4346L, 5329L, 3037L, 1462L, 668L, 383L,
483L, 288L, 2765L, 3354L, 1783L, 241L, 301L, 261L, 3683L, 4356L,
3736L, 2810L, 1841L, 3146L, 609L, 2998L, 4059L, 3690L, 3735L,
1343L, 2087L, 894L, 341L, 240L, 2113L, 1684L, 3115L, 2890L, 138L,
21L, 451L, 96L, 2918L, 2279L, 2282L, 4992L, 698L, 427L, 581L,
1248L, 2184L, 1980L, 2364L, 568L, 2477L, 525L, 433L, 974L, 501L,
760L, 67L, 297L, 1198L, 2L, 39L, 42L, 1182L, 1749L, 2144L, 3123L,
1170L, 1641L, 1112L, 1526L, 1199L, 534L, 1481L, 2388L, 2756L,
392L, 112L, 390L, 107L, 709L, 1122L, 1562L, 451L, 8L, 74L, 0L,
158L, 780L, 3118L, 3292L, 2759L, 3121L, 2051L, 2387L, 900L, 627L,
904L, 4283L, 3726L, 1273L, 977L, 326L, 163L, 1915L, 1073L, 1021L,
545L, 36L, 22L, 3L, 55L, 124L, 22L, 4093L, 2867L, 3649L, 2550L,
1590L, 636L, 2571L, 998L, 1066L, 2967L, 1211L, 51L, 1188L, 1413L,
714L, 177L, 132L, 29L, 22L, 43L, 0L, 90L, 1094L, 1655L, 2643L,
2108L, 2249L, 2453L, 2857L, 915L, 437L, 1142L, 2193L, 2993L,
1139L, 1549L, 652L, 580L, 970L, 674L, 211L, 206L, 167L, 63L,
1L, 786L, 617L, 1575L, 2237L, 1302L, 1149L, 2009L, 2234L, 1263L,
1259L, 2017L, 1641L, 2683L, 1184L, 449L, 65L, 956L, 1538L, 1287L,
593L, 362L, 594L, 1172L, 25L, 445L, 921L, 1812L, 2235L, 1153L,
422L, 1084L, 2158L, 1610L, 845L, 1187L, 2528L, 2161L, 976L, 19L,
747L, 570L, 576L, 19L, 304L, 2L, 301L, 7L, 399L, 494L, 723L,
1088L, 771L, 85L, 1338L, 866L, 384L, 1356L, 2862L, 3805L, 2142L,
1655L, 249L, 235L, 3L, 0L, 283L, 981L, 634L, 1370L, 9L, 137L,
33L, 975L, 1690L, 1639L, 985L, 210L, 1266L, 2135L, 2080L, 1704L,
2449L, 3133L, 1055L, 3222L, 1152L, 173L, 858L, 188L, 700L, 330L,
905L, 1232L, 1006L, 5L, 21L, 520L, 1162L, 1771L, 2463L, 1403L,
1353L, 1938L, 2388L, 4133L, 900L, 2660L, 3504L, 3946L, 1956L,
818L, 604L, 937L, 373L, 48L, 400L, 201L, 705L, 47L, 605L, 257L,
1359L, 41L, 1019L, 1426L, 2219L, 1179L, 1624L, 537L, 421L, 1747L,
2941L, 2921L, 1046L, 283L, 476L, 218L, 59L, 389L, 657L, 1293L,
24L, 455L, 6L, 1232L, 2264L, 1152L, 600L, 11L, 980L, 1519L, 2004L,
1933L, 2161L, 1386L, 1883L, 2978L, 1385L, 104L, 1309L, 2L, 364L,
550L, 0L, 1433L, 1634L, 27L, 860L, 1095L, 1102L, 132L, 582L,
710L, 1368L, 2470L, 2944L, 1030L, 1286L, 387L, 2590L, 2449L,
743L, 134L, 274L, 205L, 360L, 627L, 1357L, 591L, 216L, 143L,
70L, 2L, 477L, 42L, 81L, 304L, 2827L, 2437L, 2002L, 688L, 935L,
812L, 404L, 1098L, 1157L, 857L, 466L, 215L, 714L, 269L, 1223L,
8L, 1L, 635L, 6L, 1797L, 1363L, 246L, 704L, 1089L, 943L, 2251L,
813L, 2643L, 1657L, 18L, 1132L, 2884L, 1044L, 149L, 1146L, 68L,
1227L, 1189L, 129L, 1291L, 7L, 9L, 1299L, 389L, 288L, 157L, 0L,
324L, 248L, 915L, 795L, 598L, 733L, 308L, 2760L, 2874L, 1903L,
499L, 73L, 31L, 1146L, 920L, 852L, 2L, 104L, 564L, 16L, 1903L,
675L, 1859L, 720L, 1017L, 4L, 2114L, 2264L, 1152L, 935L, 1691L,
1031L, 2568L, 2035L, 226L, 18L, 1716L, 249L, 717L, 635L, 919L,
1436L, 16L, 17L, 1891L, 1175L, 74L, 435L, 377L, 718L, 619L, 439L,
1373L, 2154L, 2481L, 763L, 2084L, 910L, 641L, 669L, 737L, 793L,
1471L, 12L, 96L, 6L, 13L, 81L, 1227L, 1685L, 260L, 238L, 575L,
930L, 330L, 1139L, 785L, 1110L, 1007L, 1770L, 2824L, 729L, 776L,
602L, 550L, 1432L, 567L, 197L, 107L, 38L, 648L, 264L, 911L, 2239L,
1063L, 9L, 1336L, 1235L, 628L, 1722L, 1028L, 1393L, 44L, 2110L,
1719L, 666L, 127L, 885L, 788L, 1274L, 765L, 1094L, 38L, 876L,
505L, 162L, 775L, 1567L, 896L, 1648L, 995L, 2574L, 1080L, 997L,
1881L, 1375L, 1283L, 2156L, 2384L, 982L, 33L, 20L, 761L, 241L,
696L, 133L, 915L, 514L, 14L, 59L, 1081L, 1266L, 359L, 1055L,
280L, 123L, 2251L, 2302L, 1116L, 2750L, 764L, 1377L, 2776L, 970L,
814L, 10L, 1364L, 1137L, 279L, 10L, 605L, 279L, 596L, 12L, 1443L,
1463L, 1426L, 132L, 924L, 379L, 693L, 137L, 219L, 884L, 194L,
450L, 1204L, 487L, 578L, 445L, 9L, 823L, 2L, 1212L, 12L, 200L,
9L, 152L, 1062L, 1926L, 1156L, 1951L, 1735L, 753L, 570L, 362L,
813L, 756L, 1403L, 308L, 1895L, 325L, 768L, 666L, 33L, 634L,
1294L, 819L, 39L, 579L, 8L, 657L, 438L, 521L, 896L, 2560L, 1383L,
819L, 1293L, 2257L, 476L, 1850L, 759L, 2482L, 1513L, 789L, 78L,
329L, 43L, 50L, 1583L, 342L, 0L, 495L, 13L, 127L, 1415L, 1534L,
939L, 2315L, 649L, 154L, 2838L, 1462L, 2255L, 1058L, 316L, 1825L,
2391L, 324L, 185L, 813L, 997L, 830L, 407L, 796L, 624L, 1002L,
6L, 86L, 1091L, 1951L, 8L, 1863L, 2555L, 799L, 749L, 2386L, 1893L,
524L, 846L, 2263L, 2266L, 779L, 88L, 380L, 1495L, 1985L, 3L,
1462L, 1450L, 1L, 19L, 967L, 1565L, 1066L, 9L, 99L, 4L, 1889L,
1848L, 1924L, 471L, 1357L, 626L, 1465L, 1787L, 1437L, 115L, 322L,
717L, 1639L, 990L, 1029L, 1112L, 372L, 8L, 256L, 1679L, 1209L,
2246L, 2153L, 1762L, 1883L, 1551L, 998L, 728L, 1274L, 888L, 508L,
2357L, 452L, 1167L, 2385L, 3280L, 320L, 1130L, 878L, 583L, 799L,
4L, 61L, 394L, 1237L, 854L, 68L, 379L, 2910L, 3088L, 1011L, 840L,
1024L, 2496L, 3079L, 2830L, 1841L, 1772L, 595L, 65L, 584L, 2110L,
1966L, 473L, 21L, 847L, 293L, 881L, 840L, 1912L, 683L, 1362L,
1276L, 3131L, 3110L, 1773L, 1077L, 1437L, 769L, 2311L, 1623L,
562L, 42L, 1791L, 1318L, 1230L, 202L, 2630L, 623L, 918L, 48L,
523L, 721L, 1624L, 1047L, 1783L, 313L, 1042L, 2211L, 2430L, 1770L,
1610L, 2814L, 2460L, 1770L, 25L, 709L, 416L, 709L, 998L, 921L,
89L, 1174L, 396L, 52L, 2261L, 1237L, 56L, 927L, 2491L, 3180L,
352L, 81L, 2072L, 3207L, 2394L, 600L, 3280L, 1745L, 147L, 1L,
1544L, 350L, 2198L, 1833L, 55L, 0L, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
258L, 1242L, 75L, 1131L, 893L, 402L, 381L, 51L, 15L, 47L, 762L,
777L, 479L, 2416L, 3639L, 1991L, 202L, 1054L, 917L, 1565L, 503L,
61L, 44L, 2103L, 2212L, 352L, 1L, 666L, 351L, 1321L, 7L, 1010L,
1222L, 1080L, 1643L, 1101L, 188L, 2793L, 1548L, 1811L, 1807L,
51L, 788L, 1108L, 1157L, 1038L, 225L, 454L, 441L, 376L, 444L,
5L, 501L, 579L, 1253L, 1600L, 1051L, 498L, 2217L, 2362L, 2425L,
1220L, 2037L, 2684L, 799L, 471L, 139L, 545L, 1117L, 177L, 487L,
1420L, 692L, 303L, 736L, 750L, 1386L, 926L, 30L, 862L, 1912L,
2731L, 1123L, 1160L, 2892L, 1634L, 585L, 3473L, 2243L, 441L,
399L, 1482L, 111L, 455L, 1315L, 691L, 1428L, 96L, 52L, 258L,
1135L, 1727L, 448L, 2148L, 358L, 2180L, 1519L, 2634L, 828L, 1212L,
1052L, 2851L, 902L, 171L, 236L, 3L, 727L, 1366L, 637L, 43L, 0L,
1320L, 146L, 664L, 862L, 663L, 227L, 227L, 995L, 743L, 1793L,
2421L, 1346L, 1874L, 2182L, 1333L, 1967L, 1023L, 297L, 340L,
1469L, 10L, 213L, 805L)), row.names = c(NA, -1008L), class = c("data.table",
"data.frame"), .internal.selfref = <pointer: 0x0000000002641ef0>)
Hope I can get some help to organize the data chronologically for the full dataset. Any input is appreciated.
This should help!
act.byHour_corr$date <- as.Date(gsub('Activity on ', '', act.byHour_corr$date),
format = '%m/%d/%Y')
act.byHour_corr <- act.byHour_corr[order(act.byHour_corr$date),]
It removes the 'Activity on' portion of the column. Does that work, or do you need to keep the 'Activity on' part?
Add hour to you data:
library(data.table)
library(lubridate)
library(stringr)
act.byHour_corr[, data_hour:=(paste0(date," ", str_pad(hour, 2, "left",0),":00"))]
act.byHour_corr[, data_hour:=mdy_hm(data_hour)]
act.byHour_corr[order(data_hour)]
In the past, I have used asreml-r to account for spatial auto-correlation in agricultural field trials that were laid out in a “row and range” design. It is relatively easy to use the asreml package to specify a spatial model (i.e. rcov=~at(LOCATION):ar1(ROW):ar1(RANGE))
Unfortunately, asreml-r is expensive and difficult to learn. My research group also prefers to rely on nlme and lmer for the majority of it’s analytical needs. So they are reluctant to either pay for asreml-r or consider using.
Several years ago a question was posted asking if an open-source alternative to asreml-r was available that could be used to construct a two-dimensional spatial model with error structure in both direction. The consensus at the time seemed to be that it wasn’t straight forward to do this in either lmer or nlme.
After spending a few hours searching, it’s not totally clear to me whether there has been any progress on addressing this. Can anyone refer me to a recent discussion regarding this type of analysis? Or can they offer advice on how to construct a mixed effects models that accounts for spatial correlation in nlme or lmer?
Please note that neither myself nor other members of our group are exactly statisticians or high-level r coders. It is also not practical to contract an outside group to analyze our data. We just want to apply the best methods we can to routine annual analyses of data.
An example of the data being analyzed:
my.data <- structure(list(ENTRY = structure(c(23L, 23L, 23L, 40L, 12L, 8L,
1L, 15L, 30L, 1L, 24L, 8L, 1L, 8L, 30L, 33L, 12L, 38L, 41L, 36L,
43L, 32L, 44L, 31L, 26L, 11L, 13L, 34L, 5L, 22L, 4L, 14L, 11L,
20L, 25L, 11L, 21L, 43L, 44L, 4L, 42L, 45L, 42L, 41L, 42L, 4L,
44L, 20L, 40L, 29L, 29L, 24L, 2L, 3L, 28L, 24L, 34L, 27L, 41L,
28L, 29L, 5L, 3L, 25L, 14L, 20L, 15L, 21L, 31L, 22L, 40L, 21L,
6L, 38L, 43L, 12L, 6L, 14L, 5L, 3L, 30L, 45L, 31L, 7L, 9L, 39L,
22L, 15L, 26L, 28L, 34L, 10L, 25L, 27L, 16L, 45L, 10L, 18L, 32L,
10L, 6L, 18L, 33L, 16L, 37L, 9L, 32L, 38L, 39L, 2L, 2L, 39L,
36L, 36L, 7L, 27L, 7L, 26L, 17L, 9L, 33L, 13L, 17L, 17L, 35L,
37L, 37L, 18L, 16L, 19L, 13L, 19L, 35L, 19L, 35L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L,
44L, 45L, 52L, 54L, 52L, 54L, 49L, 51L, 50L, 54L, 49L, 46L, 51L,
50L, 53L, 49L, 50L, 51L, 53L, 52L, 53L, 48L, 47L, 46L, 46L, 47L,
48L, 48L, 47L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L), .Label = c("20",
"112", "1478", "1495", "1521", "1522", "1590", "1608", "1657",
"1658", "1660", "1667", "1680", "1688", "1723", "1728", "1730",
"1731", "1743", "1745", "1748", "1751", "1766", "1778", "1802",
"1815", "1817", "1819", "1828", "1830", "1831", "1834", "1835",
"1836", "1837", "1838", "1839", "1840", "1841", "1842", "1843",
"1844", "1845", "1846", "1847", "3097", "3164", "3168", "3169",
"3170", "3178", "3180", "3181", "3182"), class = "factor"), BLOCK = structure(c(12L,
77L, 163L, 67L, 28L, 170L, 90L, 36L, 52L, 2L, 15L, 19L, 168L,
103L, 188L, 31L, 203L, 66L, 29L, 46L, 34L, 32L, 27L, 16L, 83L,
48L, 82L, 30L, 171L, 14L, 115L, 54L, 93L, 65L, 50L, 187L, 58L,
91L, 200L, 6L, 169L, 135L, 99L, 148L, 101L, 104L, 107L, 128L,
153L, 146L, 41L, 22L, 53L, 87L, 131L, 151L, 110L, 10L, 44L, 11L,
13L, 20L, 42L, 202L, 111L, 38L, 183L, 51L, 199L, 109L, 75L, 134L,
92L, 166L, 182L, 97L, 100L, 1L, 86L, 181L, 25L, 108L, 94L, 116L,
72L, 18L, 23L, 76L, 185L, 81L, 62L, 63L, 56L, 204L, 85L, 95L,
129L, 49L, 147L, 106L, 145L, 205L, 73L, 207L, 105L, 24L, 43L,
8L, 167L, 164L, 3L, 96L, 184L, 45L, 74L, 39L, 89L, 4L, 152L,
130L, 165L, 40L, 57L, 70L, 206L, 186L, 7L, 37L, 9L, 102L, 132L,
127L, 88L, 80L, 98L, 139L, 196L, 174L, 118L, 215L, 194L, 193L,
208L, 172L, 122L, 143L, 141L, 123L, 161L, 209L, 213L, 178L, 159L,
160L, 191L, 177L, 192L, 144L, 175L, 211L, 140L, 180L, 173L, 125L,
119L, 120L, 210L, 214L, 136L, 154L, 162L, 190L, 158L, 216L, 142L,
124L, 212L, 195L, 155L, 121L, 64L, 68L, 117L, 59L, 71L, 35L,
69L, 201L, 21L, 84L, 61L, 114L, 17L, 112L, 55L, 150L, 113L, 79L,
78L, 47L, 33L, 149L, 60L, 189L, 5L, 133L, 26L, 137L, 197L, 179L,
126L, 198L, 157L, 176L, 138L, 156L), .Label = c("101", "102",
"103", "104", "105", "106", "107", "108", "109", "110", "111",
"112", "113", "114", "115", "116", "117", "118", "201", "202",
"203", "204", "205", "206", "207", "208", "209", "210", "211",
"212", "213", "214", "215", "216", "217", "218", "301", "302",
"303", "304", "305", "306", "307", "308", "309", "310", "311",
"312", "313", "314", "315", "316", "317", "318", "401", "402",
"403", "404", "405", "406", "407", "408", "409", "410", "411",
"412", "413", "414", "415", "416", "417", "418", "501", "502",
"503", "504", "505", "506", "507", "508", "509", "510", "511",
"512", "513", "514", "515", "516", "517", "518", "601", "602",
"603", "604", "605", "606", "607", "608", "609", "610", "611",
"612", "613", "614", "615", "616", "617", "618", "701", "702",
"703", "704", "705", "706", "707", "708", "709", "710", "711",
"712", "713", "714", "715", "716", "717", "718", "801", "802",
"803", "804", "805", "806", "807", "808", "809", "810", "811",
"812", "813", "814", "815", "816", "817", "818", "901", "902",
"903", "904", "905", "906", "907", "908", "909", "910", "911",
"912", "913", "914", "915", "916", "917", "918", "1001", "1002",
"1003", "1004", "1005", "1006", "1007", "1008", "1009", "1010",
"1011", "1012", "1013", "1014", "1015", "1016", "1017", "1018",
"1101", "1102", "1103", "1104", "1105", "1106", "1107", "1108",
"1109", "1110", "1111", "1112", "1113", "1114", "1115", "1116",
"1117", "1118", "1201", "1202", "1203", "1204", "1205", "1206",
"1207", "1208", "1209", "1210", "1211", "1212", "1213", "1214",
"1215", "1216", "1217", "1218"), class = "factor"), PLOT = structure(c(3L,
1L, 2L, 3L, 3L, 2L, 3L, 3L, 3L, 1L, 3L, 1L, 2L, 3L, 2L, 3L, 2L,
3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 2L, 3L, 1L,
3L, 3L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 3L, 3L, 3L, 2L, 2L,
2L, 1L, 1L, 3L, 3L, 2L, 2L, 2L, 3L, 1L, 3L, 3L, 1L, 1L, 2L, 2L,
1L, 2L, 3L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 3L, 1L, 3L, 2L, 1L,
3L, 1L, 2L, 3L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 3L, 1L, 2L,
3L, 2L, 3L, 2L, 2L, 1L, 2L, 3L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L,
1L, 1L, 1L, 3L, 1L, 2L, 2L, 2L, 1L, 1L, 3L, 2L, 2L, 1L, 1L, 1L,
3L, 2L, 2L, 3L, 1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 3L, 3L, 2L, 1L, 3L, 3L, 3L, 2L, 1L, 3L, 1L, 2L, 3L,
2L, 1L, 2L, 2L, 1L, 1L, 3L, 3L, 2L, 1L, 2L, 1L, 2L, 1L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("1", "2", "3", "4"), class = "factor"),
RANGE = structure(c(1L, 5L, 10L, 4L, 2L, 10L, 5L, 2L, 3L,
1L, 1L, 2L, 10L, 6L, 11L, 2L, 12L, 4L, 2L, 3L, 2L, 2L, 2L,
1L, 5L, 3L, 5L, 2L, 10L, 1L, 7L, 3L, 6L, 4L, 3L, 11L, 4L,
6L, 12L, 1L, 10L, 8L, 6L, 9L, 6L, 6L, 6L, 8L, 9L, 9L, 3L,
2L, 3L, 5L, 8L, 9L, 7L, 1L, 3L, 1L, 1L, 2L, 3L, 12L, 7L,
3L, 11L, 3L, 12L, 7L, 5L, 8L, 6L, 10L, 11L, 6L, 6L, 1L, 5L,
11L, 2L, 6L, 6L, 7L, 4L, 1L, 2L, 5L, 11L, 5L, 4L, 4L, 4L,
12L, 5L, 6L, 8L, 3L, 9L, 6L, 9L, 12L, 5L, 12L, 6L, 2L, 3L,
1L, 10L, 10L, 1L, 6L, 11L, 3L, 5L, 3L, 5L, 1L, 9L, 8L, 10L,
3L, 4L, 4L, 12L, 11L, 1L, 3L, 1L, 6L, 8L, 8L, 5L, 5L, 6L,
8L, 11L, 10L, 7L, 12L, 11L, 11L, 12L, 10L, 7L, 8L, 8L, 7L,
9L, 12L, 12L, 10L, 9L, 9L, 11L, 10L, 11L, 8L, 10L, 12L, 8L,
10L, 10L, 7L, 7L, 7L, 12L, 12L, 8L, 9L, 9L, 11L, 9L, 12L,
8L, 7L, 12L, 11L, 9L, 7L, 4L, 4L, 7L, 4L, 4L, 2L, 4L, 12L,
2L, 5L, 4L, 7L, 1L, 7L, 4L, 9L, 7L, 5L, 5L, 3L, 2L, 9L, 4L,
11L, 1L, 8L, 2L, 8L, 11L, 10L, 7L, 11L, 9L, 10L, 8L, 9L), .Label = c("1",
"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"), class = "factor"),
ROW = structure(c(12L, 5L, 1L, 13L, 10L, 8L, 18L, 18L, 16L,
2L, 15L, 1L, 6L, 13L, 8L, 13L, 5L, 12L, 11L, 10L, 16L, 14L,
9L, 16L, 11L, 12L, 10L, 12L, 9L, 14L, 7L, 18L, 3L, 11L, 14L,
7L, 4L, 1L, 2L, 6L, 7L, 9L, 9L, 4L, 11L, 14L, 17L, 2L, 9L,
2L, 5L, 4L, 17L, 15L, 5L, 7L, 2L, 10L, 8L, 11L, 13L, 2L,
6L, 4L, 3L, 2L, 3L, 15L, 1L, 1L, 3L, 8L, 2L, 4L, 2L, 7L,
10L, 1L, 14L, 1L, 7L, 18L, 4L, 8L, 18L, 18L, 5L, 4L, 5L,
9L, 8L, 9L, 2L, 6L, 13L, 5L, 3L, 13L, 3L, 16L, 1L, 7L, 1L,
9L, 15L, 6L, 7L, 8L, 5L, 2L, 3L, 6L, 4L, 9L, 2L, 3L, 17L,
4L, 8L, 4L, 3L, 4L, 3L, 16L, 8L, 6L, 7L, 1L, 9L, 12L, 6L,
1L, 16L, 8L, 8L, 13L, 16L, 12L, 10L, 17L, 14L, 13L, 10L,
10L, 14L, 17L, 15L, 15L, 17L, 11L, 15L, 16L, 15L, 16L, 11L,
15L, 12L, 18L, 13L, 13L, 14L, 18L, 11L, 17L, 11L, 12L, 12L,
16L, 10L, 10L, 18L, 10L, 14L, 18L, 16L, 16L, 14L, 15L, 11L,
13L, 10L, 14L, 9L, 5L, 17L, 17L, 15L, 3L, 3L, 12L, 7L, 6L,
17L, 4L, 1L, 6L, 5L, 7L, 6L, 11L, 15L, 5L, 6L, 9L, 5L, 7L,
8L, 11L, 17L, 17L, 18L, 18L, 13L, 14L, 12L, 12L), .Label = c("1",
"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12",
"13", "14", "15", "16", "17", "18"), class = "factor"), YIELD = c(7882.814724,
7641.976671, 7535.187491, 8462.821158, 6470.762695, 7086.39647,
7260.626003, 8374.363239, 8225.545799, 6870.562479, 7260.303179,
6472.786879, 6535.801894, 7335.468082, 8101.853381, 7544.810974,
5597.940891, 8144.903193, 8489.541356, 7420.247609, 8267.229308,
7388.809243, 8753.922873, 7675.2452, 7540.083649, 7459.719121,
7614.590404, 6910.577593, 7655.161236, 8086.00529, 6754.554032,
9141.060314, 7728.70075, 7210.881432, 8872.660416, 7341.942246,
8211.265337, 9030.218757, 8957.01212, 7134.079145, 8580.60533,
8901.807114, 9009.635596, 8972.04225, 8850.07798, 7244.08863,
9357.355395, 7693.962907, 9059.604638, 8115.135788, 8073.220877,
7694.865425, 7168.389384, 7931.776306, 8310.054831, 7743.358631,
7241.417998, 7887.710882, 8671.335868, 7900.074562, 7089.929401,
8252.964285, 8038.601576, 8749.99335, 7880.418003, 7227.593551,
9733.562528, 7715.095262, 6926.775409, 7770.203085, 9000.211927,
7808.710708, 8239.82626, 8252.964285, 9546.314331, 2801.654022,
7865.302917, 6472.037973, 11286.93314, 7698.702989, 8239.164252,
8391.871173, 7817.085477, 7987.7324, 8517.420004, 8286.027753,
8021.268999, 8605.836444, 8360.390812, 8408.648702, 6980.52271,
8484.391646, 7604.489488, 8047.32564, 6859.736888, 8211.744547,
8338.224508, 7549.875965, 7831.170315, 8002.372075, 8092.398475,
7233.303386, 7880.198456, 6431.676768, 8146.454012, 9012.217125,
7696.760712, 7916.314754, 8372.430545, 4552.305881, 4744.119616,
8072.706265, 8038.601576, 8070.612573, 7631.800415, 8124.412039,
7958.686488, 8565.578204, 7204.2532, 7782.851494, 8195.743097,
8075.444598, 7468.681342, 7376.4572, 7019.132415, 7450.186973,
7900.853201, 7077.396698, 6781.366002, 8195.304822, 7581.211378,
8155.600681, 7446.611537, 7887.710882, 6849.690117, 6384.206298,
6965.647058, 7732.576444, 7687.296996, 7887.710882, 8061.034883,
7861.831189, 6690.298381, 7982.777954, 8310.054831, 7476.530867,
5840.137517, 8012.816166, 9211.484507, 8906.076566, 7227.155276,
6795.608201, 6926.023806, 8026.998142, 7388.809243, 7700.812705,
7493.134187, 7397.470718, 6794.411986, 8475.249868, 8387.892097,
8503.435859, 7890.106874, 7631.800415, 8349.757061, 7852.912013,
7758.848165, 7580.919692, 6402.21648, 6920.804051, 8628.194894,
7489.137138, 7866.037678, 7311.596266, 8746.497033, 9147.374207,
9022.033508, 8475.348448, 8911.007949, 8961.95446, 8476.003123,
8932.837953, 8661.336305, 8949.625535, 9048.100379, 10684.87284,
8845.185424, 8182.999872, 8986.675848, 8136.137692, 10504.2443,
8848.254372, 7233.813327, 8707.732966, 8381.547529, 10471.33626,
7682.888263, 8071.666541, 7428.171461, 9736.360333, 9378.789551,
8294.552055, 8225.545799, 8874.930993, 8459.226077, 8749.99335,
9192.455984, 7875.820212, 8982.410256, 8642.199262, 8935.14394,
8480.821358, 10240.80452, 8746.68483, 7619.897735, 8417.475201
)), .Names = c("ENTRY", "BLOCK", "PLOT", "RANGE", "ROW",
"YIELD"), row.names = 372:587, class = "data.frame")
The spatial arrangement of the data:
library(reshape2)
dcast(my.data, RANGE ~ ROW, value.var ="YIELD")
Possible examples of models to analyze the data:
library(nlme)
fit1 = lme(fixed = YIELD ~ ENTRY, data = my.data,
random= ~1 | BLOCK,
method = "ML")
fit2 = lme(fixed = YIELD ~ ENTRY, data = my.data,
random= ~1 | BLOCK,
corr = corSpatial(form = ~RANGE+ROW),
method = "ML")
Finally run out of ideas and links I could find to try and explain this so I need some help!
I'm trying to add a step-function to a ggplot chart using the cumSeg package. I did this successfully in this previous question, so I'm used to the usage of the function etc.
When I made the plot in that thread, it was fairly simple, just using an x vs y barplot for the mean values of x, and I added on error bars myself afterwards (thus it was a 16 x 2 dataframe).
I want to re-create this plot, but using sequential boxplots instead of bars, which I have done, using the raw data this time, which is ~250 observations in 16 factors (same factors as before).
Now when I try to add a geom_line,path or step it's complaining about the dimensions of the data not matching, because even though there are 16 factors/boxplots, there are now no longer 16 observations (Error: Aesthetics must be either length 1 or the same as the data (249): x, y, colour, group, fill)
To calculate the step function, I give it the means of each of the 16, which returns a 16-member vector, not ~250 (obviously).
How can I add the step function on to the box plot so that it understands it should pertain to the 16 factor values? I can't work out if it's a problem with the dataframe or how I'm giving it to ggplot.
I tried specifying it in a second dataframe, and passing it as geom_path(data=df2) instead of inheriting the main plots data, as in this question, but it still complains (Error: Aesthetics must be either length 1 or the same as the data (16): x, y, colour, group (the code below is in this form still)
data.melt <- melt(t(infile)
operon_gc <- 0.408891366
opgc_stdev <- 0.015712091
genome_gc <- 0.425031611
gengc_stdev <- 0.007587437
stepfunc <- jumpoints(y=aggregate(melted_data$value~melted_data$Var1, simplify=TRUE, FUN="mean")$`melted_data$value`, k=1, output="1")
func_data <- data.frame(x = c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), y = stepfunc$fitted.values)
# Make boxplot
bp <- ggplot(melted_data, aes(x=Var1, y=value*100, fill=Var1)) + theme_bw()
#bp <- bp + scale_x_discrete(name = "Locus") + scale_y_continuous(name="GC Content (%)")
bp <- bp + geom_rect(xmin=0, xmax=17,
ymin=(operon_gc-opgc_stdev)*100,
ymax=(operon_gc+opgc_stdev)*100,
fill = "grey79", alpha=0.05)
bp <- bp + geom_rect(xmin=0, xmax=17,
ymin=(genome_gc-gengc_stdev)*100,
ymax=(genome_gc+gengc_stdev)*100,
fill = "beige", alpha=.08)
bp <- bp + geom_abline(intercept=genome_gc*100, slope=0,
colour="gray14", linetype=3)
bp <- bp + geom_abline(intercept=operon_gc*100, slope=0,
colour="gray14", linetype=3)
bp <- bp + geom_boxplot(alpha = 0.7)
bp <- bp + scale_color_manual(values = c("GC Step Fit"="red"), guides(color="Regression"))
bp <- bp + geom_path(linetype=4, size=0.9, aes(x=func_data$x,
y=func_data$y,
color="GC Step Fit",
group=1))
bp <- bp + theme(legend.position="bottom",
legend.direction="horizontal",
axis.text.x = element_text(angle=45, hjust=1)) + guides(fill=guide_legend(title="", nrow = 1))
bp
Data
> dput(func_data)
structure(list(x = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16), y = c(0.452456815737206, 0.452456815737206, 0.452456815737206,
0.452456815737206, 0.452456815737206, 0.452456815737206, 0.452456815737206,
0.452456815737206, 0.452456815737206, 0.452456815737206, 0.452456815737206,
0.375047391939972, 0.375047391939972, 0.375047391939972, 0.375047391939972,
0.375047391939972)), .Names = c("x", "y"), row.names = c(NA,
-16L), class = "data.frame")
> dput(melted_data)
structure(list(Var1 = structure(c(1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 1L, 2L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 14L, 15L, 16L, 1L, 2L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 15L, 16L, 1L, 2L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 15L, 16L, 11L), .Label = c("PVC1", "PVC2", "PVC3", "PVC4",
"PVC5", "PVC6", "PVC7", "PVC8", "PVC9", "PVC10", "PVC11", "PVC12",
"PVC13", "PVC14", "PVC15", "PVC16"), class = "factor"), Var2 = c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 17L
), value = c(0.404444444, 0.436329588, 0.46031746, 0.479318735,
0.466230937, 0.480874317, 0.476811594, 0.441558442, 0.449172577,
0.476525822, 0.452674897, 0.460918332, 0.368041912, 0.339160839,
0.415355269, 0.408163265, 0.401826484, 0.45411985, 0.468609865,
0.479735318, 0.464052288, 0.469945355, 0.476811594, 0.444032158,
0.453900709, 0.494004796, 0.467315716, 0.457805907, 0.387071651,
0.390737117, 0.408679065, 0.425170068, 0.355555556, 0.438069217,
0.423076923, 0.466666667, 0.450980392, 0.422222222, 0.469298246,
0.43196005, 0.416666667, 0.496402878, 0.428676201, 0.382113821,
0.349765258, 0.332280147, 0.373371925, 0.346448087, 0.415555556,
0.440508629, 0.435222672, 0.455833333, 0.446623094, 0.422222222,
0.463450292, 0.43258427, 0.425675676, 0.497584541, 0.422524565,
0.392592593, 0.362779741, 0.337552743, 0.379856115, 0.348888889,
0.391111111, 0.421004566, 0.426439232, 0.480367586, 0.472766885,
0.455555556, 0.495726496, 0.447565543, 0.424460432, 0.48441247,
0.435164835, 0.39600551, 0.3858393, 0.323655914, 0.383693046,
0.329988852, 0.395555556, 0.452380952, 0.454756381, 0.448129252,
0.496732026, 0.423728814, 0.502923977, 0.433832709, 0.41607565,
0.498800959, 0.399161736, 0.368421053, 0.386568387, 0.369901547,
0.398550725, 0.34006734, 0.406392694, 0.455840456, 0.458598726,
0.43792517, 0.501089325, 0.427777778, 0.49122807, 0.435081149,
0.416020672, 0.48441247, 0.40617284, 0.379298942, 0.402298851,
0.361462729, 0.396135266, 0.356666667, 0.353333333, 0.439182916,
0.469316597, 0.461868038, 0.490196078, 0.405555556, 0.505847953,
0.430529595, 0.406619385, 0.470023981, 0.395262768, 0.355072464,
0.373677249, 0.348008386, 0.382804995, 0.355481728, 0.415555556,
0.481481481, 0.4550036, 0.485074627, 0.501089325, 0.5, 0.51754386,
0.465043695, 0.438478747, 0.501199041, 0.457733481, 0.416815742,
0.360672976, 0.388285024, 0.397509579, 0.356589147, 0.384444444,
0.482917821, 0.452525253, 0.487864078, 0.501089325, 0.488888889,
0.513157895, 0.47627965, 0.475609756, 0.513189448, 0.471391657,
0.419797257, 0.38467433, 0.376081425, 0.396666667, 0.370985604,
0.42, 0.477777778, 0.436063218, 0.476782753, 0.490196078, 0.466666667,
0.51754386, 0.45505618, 0.44295302, 0.532374101, 0.460707635,
0.426019548, 0.35755814, 0.389842632, 0.388489209, 0.358730159,
0.422222222, 0.459610028, 0.473304473, 0.502487562, 0.509803922,
0.438888889, 0.516081871, 0.480024969, 0.457317073, 0.527577938,
0.460969293, 0.424148607, 0.386850153, 0.369161868, 0.397677794,
0.357696567, 0.433333333, 0.450704225, 0.429118774, 0.497031383,
0.505446623, 0.455555556, 0.492690058, 0.444444444, 0.409722222,
0.501199041, 0.444812362, 0.414860681, 0.361111111, 0.390096618,
0.394724221, 0.358803987, 0.426666667, 0.471837488, 0.495748299,
0.511982571, 0.45, 0.513157895, 0.465043695, 0.438478747, 0.498800959,
0.453200148, 0.409375, 0.329166667, 0.384172662, 0.38961039,
0.413333333, 0.406113537, 0.450728363, 0.435244161, 0.431693989,
0.441520468, 0.427745665, 0.378076063, 0.389671362, 0.427222222,
0.397905759, 0.423295455, 0.375268817, 0.391111111, 0.39893617,
0.461538462, 0.437367304, 0.448087432, 0.454678363, 0.421323057,
0.384787472, 0.394366197, 0.419141914, 0.401331931, 0.423768939,
0.368817204, 0.42680776)), .Names = c("Var1", "Var2", "value"
), row.names = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L,
38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L,
51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L,
64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L,
77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L,
90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L,
102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L,
113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L,
124L, 125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L, 133L, 134L,
135L, 136L, 137L, 138L, 139L, 140L, 141L, 142L, 143L, 144L, 145L,
146L, 147L, 148L, 149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L,
157L, 158L, 159L, 160L, 161L, 162L, 163L, 164L, 165L, 166L, 167L,
168L, 169L, 170L, 171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L,
179L, 180L, 181L, 182L, 183L, 184L, 185L, 186L, 187L, 188L, 189L,
190L, 191L, 192L, 193L, 194L, 195L, 196L, 197L, 198L, 199L, 200L,
201L, 202L, 203L, 204L, 205L, 206L, 207L, 208L, 209L, 210L, 212L,
213L, 214L, 215L, 216L, 217L, 218L, 219L, 220L, 222L, 223L, 224L,
225L, 226L, 228L, 229L, 230L, 231L, 232L, 233L, 234L, 235L, 236L,
239L, 240L, 241L, 242L, 244L, 245L, 246L, 247L, 248L, 249L, 250L,
251L, 252L, 255L, 256L, 267L), class = "data.frame")
I'm not exactly sure how I solved this. I can only assume I was making a really stupid mistake before, but here's the code that finally produced the desired outcome:
bp_gc <- ggplot(melted_data, aes(x=Var1, y=value*100)) + theme_bw()
bp_gc <- bp_gc + geom_rect(xmin=0, xmax=17,
ymin=(operon_gc-opgc_stdev)*100,
ymax=(operon_gc+opgc_stdev)*100,
fill = "grey79", alpha=0.05)
bp_gc <- bp_gc + geom_rect(xmin=0, xmax=17,
ymin=(genome_gc-gengc_stdev)*100,
ymax=(genome_gc+gengc_stdev)*100,
fill = "beige", alpha=.08)
bp_gc <- bp_gc + geom_abline(intercept=genome_gc*100, slope=0,
colour="gray14", linetype=3)
bp_gc <- bp_gc + geom_abline(intercept=operon_gc*100, slope=0,
colour="gray14", linetype=3)
bp_gc <- bp_gc + geom_boxplot(alpha = 0.7, fill="dodgerblue", color="gray11")
bp_gc <- bp_gc + ylab("GC Content (%)")
bp_gc <- bp_gc + xlab("Locus")
bp_gc <- bp_gc + theme(legend.position = "none",
axis.text.x = element_text(angle=45, hjust=1))
bp_gc <- bp_gc + coord_cartesian(ylim=c(30,60))
bp_gc <- bp_gc + geom_path(data=func_data, linetype=4, size=0.9, aes(x=x,y=y*100))
bp_gc
I'm not 100% clear on what you're trying to achieve. Is it like this?
ggplot(melted_df, aes(Var1, value)) +
geom_boxplot()
ggplot(df, aes(Var1, value)) +
stat_summary(fun.y = median, geom = "path", aes(group = 1)) +
geom_boxplot()
If you really want to compute your statistics outside the main dataframe, it's usually best to do it something like this:
ggplot(df1, aes(x, y)) + geom_point() +
geom_path(data = summarydf, aes(xmean, ymean))
I have a data set like this:
dat <- structure(list(Y = c(152.75, 167.7, 169.7, 173.2, 174.4, 177.1,
196, 200.45, 206.1, 206.65, 203, 186.65, 208.9, 192.95, 201.05,
203.45, 200.3, 197.55, 205.1, 198.1, 205.15, 189.35, 201.25,
194.55, 204.15, 200.95, 166.6, 165.1, 175.2, 168.4, 153, 168.4,
161, 170.1, 168.15, 167.3, 169.2, 169.25, 185.35, 185.9, 178.55,
193.2, 210.25, 203.75, 203.25, 203.7, 200.15, 204, 204, 206.3,
197.7, 190.5, 185.95, 199, 185.1, 194.35, 186.2, 190.95, 191.55,
177.8, 182.95, 186.3, 177.25, 186.35, 177.1, 183.9, 188.55, 184.05,
188.55, 187.25, 185.25, 174.8, 180.9, 171.4, 169.6, 176.7, 178.35,
191.3, 180.45, 187.5, 183.85, 187.7, 176.45, 188.7, 179.15, 183.25,
180.1, 184.35, 185.35, 184.25, 182.55, 185.15, 181.2, 184.6,
183.05, 182.35, 177.55, 179.85, 176.1, 175.9, 173.7, 180.7, 194.55,
190.3, 200.5, 193.05, 191.55, 190.65, 194.9, 192.8, 202.65, 200.35,
181.95, 194.85, 198.3, 199.7, 185.7, 195.9, 195.15, 191.85, 198.65,
188.9, 192.25, 197.8, 185.75, 193.5, 178.2, 170.15, 175.4, 176.25,
176.6, 179.8, 182, 173.35, 181.75, 188.05, 198.05, 204.75, 190.75,
196.15, 193.15, 195.4, 192.35, 165.55, 187.15, 191.35, 200.4,
200.4, 204.85, 211.3, 206.45, 205.95, 201, 198.6, 202.45, 192.95,
198.25, 190.85, 182.9, 184.5, 175.75, 174.95, 178.8, 173.2, 174,
176.75, 167.2, 161.1, 155.6, 178.6, 187.8, 194.05), X1 = c(4L,
6L, 7L, 8L, 9L, 10L, 4L, 6L, 7L, 8L, 9L, 10L, 11L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 12L, 13L, 14L, 15L, 4L, 5L, 6L, 7L, 8L, 4L, 5L,
6L, 7L, 11L, 14L, 15L, 16L, 19L, 20L, 21L, 22L, 23L, 24L, 25L,
26L, 27L, 4L, 5L, 9L, 13L, 16L, 17L, 18L, 19L, 20L, 21L, 22L,
23L, 24L, 25L, 26L, 27L, 28L, 4L, 5L, 7L, 8L, 9L, 10L, 11L, 12L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 4L, 5L, 8L, 9L, 10L, 11L, 4L, 5L, 6L, 7L, 8L,
10L, 11L, 12L, 13L, 4L, 6L, 7L, 8L, 9L, 12L, 13L, 14L, 15L, 16L,
17L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 12L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 11L, 4L, 6L, 7L, 4L, 5L, 7L, 9L, 11L, 12L, 15L, 16L, 17L,
20L, 21L, 22L, 4L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 16L,
18L, 4L, 5L, 6L), X2 = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L,
5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L,
10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 18L, 18L, 18L), .Label = c("bec", "bi", "ebk", "ele",
"eli", "ian", "isy", "ith", "lda", "lli", "na", "nja", "ra",
"rda", "ria", "rik", "tje", "tri"), class = "factor")), .Names = c("Y",
"X1", "X2"), row.names = c(142L, 143L, 144L, 145L, 146L, 147L,
87L, 88L, 89L, 90L, 91L, 92L, 93L, 160L, 161L, 162L, 163L, 164L,
165L, 166L, 167L, 168L, 169L, 170L, 171L, 172L, 1L, 2L, 3L, 4L,
5L, 6L, 7L, 8L, 9L, 10L, 11L, 82L, 83L, 84L, 85L, 86L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L,
38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L,
51L, 52L, 53L, 54L, 55L, 56L, 74L, 75L, 76L, 77L, 78L, 79L, 80L,
81L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L,
112L, 113L, 114L, 115L, 116L, 117L, 118L, 133L, 134L, 135L, 136L,
137L, 138L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 119L,
120L, 121L, 122L, 123L, 124L, 125L, 126L, 127L, 128L, 129L, 66L,
67L, 68L, 69L, 70L, 71L, 72L, 73L, 94L, 95L, 96L, 97L, 98L, 99L,
100L, 101L, 130L, 131L, 132L, 148L, 149L, 150L, 151L, 152L, 153L,
154L, 155L, 156L, 157L, 158L, 159L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 21L, 22L, 139L, 140L, 141L), class = "data.frame")
and I applied a gamm4-model from gamm4-package on it:
library(gamm4)
gamm.1 <- gamm4(Y ~ s(X1),random = ~(1+X1|X2),data = dat)
I also predicted and plotted the smoothed values using:
newDat <- data.frame(X1 = min(dat$X1):max(dat$X1))
p0 <- predict(gamm.1$gam,newDat,se=T)
plot(dat$X1,dat$Y)
lines(newDat$X1,p0$fit,lwd=3)
My question is: how can I predict the smoothed lines for each of the groups (X2)?
I know that I can get the random effects via ranef(gamm.1$mer) but I don't know how to use them correctly.