I have a question about searching for values in R, it is actually a bit similar to a question which was posted yesterday (as given over here: Searching a vector/data table backwards in R) except I think my problem is a bit more complicated (and also the opposite of what I want to do), and since I'm very new to R I'm not too sure how to solve this problem.
I have a data frame similar to one given below, and I wish to find a previous index value to my current one where the Times column is different to my current time and the Midquote column does not have an NA value.
Index Times | Midquote
-----------------------------
1 10:30:45.58 | 5.319
2 10:30:45.93 | 5.323
3 10:30:45.104 | 5.325
4 10:30:45.127 | 5.322
5 10:30:45.188 | 5.325
6 10:30:45.188 | NA
7 10:30:45.212 | NA
8 10:30:45.231 | 5.321
9 10:30:45.231 | 5.321
If we start at the bottom of the data frame and take this to be the 'current' time, this is found to be at index 9 and which has a Times value of 10:30:45.231 and Midquote value of 5.321, then if I want to find the first index where the time is different to my current time, we see this is found to be index 7, which has a time of 10:30:45.212 (since index 8 has the same time). But we also see that at index 7 the Midquote value is NA so I now have to check the data frame again. Index 6 again has a different time (i.e. 10:30:45.188 ) but it also has an NA value again in the Midquote column, so moving up again to index 5 we see that the Times column has a different time to my current time (i.e. 10:30:45.188 again) and that the Midquotes value is 5.325.
Therefore, since at index 5 the time is 10:30:45.188 (which is different to my current time which was 10:30:45.231) and since the Midquote value at index 5 is not NA, I wish to obtain the output '5' since it is the index value which fulfills both criteria.
My question is, is there a good way of doing this? I am sorry if this is an easy question, I am very new to R and I don't know much about working with data frames...
EDIT: I would also like to do it preferably without adding another column to the data frame (as is given in the top answer of the link I mentioned above), if that is possible
Working with dates is tough especially with fractional seconds.
If you could convert the times to doubles it would be easier to work with.
Assuming your 'Times' are in order you could use this
library(magrittr)
which(df$Times < df[9,1] & !is.na(df$Midquote)) %>% max()
The which gives a vector of the 'Index' where 'Times' are less than that in 9 AND the 'Midquote' is not NA. The %>% sends the vector to max() which gives the highest value. This is pretty inelegant, but will get the job done.
If I understood it correctly, please check if this is the output you are expecting.
ind<-function(t,df){
ind<-t
while(t>1){
t=t-1
if((df$Times[t]!=df$Times[ind]) && (!is.na(df$Midquote[t]))){
return(t)
}
}
}
sapply((nrow(data):1),FUN = ind,data)
#[[1]]
#[1] 5
#[[2]]
#[1] 5
#[[3]]
#[1] 5
#[[4]]
#[1] 4
#[[5]]
#[1] 4
#[[6]]
#[1] 3
#[[7]]
#[1] 2
#[[8]]
#[1] 1
#[[9]]
#NULL
The output series corresponds to the associated index for your data.frame starting from the last row.
Explanation: ind takes the value of row number as the current row, while t takes value starting from ind-1 to 1. df takes the entire data.frame as input and then while loop is used to check if time and midquote value of df$Times[t] and df$Midquote[t] satisfy the required conditions. If yes they return the index else the loop continues until it reaches the first row.
Without using sapply for a particular current row:
ind(9,df)
[1] 5
Data.table solution, 1 line.
library(data.table)
dt <- data.table(Index = 1:9,
Times = c( '10:30:45.58', '10:30:45.93','10:30:45.104','10:30:45.127','10:30:45.188','10:30:45.188','10:30:45.212','10:30:45.231','10:30:45.231' ),
Midquote = c('5.319','5.323','5.325','5.322','5.325',NA,NA,'5.321','5.321')
)
> dt[ Times != Times[.N] & !is.na(Midquote), max(Index) ]
[1] 5
EDIT
To remove the Index column you have (at least) two options
dt2 <- data.table(Times = c( '10:30:45.58', '10:30:45.93','10:30:45.104','10:30:45.127','10:30:45.188','10:30:45.188','10:30:45.212','10:30:45.231','10:30:45.231' ),
Midquote = c('5.319','5.323','5.325','5.322','5.325',NA,NA,'5.321','5.321'))
# Option 1 - create an id column on the fly (unfortunately data.table recalculate .I after evaluating the "where" clause... so you need to save it)
dt2[, cbind(.SD, id=.I)][ Times != Times[.N] & !is.na(Midquote), max(id) ]
# Option 2 - simply check the last position of where your condition is met
dt2[, max(which(Times != Times[.N] & !is.na(Midquote))) ]
NB You can't do nrow because you can have, say, the 1st, 2nd, and 4th records matching your condition, and nrow would give you 3, which is wrong because the 3rd row does not match.
EDIT 2 (option 3 is not correct)
dt3 <- data.table(Times = c( '10:30:45.58', '10:30:45.93','10:30:45.104','10:30:45.127','10:30:45.188','10:30:45.188','10:30:45.212','10:30:45.231','10:30:45.231' ),
Midquote = c('5.319','5.323', NA,'5.322','5.325', NA, NA,'5.321','5.321'))
# Option 1 - create an id column on the fly (unfortunately data.table recalculate .I after evaluating the "where" clause... so you need to save it)
dt3[, cbind(.SD, id=.I)][ Times != Times[.N] & !is.na(Midquote), max(id) ]
[1] 5
# Option 2 - simply check the last position of where your condition is met
dt3[, max(which(Times != Times[.N] & !is.na(Midquote))) ]
[1] 5
# Option 3 - good luck with this
nrow(dt3[Times != Times[.N] & !is.na(Midquote)])
[1] 4
Related
I have a data frame named "mydata" that looks like this this:
A B C D
1. 5 4 4 4
2. 5 4 4 4
3. 5 4 4 4
4. 5 4 4 4
5. 5 4 4 4
6. 5 4 4 4
7. 5 4 4 4
I'd like to delete row 2,4,6. For example, like this:
A B C D
1. 5 4 4 4
3. 5 4 4 4
5. 5 4 4 4
7. 5 4 4 4
The key idea is you form a set of the rows you want to remove, and keep the complement of that set.
In R, the complement of a set is given by the '-' operator.
So, assuming the data.frame is called myData:
myData[-c(2, 4, 6), ] # notice the -
Of course, don't forget to "reassign" myData if you wanted to drop those rows entirely---otherwise, R just prints the results.
myData <- myData[-c(2, 4, 6), ]
You can also work with a so called boolean vector, aka logical:
row_to_keep = c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)
myData = myData[row_to_keep,]
Note that the ! operator acts as a NOT, i.e. !TRUE == FALSE:
myData = myData[!row_to_keep,]
This seems a bit cumbersome in comparison to #mrwab's answer (+1 btw :)), but a logical vector can be generated on the fly, e.g. where a column value exceeds a certain value:
myData = myData[myData$A > 4,]
myData = myData[!myData$A > 4,] # equal to myData[myData$A <= 4,]
You can transform a boolean vector to a vector of indices:
row_to_keep = which(myData$A > 4)
Finally, a very neat trick is that you can use this kind of subsetting not only for extraction, but also for assignment:
myData$A[myData$A > 4,] <- NA
where column A is assigned NA (not a number) where A exceeds 4.
Problems with deleting by row number
For quick and dirty analyses, you can delete rows of a data.frame by number as per the top answer. I.e.,
newdata <- myData[-c(2, 4, 6), ]
However, if you are trying to write a robust data analysis script, you should generally avoid deleting rows by numeric position. This is because the order of the rows in your data may change in the future. A general principle of a data.frame or database tables is that the order of the rows should not matter. If the order does matter, this should be encoded in an actual variable in the data.frame.
For example, imagine you imported a dataset and deleted rows by numeric position after inspecting the data and identifying the row numbers of the rows that you wanted to delete. However, at some later point, you go into the raw data and have a look around and reorder the data. Your row deletion code will now delete the wrong rows, and worse, you are unlikely to get any errors warning you that this has occurred.
Better strategy
A better strategy is to delete rows based on substantive and stable properties of the row. For example, if you had an id column variable that uniquely identifies each case, you could use that.
newdata <- myData[ !(myData$id %in% c(2,4,6)), ]
Other times, you will have a formal exclusion criteria that could be specified, and you could use one of the many subsetting tools in R to exclude cases based on that rule.
Create id column in your data frame or use any column name to identify the row. Using index is not fair to delete.
Use subset function to create new frame.
updated_myData <- subset(myData, id!= 6)
print (updated_myData)
updated_myData <- subset(myData, id %in% c(1, 3, 5, 7))
print (updated_myData)
By simplified sequence :
mydata[-(1:3 * 2), ]
By sequence :
mydata[seq(1, nrow(mydata), by = 2) , ]
By negative sequence :
mydata[-seq(2, nrow(mydata), by = 2) , ]
Or if you want to subset by selecting odd numbers:
mydata[which(1:nrow(mydata) %% 2 == 1) , ]
Or if you want to subset by selecting odd numbers, version 2:
mydata[which(1:nrow(mydata) %% 2 != 0) , ]
Or if you want to subset by filtering even numbers out:
mydata[!which(1:nrow(mydata) %% 2 == 0) , ]
Or if you want to subset by filtering even numbers out, version 2:
mydata[!which(1:nrow(mydata) %% 2 != 1) , ]
For completeness, I'll add that this can be done with dplyr as well using slice. The advantage of using this is that it can be part of a piped workflow.
df <- df %>%
.
.
slice(-c(2, 4, 6)) %>%
.
.
Of course, you can also use it without pipes.
df <- slice(df, -c(2, 4, 6))
The "not vector" format, -c(2, 4, 6) means to get everything that is not at rows 2, 4 and 6. For an example using a range, let's say you wanted to remove the first 5 rows, you could do slice(df, 6:n()). For more examples, see the docs.
Delete Dan from employee.data - No need to manage a new data.frame.
employee.data <- subset(employee.data, name!="Dan")
Here's a quick and dirty function to remove a row by index.
removeRowByIndex <- function(x, row_index) {
nr <- nrow(x)
if (nr < row_index) {
print('row_index exceeds number of rows')
} else if (row_index == 1)
{
return(x[2:nr, ])
} else if (row_index == nr) {
return(x[1:(nr - 1), ])
} else {
return (x[c(1:(row_index - 1), (row_index + 1):nr), ])
}
}
It's main flaw is it the row_index argument doesn't follow the R pattern of being a vector of values. There may be other problems as I only spent a couple of minutes writing and testing it, and have only started using R in the last few weeks. Any comments and improvements on this would be very welcome!
To identify by a name:
Call out the unique ID and identify the location in your data frame (DF).
Mark to delete. If the unique ID applies to multiple rows, all these rows will be removed.
Code:
Rows<-which(grepl("unique ID", DF$Column))
DF2<-DF[-c(Rows),]
DF2
Another approach when working with Unique IDs is to subset data:
*This came from an actual report where I wanted to remove the chemical standard
Chem.Report<-subset(Chem.Report, Chem_ID!="Standard")
Chem_ID is the column name.
The ! is important for excluding
Suppose we have a vector:
v <- c(0,0,0,1,0,0,0,1,1,1,0,0)
Expected output:
v_index <- c(5,6,7)
v always starts and ends with 0. There is only one possibility of having cluster of zeros between two 1s.
Seems simple enough, can't get my head around...
I think this will do
which(cumsum(v == 1L) == 1L)[-1L]
## [1] 5 6 7
The idea here is to separate all the instances of "one"s to groups and select the first group while removing the occurrence of the "one" at the beginning (because you only want the zeroes).
v <- c(0,0,0,1,0,0,0,1,1,1,0,0)
v_index<-seq(which(v!=0)[1]+1,which(v!=0)[2]-1,1)
> v_index
[1] 5 6 7
Explanation:I ask which indices are not equal to 0:
which(v!=0)
then I take the first and second index from that vector and create a sequence out of it.
This is probably one of the simplest answers out there. Find which items are equal to one, then produce a sequence using the first two indexes, incrementing the first and decrementing the other.
block <- which(v == 1)
start <- block[1] + 1
end <- block[2] - 1
v_index <- start:end
v_index
[1] 5 6 7
I have a data frame named "mydata" that looks like this this:
A B C D
1. 5 4 4 4
2. 5 4 4 4
3. 5 4 4 4
4. 5 4 4 4
5. 5 4 4 4
6. 5 4 4 4
7. 5 4 4 4
I'd like to delete row 2,4,6. For example, like this:
A B C D
1. 5 4 4 4
3. 5 4 4 4
5. 5 4 4 4
7. 5 4 4 4
The key idea is you form a set of the rows you want to remove, and keep the complement of that set.
In R, the complement of a set is given by the '-' operator.
So, assuming the data.frame is called myData:
myData[-c(2, 4, 6), ] # notice the -
Of course, don't forget to "reassign" myData if you wanted to drop those rows entirely---otherwise, R just prints the results.
myData <- myData[-c(2, 4, 6), ]
You can also work with a so called boolean vector, aka logical:
row_to_keep = c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)
myData = myData[row_to_keep,]
Note that the ! operator acts as a NOT, i.e. !TRUE == FALSE:
myData = myData[!row_to_keep,]
This seems a bit cumbersome in comparison to #mrwab's answer (+1 btw :)), but a logical vector can be generated on the fly, e.g. where a column value exceeds a certain value:
myData = myData[myData$A > 4,]
myData = myData[!myData$A > 4,] # equal to myData[myData$A <= 4,]
You can transform a boolean vector to a vector of indices:
row_to_keep = which(myData$A > 4)
Finally, a very neat trick is that you can use this kind of subsetting not only for extraction, but also for assignment:
myData$A[myData$A > 4,] <- NA
where column A is assigned NA (not a number) where A exceeds 4.
Problems with deleting by row number
For quick and dirty analyses, you can delete rows of a data.frame by number as per the top answer. I.e.,
newdata <- myData[-c(2, 4, 6), ]
However, if you are trying to write a robust data analysis script, you should generally avoid deleting rows by numeric position. This is because the order of the rows in your data may change in the future. A general principle of a data.frame or database tables is that the order of the rows should not matter. If the order does matter, this should be encoded in an actual variable in the data.frame.
For example, imagine you imported a dataset and deleted rows by numeric position after inspecting the data and identifying the row numbers of the rows that you wanted to delete. However, at some later point, you go into the raw data and have a look around and reorder the data. Your row deletion code will now delete the wrong rows, and worse, you are unlikely to get any errors warning you that this has occurred.
Better strategy
A better strategy is to delete rows based on substantive and stable properties of the row. For example, if you had an id column variable that uniquely identifies each case, you could use that.
newdata <- myData[ !(myData$id %in% c(2,4,6)), ]
Other times, you will have a formal exclusion criteria that could be specified, and you could use one of the many subsetting tools in R to exclude cases based on that rule.
Create id column in your data frame or use any column name to identify the row. Using index is not fair to delete.
Use subset function to create new frame.
updated_myData <- subset(myData, id!= 6)
print (updated_myData)
updated_myData <- subset(myData, id %in% c(1, 3, 5, 7))
print (updated_myData)
By simplified sequence :
mydata[-(1:3 * 2), ]
By sequence :
mydata[seq(1, nrow(mydata), by = 2) , ]
By negative sequence :
mydata[-seq(2, nrow(mydata), by = 2) , ]
Or if you want to subset by selecting odd numbers:
mydata[which(1:nrow(mydata) %% 2 == 1) , ]
Or if you want to subset by selecting odd numbers, version 2:
mydata[which(1:nrow(mydata) %% 2 != 0) , ]
Or if you want to subset by filtering even numbers out:
mydata[!which(1:nrow(mydata) %% 2 == 0) , ]
Or if you want to subset by filtering even numbers out, version 2:
mydata[!which(1:nrow(mydata) %% 2 != 1) , ]
For completeness, I'll add that this can be done with dplyr as well using slice. The advantage of using this is that it can be part of a piped workflow.
df <- df %>%
.
.
slice(-c(2, 4, 6)) %>%
.
.
Of course, you can also use it without pipes.
df <- slice(df, -c(2, 4, 6))
The "not vector" format, -c(2, 4, 6) means to get everything that is not at rows 2, 4 and 6. For an example using a range, let's say you wanted to remove the first 5 rows, you could do slice(df, 6:n()). For more examples, see the docs.
Delete Dan from employee.data - No need to manage a new data.frame.
employee.data <- subset(employee.data, name!="Dan")
Here's a quick and dirty function to remove a row by index.
removeRowByIndex <- function(x, row_index) {
nr <- nrow(x)
if (nr < row_index) {
print('row_index exceeds number of rows')
} else if (row_index == 1)
{
return(x[2:nr, ])
} else if (row_index == nr) {
return(x[1:(nr - 1), ])
} else {
return (x[c(1:(row_index - 1), (row_index + 1):nr), ])
}
}
It's main flaw is it the row_index argument doesn't follow the R pattern of being a vector of values. There may be other problems as I only spent a couple of minutes writing and testing it, and have only started using R in the last few weeks. Any comments and improvements on this would be very welcome!
To identify by a name:
Call out the unique ID and identify the location in your data frame (DF).
Mark to delete. If the unique ID applies to multiple rows, all these rows will be removed.
Code:
Rows<-which(grepl("unique ID", DF$Column))
DF2<-DF[-c(Rows),]
DF2
Another approach when working with Unique IDs is to subset data:
*This came from an actual report where I wanted to remove the chemical standard
Chem.Report<-subset(Chem.Report, Chem_ID!="Standard")
Chem_ID is the column name.
The ! is important for excluding
I have a data frame named "mydata" that looks like this this:
A B C D
1. 5 4 4 4
2. 5 4 4 4
3. 5 4 4 4
4. 5 4 4 4
5. 5 4 4 4
6. 5 4 4 4
7. 5 4 4 4
I'd like to delete row 2,4,6. For example, like this:
A B C D
1. 5 4 4 4
3. 5 4 4 4
5. 5 4 4 4
7. 5 4 4 4
The key idea is you form a set of the rows you want to remove, and keep the complement of that set.
In R, the complement of a set is given by the '-' operator.
So, assuming the data.frame is called myData:
myData[-c(2, 4, 6), ] # notice the -
Of course, don't forget to "reassign" myData if you wanted to drop those rows entirely---otherwise, R just prints the results.
myData <- myData[-c(2, 4, 6), ]
You can also work with a so called boolean vector, aka logical:
row_to_keep = c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)
myData = myData[row_to_keep,]
Note that the ! operator acts as a NOT, i.e. !TRUE == FALSE:
myData = myData[!row_to_keep,]
This seems a bit cumbersome in comparison to #mrwab's answer (+1 btw :)), but a logical vector can be generated on the fly, e.g. where a column value exceeds a certain value:
myData = myData[myData$A > 4,]
myData = myData[!myData$A > 4,] # equal to myData[myData$A <= 4,]
You can transform a boolean vector to a vector of indices:
row_to_keep = which(myData$A > 4)
Finally, a very neat trick is that you can use this kind of subsetting not only for extraction, but also for assignment:
myData$A[myData$A > 4,] <- NA
where column A is assigned NA (not a number) where A exceeds 4.
Problems with deleting by row number
For quick and dirty analyses, you can delete rows of a data.frame by number as per the top answer. I.e.,
newdata <- myData[-c(2, 4, 6), ]
However, if you are trying to write a robust data analysis script, you should generally avoid deleting rows by numeric position. This is because the order of the rows in your data may change in the future. A general principle of a data.frame or database tables is that the order of the rows should not matter. If the order does matter, this should be encoded in an actual variable in the data.frame.
For example, imagine you imported a dataset and deleted rows by numeric position after inspecting the data and identifying the row numbers of the rows that you wanted to delete. However, at some later point, you go into the raw data and have a look around and reorder the data. Your row deletion code will now delete the wrong rows, and worse, you are unlikely to get any errors warning you that this has occurred.
Better strategy
A better strategy is to delete rows based on substantive and stable properties of the row. For example, if you had an id column variable that uniquely identifies each case, you could use that.
newdata <- myData[ !(myData$id %in% c(2,4,6)), ]
Other times, you will have a formal exclusion criteria that could be specified, and you could use one of the many subsetting tools in R to exclude cases based on that rule.
Create id column in your data frame or use any column name to identify the row. Using index is not fair to delete.
Use subset function to create new frame.
updated_myData <- subset(myData, id!= 6)
print (updated_myData)
updated_myData <- subset(myData, id %in% c(1, 3, 5, 7))
print (updated_myData)
By simplified sequence :
mydata[-(1:3 * 2), ]
By sequence :
mydata[seq(1, nrow(mydata), by = 2) , ]
By negative sequence :
mydata[-seq(2, nrow(mydata), by = 2) , ]
Or if you want to subset by selecting odd numbers:
mydata[which(1:nrow(mydata) %% 2 == 1) , ]
Or if you want to subset by selecting odd numbers, version 2:
mydata[which(1:nrow(mydata) %% 2 != 0) , ]
Or if you want to subset by filtering even numbers out:
mydata[!which(1:nrow(mydata) %% 2 == 0) , ]
Or if you want to subset by filtering even numbers out, version 2:
mydata[!which(1:nrow(mydata) %% 2 != 1) , ]
For completeness, I'll add that this can be done with dplyr as well using slice. The advantage of using this is that it can be part of a piped workflow.
df <- df %>%
.
.
slice(-c(2, 4, 6)) %>%
.
.
Of course, you can also use it without pipes.
df <- slice(df, -c(2, 4, 6))
The "not vector" format, -c(2, 4, 6) means to get everything that is not at rows 2, 4 and 6. For an example using a range, let's say you wanted to remove the first 5 rows, you could do slice(df, 6:n()). For more examples, see the docs.
Delete Dan from employee.data - No need to manage a new data.frame.
employee.data <- subset(employee.data, name!="Dan")
Here's a quick and dirty function to remove a row by index.
removeRowByIndex <- function(x, row_index) {
nr <- nrow(x)
if (nr < row_index) {
print('row_index exceeds number of rows')
} else if (row_index == 1)
{
return(x[2:nr, ])
} else if (row_index == nr) {
return(x[1:(nr - 1), ])
} else {
return (x[c(1:(row_index - 1), (row_index + 1):nr), ])
}
}
It's main flaw is it the row_index argument doesn't follow the R pattern of being a vector of values. There may be other problems as I only spent a couple of minutes writing and testing it, and have only started using R in the last few weeks. Any comments and improvements on this would be very welcome!
To identify by a name:
Call out the unique ID and identify the location in your data frame (DF).
Mark to delete. If the unique ID applies to multiple rows, all these rows will be removed.
Code:
Rows<-which(grepl("unique ID", DF$Column))
DF2<-DF[-c(Rows),]
DF2
Another approach when working with Unique IDs is to subset data:
*This came from an actual report where I wanted to remove the chemical standard
Chem.Report<-subset(Chem.Report, Chem_ID!="Standard")
Chem_ID is the column name.
The ! is important for excluding
Apologises for a semi 'double post'. I feel I should be able to crack this but I'm going round in circles. This is on a similar note to my previously well answered question:
Within ID, check for matches/differences
test <- data.frame(
ID=c(rep(1,3),rep(2,4),rep(3,2)),
DOD = c(rep("2000-03-01",3), rep("2002-05-01",4), rep("2006-09-01",2)),
DOV = c("2000-03-05","2000-06-05","2000-09-05",
"2004-03-05","2004-06-05","2004-09-05","2005-01-05",
"2006-10-03","2007-02-05")
)
What I want to do is tag the subject whose first vist (as at DOV) was less than 180 days from their diagnosis (DOD). I have the following from the plyr package.
ddply(test, "ID", function(x) ifelse( (as.numeric(x$DOV[1]) - as.numeric(x$DOD[1])) < 180,1,0))
Which gives:
ID V1
1 A 1
2 B 0
3 C 1
What I would like is a vector 1,1,1,0,0,0,0,1,1 so I can append it as a column to the data frame. Basically this ddply function is fine, it makes a 'lookup' table where I can see which IDs have a their first visit within 180 days of their diagnosis, which I could then take my original test and go through and make an indicator variable, but I should be able to do this is one step I'd have thought.
I'd also like to use base if possible. I had a method with 'by', but again it only gave one result per ID and was also a list. Have been trying with aggregate but getting things like 'by has to be a list', then 'it's not the same length' and using the formula method of input I'm stumped 'cbind(DOV,DOD) ~ ID'...
Appreciate the input, keen to learn!
After wrapping as.Date around the creation of those date columns, this returns the desired marking vector assuming the df named 'test' is sorted by ID (and done in base):
# could put an ordering operation here if needed
0 + unlist( # to make vector from list and coerce logical to integer
lapply(split(test, test$ID), # to apply fn with ID
function(x) rep( # to extend a listwise value across all ID's
min(x$DOV-x$DOD) <180, # compare the minimum of a set of intervals
NROW(x)) ) )
11 12 13 21 22 23 24 31 32 # the labels
1 1 1 0 0 0 0 1 1 # the values
I have added to data.frame function stringsAsFactors=FALSE:
test <- data.frame(ID=c(rep(1,3),rep(2,4),rep(3,2)),
DOD = c(rep("2000-03-01",3), rep("2002-05-01",4), rep("2006-09-01",2)),
DOV = c("2000-03-05","2000-06-05","2000-09-05","2004-03-05",
"2004-06-05","2004-09-05","2005-01-05","2006-10-03","2007-02-05")
, stringsAsFactors=FALSE)
CODE
test$V1 <- ifelse(c(FALSE, diff(test$ID) == 0), 0,
1*(as.numeric(as.Date(test$DOV)-as.Date(test$DOD))<180))
test$V1 <- ave(test$V1,test$ID,FUN=max)