Related
I have this dataframe df:
df<-structure(list(tile_type_index = c(9, 15, 20, 5, 20), tile_type = c("Flowers",
"Leather", "Outpost", "Wood 2", "Outpost"), material_on_hex = list(
c(0, 0, 0, 0, 0, 0, 0, 0, 1000, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0), c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1000,
0, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 1000, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))), row.names = c(NA,
5L), class = "data.frame")
tile_type_index tile_type
1 9 Flowers
2 15 Leather
3 20 Outpost
4 5 Wood 2
5 20 Outpost
material_on_hex
1 0, 0, 0, 0, 0, 0, 0, 0, 1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1000, 0, 0, 0, 0, 0
3 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
4 0, 0, 0, 0, 1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
5 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
I want to manipulate it in the following way: if the tile_type is "Outpost" then the row of material_on_hex should remain the same but if tile_type!="Outpost" then I want to add 10 to material_on_hex[tile_type_index]. The result should be:
tile_type_index tile_type
1 9 Flowers
2 15 Leather
3 20 Outpost
4 5 Wood 2
5 20 Outpost
material_on_hex
1 0, 0, 0, 0, 0, 0, 0, 0, 1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1010, 0, 0, 0, 0, 0
3 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
4 0, 0, 0, 0, 1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
5 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Trivial with a loop:
library(magrittr)
for (i in seq_len(nrow(df))) {
if (df$tile_type[i] == 'Outpost') next
tidx = df$tile_type_index[i]
df$material_on_hex[[i]][tidx] %<>% add(10)
}
# tile_type_index tile_type material_on_hex
# 1 9 Flowers 0, 0, 0, 0, 0, 0, 0, 0, 1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
# 2 15 Leather 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1010, 0, 0, 0, 0, 0
# 3 20 Outpost 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
# 4 5 Wood 2 0, 0, 0, 0, 1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
# 5 20 Outpost 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Could also use mapply():
df$material_on_hex = mapply(
\(x, y, z) {
if (x!='Outpost') z[y] %<>% add(10)
return(z)
},
x = df$tile_type, y = df$tile_type_index, z = df$material_on_hex,
SIMPLIFY = FALSE
)
I have 8 age categories as 8 separate columns. Each column has a value between 1 and 3. I want to compute a new column that holds the average age per row.
This is my data:
structure(list(`2.5` = c(0, 0, 0, 1, 1, 2, 1, 2, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0,
0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 2, 0, 0, 0,
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 2, 2,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 2, 0, 2, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0,
0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0,
0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 3,
0, 0, 1), `9` = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0,
1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 1,
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0,
2, 0, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1
), `15.5` = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0),
`21.5` = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), `29.5` = c(0,
1, 2, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), `42` = c(0, 0, 0,
2, 1, 2, 2, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 2,
0, 0, 1, 0, 1, 0, 1, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2,
1, 0, 0, 0, 0, 2, 1, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0,
2, 0, 1, 0, 0, 0, 2, 2, 2, 1, 0, 2, 0, 0, 1, 0, 0, 2, 0,
2, 1, 1, 0, 0, 2, 0, 0, 0, 2, 1, 1, 1, 1, 0, 1, 2, 2, 0,
0, 0, 0, 2, 0, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 2, 0, 2, 1, 0, 1, 1, 2, 0, 0, 2, 1, 2, 2, 2, 0,
1, 0, 1, 0, 2, 2, 2, 1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 2,
2, 2, 1, 2, 0, 2, 0, 2, 0, 2, 2, 1, 0, 0, 0, 2, 2, 0, 2,
0, 0, 2, 2, 0, 0, 0, 0, 2, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1,
1, 2, 2, 1, 0, 0, 0, 2, 1, 1, 2), `57` = c(0, 1, 0, 0, 0,
0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 1,
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 2,
0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 2, 2, 0, 0, 0, 0,
0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0,
0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 2, 0, 1,
2, 0, 2, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 2, 2, 2, 0, 2, 0,
0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 2, 0, 0,
0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0,
0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 1,
0, 0, 1, 1, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0,
0, 1, 2, 0, 1, 0, 1, 0, 0), `72` = c(2, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 2,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 2,
0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0,
0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0,
0, 2, 1, 0, 0, 0, 0)), row.names = c(NA, -204L), class = c("data.table",
"data.frame"))
First, create a temporary data frame where you calculate the ages from column names. Then, with rowSums calculate average ages. (Supposed your data frame is called d.)
tmp <- do.call(cbind, lapply(seq(d), function(x) d[x] * as.numeric(colnames(d)[x])))
d$mu <- rowSums(tmp) / rowSums(d)
head(d)
# 2.5 9 15.5 21.5 29.5 42 57 72 mu
# 1 0 0 0 0 0 0 0 2 72.00000
# 2 0 0 0 0 1 0 1 0 43.25000
# 3 0 0 0 0 2 0 0 0 29.50000
# 4 1 0 0 0 0 2 0 0 28.83333
# 5 1 0 0 0 1 1 0 1 36.50000
# 6 2 0 0 0 0 2 0 0 22.25000
apply is a useful option, where 1 tells it to compute by row. It also seems to play nicely with data.tables:
df$means <- apply(df, 1, function(r) sum(r * as.double(names(df))) / sum(r))
#### OUTPUT ####
2.5 9 15.5 21.5 29.5 42 57 72 means
1: 0 0 0 0 0 0 0 2 72.00000
2: 0 0 0 0 1 0 1 0 43.25000
3: 0 0 0 0 2 0 0 0 29.50000
4: 1 0 0 0 0 2 0 0 28.83333
5: 1 0 0 0 1 1 0 1 36.50000
---
200: 0 0 0 0 0 0 1 1 64.50000
201: 3 0 0 0 0 2 0 0 18.30000
202: 0 0 1 0 0 1 1 0 38.16667
203: 0 0 0 0 1 1 0 0 35.75000
204: 1 1 0 0 0 2 0 0 23.87500
Here is a base R one-liner where we multiply values in the columns of dataframe by its names, calculate the sum of column values and divide by its rowSums.
df$result <- colSums(t(df) * as.numeric(names(df)))/rowSums(df)
head(df)
# 2.5 9 15.5 21.5 29.5 42 57 72 result
#1 0 0 0 0 0 0 0 2 72.00000
#2 0 0 0 0 1 0 1 0 43.25000
#3 0 0 0 0 2 0 0 0 29.50000
#4 1 0 0 0 0 2 0 0 28.83333
#5 1 0 0 0 1 1 0 1 36.50000
#6 2 0 0 0 0 2 0 0 22.25000
I have information from science papers, where there are binary data on funding source (government (GVT) - yes/no), and categorical data on lead author nationality (LEAD).
This code counts the number of GTV funded papers per lead nation:
gvt.funding=aggregate(data.frame(count=sysrev$GVT),
list(value=sysrev$GVT),length)
gvt.not=format(round(((gvt_funding[1,2]/(gvt_funding[1,2]+
gvt_funding[2,2]))*100),1),nsmall=1)
gvt.yes=format(round(((gvt_funding[2,2]/(gvt_funding[1,2]+
gvt_funding[2,2]))*100),1),nsmall=1)
This code produces the following table:
gvt.not gvt.yes gvt.not(%) gvt.yes(%)
CAN 39 143 21.42857 78.571429
DEU 7 7 50.00000 50.000000
DNK 9 35 20.45455 79.545455
GBR 10 5 66.66667 33.333333
JPN 2 8 20.00000 80.000000
NOR 20 49 28.98551 71.014493
RUS 13 1 92.85714 7.142857
USA 84 104 44.68085 55.319149
TOTAL 214 373 36.45656 63.543441
I need a table aggregated pr year looking like this:
YEAR CAN-GVTyes CAN% DEU-GVTyes DEU% USA-GVTyes USA% etc.
2015 .... .. .... .. .... ..
2014 .... .. .... .. .... ..
2013 .... .. .... .. .... ..
etc
Appreciate any help. Below is an DPUT excerpt of data:
structure(list(YR = c(2015, 2015, 2015, 2015, 2015, 2015, 2015,
2015, 2015, 2015, 2015, 2015, 2014, 2014, 2014, 2014, 2014, 2014,
2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014,
2014, 2014, 2014, 2014, 2014, 2013, 2013, 2013, 2013, 2013, 2013,
2013, 2013, 2013), NRAUTH = c(6, 7, 3, 22, 10, 4, 23, 4, 4, 11,
9, 6, 7, 9, 4, 6, 1, 3, 5, 4, 7, 5, 3, 2, 2, 4, 7, 4, 26, 6,
2, 4, 6, 5, 7, 5, 7, 3, 3, 2, 6, 3, 3), LEAD = structure(c(12L,
5L, 2L, 2L, 12L, 12L, 12L, 11L, 12L, 2L, 5L, 5L, 4L, 4L, 12L,
12L, 11L, 9L, 2L, 2L, 12L, 12L, 1L, 8L, 2L, 12L, 12L, 10L, 4L,
1L, 6L, 12L, 12L, 12L, 4L, 5L, 7L, 2L, 3L, 12L, 12L, 2L, 2L), .Label = c("AUS",
"CAN", "COS", "DEU", "DNK", "GBR", "GRL", "KOR", "NOR", "POL",
"RUS", "USA"), class = "factor"), CAN = c(0, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1), DNK = c(0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), GRL = c(0,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
), USA = c(1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0,
0, 1, 1, 0, 0), NOR = c(0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0), RUS = c(0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), NATX = c(0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0), ALL = c(0,
0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1,
1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0
), AB = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0), BB = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0), BS = c(0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), CS = c(0, 0, 0, 0, 0,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0), DS = c(0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), EG = c(0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0), FB = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 1), GB = c(0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), KB = c(0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), KS = c(0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), LS = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0), LP = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0), MC = c(0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), NB = c(0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), NW = c(0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), SB = c(1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0), SH = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 1), VM = c(0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), WH = c(0, 0, 0, 0, 0,
0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1), GVT = c(1,
1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1
), NGO = c(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0,
0, 0, 0, 0, 0), COM = c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0), ACA = c(0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), FUNDX = c(0, 1, 1, 1,
0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), FUNDNN = c(0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0
), POPSTAT = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0), POPABU = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), POPTR = c(0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), BOUND = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), HARV = c(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0), CC = c(0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0), HAB = c(0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), HABP = c(0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), POLL = c(0,
1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0
), SHIP = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0), TOUR = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0), BEH = c(0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), REPEC = c(0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), ZOO = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), PHYS = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0), TEK = c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0), HWC = c(0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), PRED = c(0, 0, 0, 0,
1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0), METH = c(0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0
), DIS = c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0), ANA = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0), POPGEN = c(0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), EVO = c(0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), RESIMP = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), ISSUE = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0), PROT = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), PA = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), PEFF = c(0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)), .Names = c("YR",
"NRAUTH", "LEAD", "CAN", "DNK", "GRL", "USA", "NOR", "RUS", "NATX",
"ALL", "AB", "BB", "BS", "CS", "DS", "EG", "FB", "GB", "KB",
"KS", "LS", "LP", "MC", "NB", "NW", "SB", "SH", "VM", "WH", "GVT",
"NGO", "COM", "ACA", "FUNDX", "FUNDNN", "POPSTAT", "POPABU",
"POPTR", "BOUND", "HARV", "CC", "HAB", "HABP", "POLL", "SHIP",
"TOUR", "BEH", "REPEC", "ZOO", "PHYS", "TEK", "HWC", "PRED",
"METH", "DIS", "ANA", "POPGEN", "EVO", "RESIMP", "ISSUE", "PROT",
"PA", "PEFF"), row.names = c(NA, -43L), class = "data.frame")
In my data (DPUT below) I have many categorical binary parameters holding various information about scientific papers. These are all 0=absent/no or 1=present/yes. Does the study have government funding, yes or no? Is harvest discussed in the paper, yes or no? And so on, for more than 30 parameters. I also have the nationality of the lead author. One thing I am trying to do is to have a look at the total fraction of studies being funded from governments (GVT), and the same fraction per country.
This code gives a matrix on the number of studies not funded by GVT, and those funded by GVT:
gvt_funding=aggregate(data.frame(count=sysrevt$GVT),list(value=sysrevt$GVT),length)
which gives the matrix:
value count
0 32
1 66
Then I calculate the percentage of total:
gvt.not=format(round(((gvt_funding[1,2]/(gvt_funding[1,2]+
gvt_funding[2,2]))*100),1),nsmall=1)
gvt.yes=format(round(((gvt_funding[2,2]/(gvt_funding[1,2]+
gvt_funding[2,2]))*100),1),nsmall=1)
Now I want to append these percentages in a new column in the matrix, change the name of these two columns to "TOTAL"and "TOTAL%", and then to calculate the same ratios and percentages for all nations (as shown by the column "LEAD"), and append these ratios and percentages to the same matrix with matching column titles.
It is quite possible that there are several more elegant ways to do this, but this is as far as I have come...
Here's the data:
structure(list(YR = c(2015, 2015, 2015, 2015, 2015, 2015, 2015,
2015, 2015, 2015, 2015, 2015, 2014, 2014, 2014, 2014, 2014, 2014,
2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014,
2014, 2014, 2014, 2014, 2014, 2013, 2013, 2013, 2013, 2013, 2013,
2013, 2013, 2013), NRAUTH = c(6, 7, 3, 22, 10, 4, 23, 4, 4, 11,
9, 6, 7, 9, 4, 6, 1, 3, 5, 4, 7, 5, 3, 2, 2, 4, 7, 4, 26, 6,
2, 4, 6, 5, 7, 5, 7, 3, 3, 2, 6, 3, 3), LEAD = structure(c(12L,
5L, 2L, 2L, 12L, 12L, 12L, 11L, 12L, 2L, 5L, 5L, 4L, 4L, 12L,
12L, 11L, 9L, 2L, 2L, 12L, 12L, 1L, 8L, 2L, 12L, 12L, 10L, 4L,
1L, 6L, 12L, 12L, 12L, 4L, 5L, 7L, 2L, 3L, 12L, 12L, 2L, 2L), .Label = c("AUS",
"CAN", "COS", "DEU", "DNK", "GBR", "GRL", "KOR", "NOR", "POL",
"RUS", "USA"), class = "factor"), CAN = c(0, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1), DNK = c(0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), GRL = c(0,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
), USA = c(1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0,
0, 1, 1, 0, 0), NOR = c(0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0), RUS = c(0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), NATX = c(0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0), ALL = c(0,
0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1,
1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0
), AB = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0), BB = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0), BS = c(0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), CS = c(0, 0, 0, 0, 0,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0), DS = c(0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), EG = c(0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0), FB = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 1), GB = c(0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), KB = c(0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), KS = c(0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), LS = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0), LP = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0), MC = c(0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), NB = c(0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), NW = c(0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), SB = c(1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0), SH = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 1), VM = c(0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), WH = c(0, 0, 0, 0, 0,
0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1), GVT = c(1,
1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1
), NGO = c(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0,
0, 0, 0, 0, 0), COM = c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0), ACA = c(0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), FUNDX = c(0, 1, 1, 1,
0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), FUNDNN = c(0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0
), POPSTAT = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0), POPABU = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), POPTR = c(0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), BOUND = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), HARV = c(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0), CC = c(0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0), HAB = c(0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), HABP = c(0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), POLL = c(0,
1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0
), SHIP = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0), TOUR = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0), BEH = c(0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), REPEC = c(0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), ZOO = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), PHYS = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0), TEK = c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0), HWC = c(0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), PRED = c(0, 0, 0, 0,
1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0), METH = c(0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0
), DIS = c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0), ANA = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0), POPGEN = c(0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), EVO = c(0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), RESIMP = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), ISSUE = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0), PROT = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), PA = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), PEFF = c(0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)), .Names = c("YR",
"NRAUTH", "LEAD", "CAN", "DNK", "GRL", "USA", "NOR", "RUS", "NATX",
"ALL", "AB", "BB", "BS", "CS", "DS", "EG", "FB", "GB", "KB",
"KS", "LS", "LP", "MC", "NB", "NW", "SB", "SH", "VM", "WH", "GVT",
"NGO", "COM", "ACA", "FUNDX", "FUNDNN", "POPSTAT", "POPABU",
"POPTR", "BOUND", "HARV", "CC", "HAB", "HABP", "POLL", "SHIP",
"TOUR", "BEH", "REPEC", "ZOO", "PHYS", "TEK", "HWC", "PRED",
"METH", "DIS", "ANA", "POPGEN", "EVO", "RESIMP", "ISSUE", "PROT",
"PA", "PEFF"), row.names = c(NA, -43L), class = "data.frame")
Like this?
tab <- addmargins(table(sysrevt$LEAD, sysrevt$GVT), 1)
tab <- cbind(tab, 100 * prop.table(tab, 1))
colnames(tab) <- c('gvt.not', 'gvt.yes', 'gvt.not(%)', 'gvt.yes(%)')
rownames(tab)[nrow(tab)] <- 'TOTAL'
round(tab, 2)
The output is
gvt.not gvt.yes gvt.not(%) gvt.yes(%)
AUS 1 1 50.00 50.00
CAN 1 8 11.11 88.89
COS 1 0 100.00 0.00
DEU 1 3 25.00 75.00
DNK 0 4 0.00 100.00
GBR 1 0 100.00 0.00
GRL 0 1 0.00 100.00
KOR 1 0 100.00 0.00
NOR 0 1 0.00 100.00
POL 1 0 100.00 0.00
RUS 1 1 50.00 50.00
USA 7 9 43.75 56.25
TOTAL 15 28 34.88 65.12
I have a matrix full of 1's and 0's. The columns represent samples and the rows represent chromosomes.
I would like to keep all rows that have consecutive 1's in them (ie at least two consecutive rows with a 1 in it). This has to be restricted per chromosome (so that consecutive 1's between two chromosomes is not counted).
I would like to do this for each column in the matrix.
My data is as follows:
chr leftPos OC_030_ST.res OC_031_WG.res
1 4324 0 1
1 23433 1 1
1 34436 1 0
1 64755 1 1
3 234 1 0
3 354 0 1
4 1666 0 1
4 4565 0 1
5 34777 1 1
7 2345 1 1
7 4567 1 1
and the output should be:
chr leftPos OC_030_ST.res OC_031_WG.res
1 4324 0 1
1 23433 1 1
1 34436 1 0
1 64755 1 0
3 234 0 0
3 354 0 0
4 1666 0 1
4 4565 0 1
5 34777 0 0
7 2345 1 1
7 4567 1 1
I don't know how to compare consecutive rows according to chromosome. I imagine I could group by dplyr and somehow compare rows but the comparison is a bit beyond me.
EDIT
Using dput actual data
structure(list(chr = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), leftPos = c(240000,
1080000, 1200000, 1320000, 1440000, 1800000, 2400000, 2520000,
3120000, 3360000, 3480000, 3600000, 3720000, 4200000, 4560000,
4920000, 5040000, 5160000, 5280000, 6000000, 7080000, 7200000,
7320000, 7440000, 7560000, 7680000, 7800000, 8280000, 8400000,
8520000, 8760000, 9120000, 9720000, 9840000, 9960000, 10080000,
10200000, 10320000, 10440000, 10560000, 10800000, 11040000, 11160000,
11280000, 11400000, 11520000, 11760000, 11880000, 12000000, 12120000
), chr.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), leftPos.res = c(0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0), OC_AH_026C.res = c(0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), OC_AH_026C.1.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_AH_026C.2.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_AH_084C.res = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0), OC_AH_086C.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_AH_086C.1.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_AH_086C.2.res = c(0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0), OC_AH_086C.3.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), OC_AH_088C.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_AH_094C.res = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0), OC_AH_094C.1.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_AH_094C.2.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_AH_094C.3.res = c(0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0), OC_AH_094C.4.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_AH_094C.5.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_AH_094C.6.res = c(0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0), OC_AH_094C.7.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_AH_096C.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_AH_100C.res = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0), OC_AH_100C.1.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_AH_127C.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_AH_133C.res = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0), OC_ED_008C.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_ED_008C.1.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0), OC_ED_008C.2.res = c(0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0), OC_ED_008C.3.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_ED_016C.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_ED_031C.res = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0), OC_ED_036C.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_GS_001C.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_QE_062C.res = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0), OC_RS_010C.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_RS_027C.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_RS_027C.1.res = c(0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0), OC_RS_027C.2.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_SH_051C.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_ST_014C.res = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0), OC_ST_014C.1.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_ST_020C.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_ST_024C.res = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0), OC_ST_033C.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_ST_034C.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_ST_034C.1.res = c(0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0), OC_ST_034C.2.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_ST_035C.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_ST_036C.res = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0), OC_ST_040C.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_WG_002C.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), OC_WG_005C.res = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0), OC_WG_006C.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), OC_WG_019C.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), Type.res = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), ZSSLX.10457.FastSeqA.BloodDMets_16AF_AHMMH.s_1.r_1.fq.gz.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), ZSSLX.10457.FastSeqB.BloodDMets_13AF_AHMMH.s_1.r_1.fq.gz.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), ZSSLX.10457.FastSeqC.BloodDMets_16AF_AHMMH.s_1.r_1.fq.gz.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0), ZSSLX.10457.FastSeqD.BloodDMets_27AF_AHMMH.s_1.r_1.fq.gz.res = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0), Means.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
sd.res = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), count = 1:50), .Names = c("chr",
"leftPos", "chr.res", "leftPos.res", "OC_AH_026C.res", "OC_AH_026C.1.res",
"OC_AH_026C.2.res", "OC_AH_084C.res", "OC_AH_086C.res", "OC_AH_086C.1.res",
"OC_AH_086C.2.res", "OC_AH_086C.3.res", "OC_AH_088C.res", "OC_AH_094C.res",
"OC_AH_094C.1.res", "OC_AH_094C.2.res", "OC_AH_094C.3.res", "OC_AH_094C.4.res",
"OC_AH_094C.5.res", "OC_AH_094C.6.res", "OC_AH_094C.7.res", "OC_AH_096C.res",
"OC_AH_100C.res", "OC_AH_100C.1.res", "OC_AH_127C.res", "OC_AH_133C.res",
"OC_ED_008C.res", "OC_ED_008C.1.res", "OC_ED_008C.2.res", "OC_ED_008C.3.res",
"OC_ED_016C.res", "OC_ED_031C.res", "OC_ED_036C.res", "OC_GS_001C.res",
"OC_QE_062C.res", "OC_RS_010C.res", "OC_RS_027C.res", "OC_RS_027C.1.res",
"OC_RS_027C.2.res", "OC_SH_051C.res", "OC_ST_014C.res", "OC_ST_014C.1.res",
"OC_ST_020C.res", "OC_ST_024C.res", "OC_ST_033C.res", "OC_ST_034C.res",
"OC_ST_034C.1.res", "OC_ST_034C.2.res", "OC_ST_035C.res", "OC_ST_036C.res",
"OC_ST_040C.res", "OC_WG_002C.res", "OC_WG_005C.res", "OC_WG_006C.res",
"OC_WG_019C.res", "Type.res", "ZSSLX.10457.FastSeqA.BloodDMets_16AF_AHMMH.s_1.r_1.fq.gz.res",
"ZSSLX.10457.FastSeqB.BloodDMets_13AF_AHMMH.s_1.r_1.fq.gz.res",
"ZSSLX.10457.FastSeqC.BloodDMets_16AF_AHMMH.s_1.r_1.fq.gz.res",
"ZSSLX.10457.FastSeqD.BloodDMets_27AF_AHMMH.s_1.r_1.fq.gz.res",
"Means.res", "sd.res", "count"), row.names = c(NA, 50L), class = "data.frame")
Here's a solution applying a function across chr values using the by = argument to data.table. Non-adjacent sequences are located using rle(). Should be fast too.
First, here is the data as I input it:
df <- read.table(textConnection(
"chr leftPos OC_030_ST.res OC_031_WG.res
1 4324 0 1
1 23433 1 1
1 34436 1 0
1 64755 1 1
3 234 1 0
3 354 0 1
4 1666 0 1
4 4565 0 1
5 34777 1 1
7 2345 1 1
7 4567 1 1"), header = TRUE)
Then the code to process the result:
# function to take an integer vector and make non-consecutive 1s into 0s
convertNonRuns <- function(booleanVec) {
rleVals <- rle(booleanVec)
makeZeroIndex1 <- which(rleVals$lengths == 1 & rleVals$values == 1)
makeZeroIndex2 <- sapply(makeZeroIndex1, function(x) cumsum(rleVals$lengths[1:x])[x])
if (length(makeZeroIndex2))
booleanVec[makeZeroIndex2] <- 0L
as.integer(booleanVec)
}
require(data.table)
dt <- data.table(df)
# use data.table's by command to convert runs within chr(omosome)
dt[, c("OC_030_ST.res", "OC_031_WG.res") :=
list(convertNonRuns(OC_030_ST.res), convertNonRuns(OC_031_WG.res)),
by = chr]
dt
## chr leftPos OC_030_ST.res OC_031_WG.res
## 1: 1 4324 0 1
## 2: 1 23433 1 1
## 3: 1 34436 1 0
## 4: 1 64755 1 0
## 5: 3 234 0 0
## 6: 3 354 0 0
## 7: 4 1666 0 1
## 8: 4 4565 0 1
## 9: 5 34777 0 0
## 10: 7 2345 1 1
## 11: 7 4567 1 1
Added
For the newly added dput data, this will work:
# select all variables OC*.res
varnamesToChange <- names(dt)[grep("^OC.*\\.res$", names(dt))]
dt[, varnamesToChange := lapply(varnamesToChange, function(x) dt[[x]]), by = chr]
I am using data.table version 1.9.6.
data.table solution, building on my initial ave solution, which is also below:
library(data.table)
setDT(dat)
for (nam in names(dat)[3:4]) {
dat[,
c(nam) := ((length((get(nam)==1)[get(nam)]) >= 2) & get(nam)==1)+0L,
by=list(chr, cumsum(get(nam)==0))
]
}
# chr leftPos OC_030_ST.res OC_031_WG.res
# 1: 1 4324 0 1
# 2: 1 23433 1 1
# 3: 1 34436 1 0
# 4: 1 64755 1 0
# 5: 3 234 0 0
# 6: 3 354 0 0
# 7: 4 1666 0 1
# 8: 4 4565 0 1
# 9: 5 34777 0 0
#10: 7 2345 1 1
#11: 7 4567 1 1
And my attempt using ave with a custom function:
fun <- function(x,grp,limit=2) {
runs <- ave(
x==1,
list(grp,cumsum(x==0)),
FUN=function(g) length(g[g]) >= limit
)
as.numeric(runs & x==1)
}
lapply(dat[3:4], fun, grp=dat$chr)
#$OC_030_ST.res
# [1] 0 1 1 1 0 0 0 0 0 1 1
#
#$OC_031_WG.res
# [1] 1 1 0 0 0 0 1 1 0 1 1
To overwrite your original data:
dat[3:4] <- lapply(dat[3:4], fun, grp=dat$chr)
f0(colNr,df) contains the row numbers in which the column df[,colNr] should change to 0. g(df) is the converted data frame.
f0 <- function( colNr, df )
{
col <- df[,colNr]
n1 <- which( col == 1 ) # The `1`-rows.
d0 <- which( diff(col) == 0 ) # Consecutive entries are equal.
dc0 <- which( diff(df[,1]) == 0 ) # Same chromosome.
m <- intersect( n1-1, intersect( d0, dc0 ) )
return ( setdiff( 1:nrow(df), union(m,m+1) ) )
}
g <- function( df )
{
for ( i in 3:ncol(df) ) { df[f0(i,df),i] <- 0 }
return ( df )
}
.
Example 1:
> df
chr leftPos OC_030_ST.res OC_031_WG.res
1 1 4324 0 1
2 1 23433 1 1
3 1 34436 1 0
4 1 64755 1 1
5 3 234 1 0
6 3 354 0 1
7 4 1666 0 1
8 4 4565 0 1
9 5 34777 0 1
10 7 2345 1 1
11 7 4567 1 1
> g(df)
chr leftPos OC_030_ST.res OC_031_WG.res
1 1 4324 0 1
2 1 23433 1 1
3 1 34436 1 0
4 1 64755 1 0
5 3 234 0 0
6 3 354 0 0
7 4 1666 0 1
8 4 4565 0 1
9 5 34777 0 0
10 7 2345 1 1
11 7 4567 1 1
>
Example 2:
> df
chr leftPos OC_030_ST.res OC_031_WG.res
1 1 4324 0 1
2 1 23433 1 1
3 1 34436 1 0
4 1 64755 1 1
5 3 234 1 0
6 3 354 1 1
7 4 1666 0 1
8 4 4565 1 1
9 5 34777 0 0
10 5 1234 1 0
11 7 2345 1 1
12 7 4567 1 1
> g(df)
chr leftPos OC_030_ST.res OC_031_WG.res
1 1 4324 0 1
2 1 23433 1 1
3 1 34436 1 0
4 1 64755 1 0
5 3 234 1 0
6 3 354 1 0
7 4 1666 0 1
8 4 4565 0 1
9 5 34777 0 0
10 5 1234 0 0
11 7 2345 1 1
12 7 4567 1 1
>
A simple trick can be to compare the original data set, say df, with its own copy df[-1,], which essentially takes the first row off.
Comparing (columnswise) df$OC_030_ST.res == df[-1,]$OC_030_ST.res (likewise for the others) gives back a true table where each element is being compared with its next one.
Perhaps you can make the next piece into a function and apply that per column per chromosome:
rand <- c(0,0,0,1,1,1,0,0,1,0,1,0,1,1,1,0,0,1,1,0)
first=T
keep <- vector(length=length(rand),'numeric')
for (i in 1:length(rand)){
if (first == T){first=F;if ((rand[i] == 1) & (rand[i+1] == 1)){keep[i] <- 1}} #check if first is 1 and had neigbour 1
else if (rand[i] == 0){keep[i] <- 0} # if 0 than keep = 0
else if (i == length(rand)){if (rand[i-1] == 1){keep[i] <- 1}} #if last than check if 1 and neighbour is 1 than keep = 1
else if ((rand[i-1]==1) | (rand[i+1]==1)){keep[i] <- 1} #if 1 and has neighbour 1 than keep =1
}
Output:
[1] 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0