I was trying to convert an xml into r df using XML package. Was able to get a df successfully, but whenever there were grandchildren under a child, values of grandchildren was merged into one column.
Here is how the xml looks like:
<user>
<created-at type="datetime">2012-12-20T18:32:20+00:00</created-at>
<details></details>
<is-active type="boolean">true</is-active>
<last-login type="datetime">2017-06-22T16:52:11+01:00</last-login>
<time-zone>Pacific Time (US & Canada)</time-zone>
<updated-at type="datetime">2017-06-22T21:00:47+01:00</updated-at>
<is-verified type="boolean">true</is-verified>
<groups type="array">
<group>
<created-at type="datetime">2015-02-09T09:34:41+00:00</created-at>
<id type="integer">23215935</id>
<is-active type="boolean">true</is-active>
<name>Product Managers</name>
<updated-at type="datetime">2015-02-09T09:34:41+00:00</updated-at>
</group>
</groups>
</user>
The code I used were:
users_xml = xmlTreeParse("users.xml")
top_users = xmlRoot(users_xml)
users = xmlSApply(top_users, function(x) xmlSApply(x, xmlValue))
The result I got had all the elements listed fine besides it combined everything under "groups" into one column. Is there anyway I can make each element under "group" a separate column in the final dataframe?
I also tried
nodes=getNodeSet(top_users, "//groups[#group]")
and
nodes=getNodeSet(top_users, "//groups/group[#group]")
and
nodes=getNodeSet(top_users, "//.groups/group[#group]")
and switched "top_users" to "user_xml", but each time got error message:
Error: 1: Input is not proper UTF-8, indicate encoding !
Bytes: 0xC2 0x3C 0x2F 0x6E
Then tried
data.frame(t(xpathSApply(xmlRoot(xmlTreeParse("users.xml", useInternalNodes = T)),
"//user", function(y) xmlSApply(y, xmlValue))))
Which gave me the exact same thing as the first solution.
And finally, I tried
data.frame(t(xpathSApply(xmlRoot(xmlTreeParse("users.xml", useInternalNodes = T)),
"//user/groups/group", function(y) xmlSApply(y, xmlValue))))
Which did give me a dataframe but only with elements in "group", and there is no way I can map it back to the first table I got that has all elements in "user".
Consider column binding with xmlToDataFrame() of user children and groups children:
userdf <- xmlToDataFrame(nodes=getNodeSet(doc, "/user"))
groupdf <- xmlToDataFrame(nodes=getNodeSet(doc, "/user/groups/group"))
df <- transform(cbind(userdf, groupdf), groups = NULL) # REMOVE groups COL
df
# created.at details is.active last.login time.zone
# 1 2012-12-20T18:32:20+00:00 true 2017-06-22T16:52:11+01:00 Pacific Time (US & Canada)
# updated.at is.verified created.at.1 id is.active.1 name
# 1 2017-06-22T21:00:47+01:00 true 2015-02-09T09:34:41+00:00 23215935 true Product Managers
# updated.at.1
# 1 2015-02-09T09:34:41+00:00
Related
I have two dataframes with each two columns c("price", "size") with different lengths.
Each price must be linked to its size. It's two lists of trade orders. I have to discover the differences between the two dataframes knowing that the two databases can have orders that the other doesn't have and vice versa. I would like an output with the differences or two outputs, it doesn't matter. But I need the row number in the output to find where are the differences in the series.
Here is sample data :
> out
price size
1: 36024.86 0.01431022
2: 36272.00 0.00138692
3: 36272.00 0.00277305
4: 36292.57 0.05420000
5: 36292.07 0.00403948
---
923598: 35053.89 0.30904890
923599: 35072.76 0.00232000
923600: 35065.60 0.00273000
923601: 35049.36 0.01760000
923602: 35037.23 0.00100000
>bit
price size
1: 37279.89 0.01340020
2: 37250.84 0.00930000
3: 37250.32 0.44284049
4: 37240.00 0.00056491
5: 37215.03 0.99891906
---
923806: 35053.89 0.30904890
923807: 35072.76 0.00232000
923808: 35065.60 0.00273000
923809: 35049.36 0.01760000
923810: 35037.23 0.00100000
For example, I need to know if the first row of the database out is in the database bit.
I've tried many functions : comparedf()
summary(comparedf(bit, out, by = c("price","size"))
but I've got error:
Error in vecseq(f__, len__, if (allow.cartesian || notjoin ||
!anyDuplicated(f__, :
I've tried compare_df() :
compareout=compare_df(out,bit,c("price","size"))
But I know the results are wrong, I've only 23 results and I know that there are more than 200 differences minimum.
I've tried match(), which() functions but it doesn't get the results I search.
If you have any other methods, I will take them.
Perhaps you could just do inner_join on out and bit by price and size? But first make id variable for both data.frame's
library(dplyr)
out$id <- 1:nrow(out)
bit$id <- 1:nrow(bit)
joined <- inner_join(bit, out, by = c("price", "size"))
Now we can check which id from out and bit are not present in joined table:
id_from_bit_not_included_in_out <- bit$id[!bit$id %in% joined$id.x]
id_from_out_not_included_in_bit <- out$id[!out$id %in% joined$id.y]
And these ids are the rows not included in out or bit, i.e. variable id_from_bit_not_included_in_out contains rows present in bit, but not in out and variable id_from_out_not_included_in_bit contains rows present in out, but not in bit
First attempt here. It will be difficult to do a very clean job with this data tho.
The data I used:
out <- read.table(text = "price size
36024.86 0.01431022
36272.00 0.00138692
36272.00 0.00277305
36292.57 0.05420000
36292.07 0.00403948
35053.89 0.30904890
35072.76 0.00232000
35065.60 0.00273000
35049.36 0.01760000
35037.23 0.00100000", header = T)
bit <- read.table(text = "price size
37279.89 0.01340020
37250.84 0.00930000
37250.32 0.44284049
37240.00 0.00056491
37215.03 0.99891906
37240.00 0.00056491
37215.03 0.99891906
35053.89 0.30904890
35072.76 0.00232000
35065.60 0.00273000
35049.36 0.01760000
35037.23 0.00100000", header = T)
Assuming purely that row 1 of out should match with row 1 of bit a simple solution could be:
df <- cbind(distinct(out), distinct(bit))
names(df) <- make.unique(names(df))
However judging from the data you have provided I am not sure if this is the way to go (big differences in the first few rows) so maybe try sorting the data first?:
df <- cbind(distinct(out[order(out$price, out$size),]), distinct(bit[order(bit$price, bit$size),]))
names(df) <- make.unique(names(df))
Trying to extract two attributes from the XML file extract (from a large XML file) namely 'nmRegime' and 'CalendarSystemT' (this is the date). Once extract those two records need to be saved as two columns in a data frame in R along with the filename.
There are several 'event' nodes within one given XML file and there are nearly 100 individual XML files.
<Event tEV="FirA" clearEV="false" onEV="true" dateOriginEV="Calendar" nYrsFromStEV="" nDaysFromStEV="" tFaqEV="Blank" tAaqEV="Blank" aqStYrEV="0" aqEnYrEV="0" nmEV="Fire_Cool" categoryEV="CatUndef" tEvent="Doc" idSP="105" nmRegime="Wheat, Tilled, stubble cool burn" regimeInstance="1">
<notesEV></notesEV>
<dateEV CalendarSystemT="FixedLength">19710331</dateEV>
<FirA fracAfctFirA="0.6" fracGbfrToAtmsFirA="0.98" fracStlkToAtmsFirA="0.98" fracLeafToAtmsFirA="0.98" fracGbfrToGlitFirA="0.02" fracStlkToSlitFirA="0.02" fracLeafToLlitFirA="0.02" fracCortToCodrFirA="1.0" fracFirtToFidrFirA="1.0" fracDGlitToAtmsFirA="0.931" fracRGlitToAtmsFirA="0.931" fracDSlitToAtmsFirA="0.931" fracRSlitToAtmsFirA="0.931" fracDLlitToAtmsFirA="0.931" fracRLlitToAtmsFirA="0.931" fracDCodrToAtmsFirA="0.0" fracRCodrToAtmsFirA="0.0" fracDFidrToAtmsFirA="0.0" fracRFidrToAtmsFirA="0.0" fracDGlitToInrtFirA="0.019" fracRGlitToInrtFirA="0.019" fracDSlitToInrtFirA="0.019" fracRSlitToInrtFirA="0.019" fracDLlitToInrtFirA="0.019" fracRLlitToInrtFirA="0.019" fracDCodrToInrtFirA="0.0" fracRCodrToInrtFirA="0.0" fracDFidrToInrtFirA="0.0" fracRFidrToInrtFirA="0.0" fracSopmToAtmsFirA="" fracLrpmToAtmsFirA="" fracMrpmToAtmsFirA="" fracSommToAtmsFirA="" fracLrmmToAtmsFirA="" fracMrmmToAtmsFirA="" fracMicrToAtmsFirA="" fracSopmToInrtFirA="" fracLrpmToInrtFirA="" fracMrpmToInrtFirA="" fracSommToInrtFirA="" fracLrmmToInrtFirA="" fracMrmmToInrtFirA="" fracMicrToInrtFirA="" fracMnamNToAtmsFirA="" fracSAmmNToAtmsFirA="" fracSNtrNToAtmsFirA="" fracDAmmNToAtmsFirA="" fracDNtrNToAtmsFirA="" fixFirA="" phaFirA="" />
</Event>
Had some success in extracting 'nmRegime' but no success with 'CalendarSystemT'. Used below code for data extraction.
The second question, is there a way to loop the list of XML files and do this operation?
# get records
library(xml2)
recs <- xml_find_all(xml, "//Event")
#extract the names
labs <- trimws(xml_attr(recs, "nmRegime"))
names <- labs[!is.na(labs)]
# Extract the date
recs_t <- xml_find_all(xml, "//Event/dateEV")
time <- trimws(xml_attr(recs_t, "CalendarSystemT"))
The calendar time value is not an attribute but is stored as the node's element and is accessed directly.
Also note that if an Event Node is missing a "dateEV" then there will be problems aligning the "labs" with the "time". It is better to extract the time value from each parent node instead of the entire document.
library(xml2)
library(dplyr)
xml<- read_xml('<Event tEV="FirA" clearEV="false" onEV="true" dateOriginEV="Calendar" nYrsFromStEV="" nDaysFromStEV="" tFaqEV="Blank" tAaqEV="Blank" aqStYrEV="0" aqEnYrEV="0" nmEV="Fire_Cool" categoryEV="CatUndef" tEvent="Doc" idSP="105" nmRegime="Wheat, Tilled, stubble cool burn" regimeInstance="1">
<notesEV></notesEV>
<dateEV CalendarSystemT="FixedLength">19710331</dateEV>
<FirA fracAfctFirA="0.6" fracGbfrToAtmsFirA="0.98" fracStlkToAtmsFirA="0.98" fracLeafToAtmsFirA="0.98" fracGbfrToGlitFirA="0.02" fracStlkToSlitFirA="0.02" fracLeafToLlitFirA="0.02" fracCortToCodrFirA="1.0" fracFirtToFidrFirA="1.0" fracDGlitToAtmsFirA="0.931" fracRGlitToAtmsFirA="0.931" fracDSlitToAtmsFirA="0.931" fracRSlitToAtmsFirA="0.931" fracDLlitToAtmsFirA="0.931" fracRLlitToAtmsFirA="0.931" fracDCodrToAtmsFirA="0.0" fracRCodrToAtmsFirA="0.0" fracDFidrToAtmsFirA="0.0" fracRFidrToAtmsFirA="0.0" fracDGlitToInrtFirA="0.019" fracRGlitToInrtFirA="0.019" fracDSlitToInrtFirA="0.019" fracRSlitToInrtFirA="0.019" fracDLlitToInrtFirA="0.019" fracRLlitToInrtFirA="0.019" fracDCodrToInrtFirA="0.0" fracRCodrToInrtFirA="0.0" fracDFidrToInrtFirA="0.0" fracRFidrToInrtFirA="0.0" fracSopmToAtmsFirA="" fracLrpmToAtmsFirA="" fracMrpmToAtmsFirA="" fracSommToAtmsFirA="" fracLrmmToAtmsFirA="" fracMrmmToAtmsFirA="" fracMicrToAtmsFirA="" fracSopmToInrtFirA="" fracLrpmToInrtFirA="" fracMrpmToInrtFirA="" fracSommToInrtFirA="" fracLrmmToInrtFirA="" fracMrmmToInrtFirA="" fracMicrToInrtFirA="" fracMnamNToAtmsFirA="" fracSAmmNToAtmsFirA="" fracSNtrNToAtmsFirA="" fracDAmmNToAtmsFirA="" fracDNtrNToAtmsFirA="" fixFirA="" phaFirA="" />
</Event>')
recs <- xml_find_all(xml, "//Event")
#extract the names
labs <- trimws(xml_attr(recs, "nmRegime")) names <- labs[!is.na(labs)]
# Extract the date
time <- xml_find_first(recs, ".//dateEV") %>% xml_text() %>% trimws()
To answer your second question, yes you could can wrap the above script into a function and then use lapply to loop through your entire list of files.
See this question and answer for details: R XML - combining parent and child nodes(w same name) into data frame
All.
I've been trying to solve a problem on a large data set for some time and could use some of your wisdom.
I have a DF (1.3M obs) with a column called customer along with 30 other columns. Let's say it contains multiple instances of customers Customer1 thru Customer3000. I know that I have issues with 30 of those customers. I need to find all the customers that are NOT the customers I have issues and replace the value in the 'customer' column with the text 'Supported Customer'. That seems like it should be a simple thing...if it werent for the number of obs, I would have loaded it up in Excel, filtered all the bad customers out and copy/pasted the text 'Supported Customer' over what remained.
Ive tried replace and str_replace_all using grepl and paste/paste0 but to no avail. my current code looks like this:
#All the customers that have issues
out <- c("Customer123", "Customer124", "Customer125", "Customer126", "Customer127",
"Customer128", ..... , "Customer140")
#Look for everything that is NOT in the list above and replace with "Enabled"
orderData$customer <- str_replace_all(orderData$customer, paste0("[^", paste(out, collapse =
"|"), "]"), "Enabled Customers")
That code gets me this error:
Error in stri_replace_all_regex(string, pattern, fix_replacement(replacement), :
In a character range [x-y], x is greater than y. (U_REGEX_INVALID_RANGE)
I've tried the inverse of this approach and pulled a list of all obs that dont match the list of out customers. Something like this:
in <- orderData %>% filter(!customer %in% out) %>% select(customer) %>%
distinct(customer)
This gets me a much larger list of customers that ARE enabled (~3,100). Using the str_replace_all and paste approach seems to have issues though. At this large number of patterns, paste no longer collapses using the "|" operator. instead I get a string that looks like:
"c(\"Customer1\", \"Customer2345\", \"Customer54\", ......)
When passed into str_replace_all, this does not match any patterns.
Anyways, there's got to be an easier way to do this. Thanks for any/all help.
Here is a data.table approach.
First, some example data since you didn't provide any.
customer <- sample(paste0("Customer",1:300),5000,replace = TRUE)
orderData <- data.frame(customer = sample(paste0("Customer",1:300),5000,replace = TRUE),stringsAsFactors = FALSE)
orderData <- cbind(orderData,matrix(runif(0,100,n=5000*30),ncol=30))
out <- c("Customer123", "Customer124", "Customer125", "Customer126", "Customer127", "Customer128","Customer140")
library(data.table)
setDT(orderData)
result <- orderData[!(customer %in% out),customer := gsub("Customer","Supported Customer ",customer)]
result
customer 1 2 3 4 5 6 7 8 9
1: Supported Customer 134 65.35091 8.57117 79.594166 84.88867 97.225276 84.563997 17.15166 41.87160 3.717705
2: Supported Customer 225 72.95757 32.80893 27.318046 72.97045 28.698518 60.709381 92.51114 79.90031 7.311200
3: Supported Customer 222 39.55269 89.51003 1.626846 80.66629 9.983814 87.122153 85.80335 91.36377 14.667535
4: Supported Customer 184 24.44624 20.64762 9.555844 74.39480 49.189537 73.126275 94.05833 36.34749 3.091072
5: Supported Customer 194 42.34858 16.08034 34.182737 75.81006 35.167769 23.780069 36.08756 26.46816 31.994756
---
Here is the sample of the XML format in my dataset.
<info>
<a>1990-01-02T06:58:12+08:00</a>
<b>120.980</b>
<c>23.786</c>
<d>18.7</d>
<e>2</e>
</info>
<info>
<a>1990-02-02T06:58:12+08:00</a>
<b>120.804</b>
<c>23.790</c>
</info>
But the numbers of tag is not same as tag , for example there are 4000 rows tag a, b, c, and only 3950 rows for tag d, e
Here is my code in R
library(xml2)
data.frame(Time = xml_text(xml_find_all(xml_data, ".//a")),
Num = xml_text(xml_find_all(xml_data, ".//b")),
Dist = xml_text(xml_find_all(xml_data, ".//c")),
Gap = xml_text(xml_find_all(xml_data, ".//d")),
Type = xml_text(xml_find_all(xml_data, ".//e")),
stringsAsFactors = F)
}) -> df
The error message is: (I knew this will happened)
arguments imply differing number of rows
The output I want will be like the table below:
Time Num Dist Gap Type
1990-01-02T06:58:12+08:00 120.980 23.786 18.7 2
1990-02-02T06:58:12+08:00 120.804 23.790 <NA> <NA>
...
1993-03-03T08:42:15+08:00 120.412 23.523 <NA> 1
Which function or library should I try for this?
Thanks for helping me !!
I have tried some another method like map_if
Finally I found the solution!!
Once we are using the xml file, be sure to get the root node of the records at first.
Here I will show you how it works.
Take this xml file for example: (name it to test.xml)
<dataset>
<dataset_info>
<data_count>2</data_count>
<status>Actual</status>
</dataset_info>
<data>
<time>2019-06-01</time>
<event>event1</event>
<describe>describe for event1</describe>
</data>
<data>
<time>2019-06-02</time>
<event>event2</event>
</data>
</dataset>
We know that there is a tag describe missing in event2, but we hope to make data frame by this xml data. I was taught to use the function xml2::xml_find_all to get the value in the selected tag.
By the R code like this:
# library import
library(xml) #require(xml2)
# file reading
xml <- read_xml("path/where/the/file/is/test.xml")
data.frame(Time = xml_text(xml_find_all(xml, ".//time"))
Event = xml_text(xml_find_all(xml, ".//event"))
Describe = xml_text(xml_find_all(xml, ".//describe"))
)
Then we will get error message arguments imply differing number of rows
So what we need to do is get the root of records first!!
As the code below:
# library import
library(xml) #require(xml2)
# file reading
xml <- read_xml("path/where/the/file/is/test.xml")
record <- xml_find_all(xml, ".//data")
data.frame(Time = xml_text(xml_find_all(record, ".//time"))
Event = xml_text(xml_find_all(record, ".//event"))
Describe = xml_text(xml_find_all(record, ".//describe"))
)
After adding record <- xml_find_all(xml, ".//data"), we will no longer get the error cause by different counting of the results.
Hope this can help !!
I work with regularly refreshed XML reports and I would like to automate the munging process using R & xml2.
Here's a link to an entire example file.
Here's a sample of the XML:
<?xml version="1.0" ?>
<riDetailEnrolleeReport xmlns="http://vo.edge.fm.cms.hhs.gov">
<includedFileHeader>
<outboundFileIdentifier>f2e55625-e70e-4f9d-8278-fc5de7c04d47</outboundFileIdentifier>
<cmsBatchIdentifier>RIP-2015-00096</cmsBatchIdentifier>
<cmsJobIdentifier>16220</cmsJobIdentifier>
<snapShotFileName>25032.BACKUP.D03152016T032051.dat</snapShotFileName>
<snapShotFileHash>20d887c9a71fa920dbb91edc3d171eb64a784dd6</snapShotFileHash>
<outboundFileGenerationDateTime>2016-03-15T15:20:54</outboundFileGenerationDateTime>
<interfaceControlReleaseNumber>04.03.01</interfaceControlReleaseNumber>
<edgeServerVersion>EDGEServer_14.09_01_b0186</edgeServerVersion>
<edgeServerProcessIdentifier>8</edgeServerProcessIdentifier>
<outboundFileTypeCode>RIDE</outboundFileTypeCode>
<edgeServerIdentifier>2800273</edgeServerIdentifier>
<issuerIdentifier>25032</issuerIdentifier>
</includedFileHeader>
<calendarYear>2015</calendarYear>
<executionType>P</executionType>
<includedInsuredMemberIdentifier>
<insuredMemberIdentifier>ARS001</insuredMemberIdentifier>
<memberMonths>12.13</memberMonths>
<totalAllowedClaims>1000.00</totalAllowedClaims>
<totalPaidClaims>100.00</totalPaidClaims>
<moopAdjustedPaidClaims>100.00</moopAdjustedPaidClaims>
<cSRMOOPAdjustment>0.00</cSRMOOPAdjustment>
<estimatedRIPayment>0.00</estimatedRIPayment>
<coinsurancePercentPayments>0.00</coinsurancePercentPayments>
<includedPlanIdentifier>
<planIdentifier>25032VA013000101</planIdentifier>
<includedClaimIdentifier>
<claimIdentifier>CADULT4SM00101</claimIdentifier>
<claimPaidAmount>100.00</claimPaidAmount>
<crossYearClaimIndicator>N</crossYearClaimIndicator>
</includedClaimIdentifier>
</includedPlanIdentifier>
</includedInsuredMemberIdentifier>
<includedInsuredMemberIdentifier>
<insuredMemberIdentifier>ARS002</insuredMemberIdentifier>
<memberMonths>9.17</memberMonths>
<totalAllowedClaims>0.00</totalAllowedClaims>
<totalPaidClaims>0.00</totalPaidClaims>
<moopAdjustedPaidClaims>0.00</moopAdjustedPaidClaims>
<cSRMOOPAdjustment>0.00</cSRMOOPAdjustment>
<estimatedRIPayment>0.00</estimatedRIPayment>
<coinsurancePercentPayments>0.00</coinsurancePercentPayments>
<includedPlanIdentifier>
<planIdentifier>25032VA013000101</planIdentifier>
<includedClaimIdentifier>
<claimIdentifier></claimIdentifier>
<claimPaidAmount>0</claimPaidAmount>
<crossYearClaimIndicator>N</crossYearClaimIndicator>
</includedClaimIdentifier>
</includedPlanIdentifier>
</includedInsuredMemberIdentifier>
</riDetailEnrolleeReport>
I would like to:
Read in the XML into R
Locate a specific insuredMemberIdentifier
Extract the planIdentifier and all claimIdentifier data associated with the member ID in (2)
Store all text and values for insuredMemberIdentifier, planIdentifier, claimIdentifier, and claimPaidAmount in a data.frame with a row for each unique claim ID (member ID to claim ID is a 1 to many)
So far, I have accomplished 1 and I'm in the ballpark on 2:
## Step 1 ##
ride <- read_xml("/Users/temp/Desktop/RIDetailEnrolleeReport.xml")
## Step 2 -- assume the insuredMemberIdentifier of interest is 'ARS001' ##
memID <- xml_find_all(ride, "//d1:insuredMemberIdentifier[text()='ARS001']", xml_ns(ride))
[I know that I can then use xml_text() to extract the text of the element.]
After the code in Step 2 above, I've tried using xml_parent() to locate the parent node of the insuredMemberIdentifier, saving that as a variable, and then repeating Step 2 for claim info on that saved variable node.
node <- xml_parent(memID)
xml_find_all(node, "//d1:claimIdentifier", xml_ns(ride))
But this just results in pulling all claimIdentifiers in the global file.
Any help/information on how to get to step 4, above, would be greatly appreciated. Thank you in advance.
Apologies for the late response, but for posterity, import data as above using xml2, then parse the xml file by ID, as hinted by har07.
# output object to collect all claims
res <- data.frame(
insuredMemberIdentifier = rep(NA, 1),
planIdentifier = NA,
claimIdentifier = NA,
claimPaidAmount = NA)
# vector of ids of interest
ids <- c('ARS001')
# indexing counter
starti <- 1
# loop through all ids
for (ii in seq_along(ids)) {
# find ii-th id
## Step 2 -- assume the insuredMemberIdentifier of interest is 'ARS001' ##
memID <- xml_find_all(x = ride,
xpath = paste0("//d1:insuredMemberIdentifier[text()='", ids[ii], "']"))
# find node for
node <- xml_parent(memID)
# as har07's comment find claim id within this node
cid <- xml_find_all(node, ".//d1:claimIdentifier", xml_ns(ride))
pid <- xml_find_all(node, ".//d1:planIdentifier", xml_ns(ride))
cpa <- xml_find_all(node, ".//d1:claimPaidAmount", xml_ns(ride))
# add invalid data handling if necessary
if (length(cid) != length(cpa)) {
warning(paste("cid and cpa do not match for", ids[ii]))
next
}
# collect outputs
res[seq_along(cid) + starti - 1, ] <- list(
ids[ii],
xml_text(pid),
xml_text(cid),
xml_text(cpa))
# adjust counter to add next id into correct row
starti <- starti + length(cid)
}
res
# insuredMemberIdentifier planIdentifier claimIdentifier claimPaidAmount
# 1 ARS001 25032VA013000101 CADULT4SM00101 100.00