How to validate date range input in Shiny - r

For testing, please upload a csv file with 1+ column that can be converted to Date in the app.
My app generates date range inputs (input$daterange) dynamically depending on the date columns selected. I'd like to validate each input$daterange from 1 to n (the length of dt$datecols) to make sure the user won't select start date earlier than the oldest date, and end date later than the latest date in the corresponding column. I use lapply on observeEvent to do that.
For ease of debugging, I pass the value of input$daterange(i) to reactive values dt$daterange(i) and print dt$daterange1 (the first date range's value) to the console rendered to check whether the it is smaller or bigger than the min and max of the corresponding date column, as I did in the lapply function. Supposedly, when the check result is FALSE, lappy function shall display an error message warning the user the start or end date is not valid, which, however doesn't work. Please find my code below, please check the comments for explanation of problem.
library("shiny")
library("DT") # Datatable
library("rsconnect") # deploy to shinyapps.io
library("shinyjs") # use toggle button from shinyJS pacakage
library("stats")
library("zoo") # to use as.Date() on numeric value
ui <- fluidPage(
fluidRow(
column(4,
# file upload div
fileInput("file", "Choose a file",
accept=c(
"text/csv",
"text/comma-separated-values,text/plain",
".csv"
)),
# show ui for upload file control
uiOutput("ui")
),
column(4,
# no choices before a file uploaded
uiOutput("columnscontrol")
)
),
hr(),
fluidRow(
column(4,
uiOutput("datecolscontrol")),
column(6,
uiOutput("daterangescontrol"))
),
hr(),
dataTableOutput("datatbl"),
# print console for debugging (delete after completion)
verbatimTextOutput("print_con")
) #end of fluidPage (ui)
# server
server <- function(input, output, session) {
#########################################################
# upload & datatable output
#########################################################
# create dataset reactive objects
dt <- reactiveValues()
# reset all uis upon new file upload
observeEvent(input$file, {
# reset reactive values
dt$data = NULL
dt$df = NULL
dt$cols = NULL
dt$rows = NULL
dt$summary = NULL
dt$colchoices = NULL
dt$datecols = NULL
# remove columns div and datecols div when a new file uploaded
removeUI(selector = "div#columns_div")
removeUI(selector = "div#datecols_div")
# remove all <div> elements indside <div>#daterangescontrol:
removeUI(selector = "div#daterangescontrol div")
# generate upload file control ui once file uploaded
output$ui <- renderUI({
actionButton("readF", "Update")
})
})
# when read file button pressed:
observeEvent (input$readF, {
# store data to dt$data
file <- input$file
dt$data <- read.csv(file$datapath, header = TRUE)
# render columnscontrol
output$columnscontrol <- renderUI({
# get the col names of the dataset and assign them to a list
dt$colchoices <- mapply(list, names(dt$data))
# render column group checkbox ui after loading the data
# tags#div has the advantage that you can give it an id to make it easier to reference or remove it later on
tags$div(id = "columns_div",
checkboxGroupInput("columns", "", choices = NULL, selected = NULL))
})
# render div containing #datecols under datecolscontrol
output$datecolscontrol <- renderUI({
tags$div(id = "datecols_div",
selectInput("datecols", "Filter data by dates):", choices = NULL, multiple = TRUE, selected = NULL))
})
})
# update columns choices when dt$choices is ready
observeEvent(dt$colchoices, {
updateCheckboxGroupInput(session, "columns", "Select Columns:", choices = dt$colchoices, selected = dt$colchoices)
})
# the other reactivity on dt$cols is input$file (when new file uploaded, dt$data and dt$cols set to NULL)
# so that the following line set apart the reactivity of input$columns on dt$cols
observeEvent(input$columns, {
dt$cols <- input$columns
dt$df <- dt$data[dt$cols]
}, ignoreNULL = FALSE)
# upon any change of dt$df
observeEvent(dt$df, {
f <- dt$df
# render output$datatbl
output$datatbl <- DT::renderDataTable(
f, rownames = FALSE,
filter = 'top',
options = list(autoWidth = TRUE)
)
# update datecols choices with those columns can be converted to Date only:
dt$date_ok = sapply(f, function(x) !all(is.na(as.Date(as.character(x), format = "%Y-%m-%d"))))
dt$datecolchoices = colnames(f[dt$date_ok])
updateSelectInput(session, "datecols", "Filter data by dates:", choices = dt$datecolchoices, selected = NULL)
}, ignoreNULL = FALSE)
# whenver columns convertable to date updated to choices of input$datecols, convert the columns to Date in the dataset
observeEvent(dt$datecolchoices, {
dt$df[dt$date_ok] = lapply(dt$df[dt$date_ok], function(x) as.Date(as.character(x)))
})
# generate daterange uis per selected input$datecols
observeEvent(input$datecols, {
dt$datecols = input$datecols
dt$datecols_len = length(dt$datecols)
# render daterange ui(s) per selected datecols
output$daterangescontrol <- renderUI({
# when input$datecols is NULL, no daterange ui
if ( is.null(input$datecols) ) { return(NULL) }
# otherwise
else {
D = dt$df[dt$rows, dt$cols]
output = tagList()
for (i in 1:dt$datecols_len) {
output[[i]]= tagList()
output[[i]][[1]] = tags$div(id = paste("dateranges_div", i, sep = "_"),
dateRangeInput(paste0("daterange", i),
paste("Date range of", dt$datecols[[i]]),
start = min(D[[dt$datecols[[i]]]]),
end = max(D[[dt$datecols[[i]]]])))
}
# return output tagList() with ui elements
output
}
}) # end of renderUI
}, ignoreNULL = FALSE)
# loop observeEvent to check whether each input$daterange is valid:
#### why I can't just call lapply() without observe() as suggested in this post:
#### https://stackoverflow.com/questions/40038749/r-shiny-how-to-write-loop-for-observeevent
observe({
lapply( X = 1:dt$datecols_len,
FUN = function(i) {
observeEvent(input[[paste0("daterange", i)]], {
# update reactive values to test whether this loop is working
dt[[paste0("range",i)]] = input[[paste0("daterange", i)]]
range = dt[[paste0("range",i)]]
req(range)
#########################################
## CODE BLOCK WITH PROBLEM!!!
#########################################
# Why the following doesn't work, when I pick a date earlier than the oldest date
# no error message shows!
shiny::validate(
need( range[[1]] >= min(dt$df[[dt$datecols[[i]]]]), "The start date cannot be earlier than the oldest date!"),
need( range[[2]] <= max(dt$df[[dt$datecols[[i]]]]), "The end date cannot be later than the latest date!")
)
})
}
) # end of lapply
})
# rows displayed in input$datatbl (the rendered data table)
observeEvent( input$datatbl_rows_all, {
dt$rows <- input$datatbl_rows_all
})
#########################################################
# print console
#########################################################
output$print_con <- renderPrint({
req(input$daterange1)
list(
# to verify whether the observeEvent loop is working for input validation
# I used dt$range1 to check the first (input$daterange1) against the date range of the corresponding column of the dataset.
# It's supposed that when the check result is FALSE (either by selecting a start date earlier than the oldest date or selecting an end date later than the latest date),
# the code block with problem shall prompt an error message to warn the user
min(dt$range1) >= min(dt$df[[dt$datecols[[1]]]]),
max(dt$range1) <= max(dt$df[[dt$datecols[[1]]]])
)
})
} # end of shiny server function
shinyApp(ui = ui, server = server)

This may not be the exact answer you are looking for but I think it may simplify things. I would simply order your date column which would allow you to select the oldest and newest date. Then set your start and end dates to those two values (see ?dateRangeInput). Lubridate is also a great package for working with dates

I think the problem maybe related to the format of your dates.
please look at this post:
R: Shiny dateRangeInput format
you may need to use
format(range[[1]])

Related

Storing a reactive output in a vector - Shiny R

I am working on building a shiny App. I have used some filters and rendered a data frame and the data frame changes dynamically as per the user input. But I cannot store a particular column value from a data frame into a vector. I need to store the reactive output every time into a vector so that I can use the values later again. Here the values are stored in text_vec and i need to pass that into the API but I cannot access the values from text_vec and i have to pass the updated values every time into the API
library(dplyr)
library(shiny)
shinyApp(ui = fluidPage(
sidebarLayout(
sidebarPanel(
selectInput(inputId = "cyl",
label = "Number cylinders:",
choices = c("all",sort(unique(mtcars$cyl))),
selected = "all"),
actionButton("capture",
"capture value")
), # closes sidebarPanel
mainPanel(
tableOutput("text"),
tableOutput("text2"),
tableOutput("text3"),
tableOutput("table")
) # closes mainPanel
) # closes sidebarLayout
), # closes fluidPage
server = function(input, output) {
# some example reactive data
cars_react <- reactive({
mtcars %>%
filter(cyl == input$cyl | input$cyl == "all")
})
# simply global assignment of a reactive vector
observeEvent(cars_react(), {
# here is a globally assigned vector taken from the reactive data
# reused in a render statement it will not react to change, since it is not reactive
test_vec3 <<- unique(cars_react()$hp)
})
# here a file is written to the working directory of your shiny app
# everytime cars_react() changes write (and overwrite) vector to a file
observeEvent(cars_react(), {
test_vec = unique(cars_react()$hp)
saveRDS(test_vec, file = "test_vec.Rdata")
})
# same as above but the file is gradually growing and not overwritten
# everytime cars_react() changes add vector to a (over several sessions growing) list
observeEvent(cars_react(), {
test_vec2 = unique(cars_react()$hp)
if (file.exists("test_list.Rdata")) {
temp = readRDS("test_list.Rdata")
test_list = c(temp, list(test_vec2))
} else {
test_list = list(test_vec2)
}
saveRDS(test_list, file = "test_list.Rdata")
})
# here we access the reactive data with isolate and make it non-reactive, but can update the values through a button click
text_vec <<- eventReactive(input$capture, {
isolate(unique(cars_react()$hp))
})
# output of our reactive data as table
output$table <- renderTable({
cars_react()
})
# text output of globally assigned non-reactive vector test_vec3 (not changing!)
output$text <- renderText({
test_vec3
})
# you can capture values of reactives with isolate, but then, they don't change anymore
# text output of isolated formely reactive vector unique(cars_react()$hp (not changing!)
output$text2 <- renderText({
isolate(unique(cars_react()$hp))
})
# text output of new reactive vector (changes when input$capture button is clicked)
output$text3 <- renderText({
text_vec()
})
for (i in text_vec)
{
url = "https://oscar.com/prweb/PRRestService/"
parameters<-'{
{
"Reference":"Account"
,"ReferenceValue":""
}'
b<-fromJSON(parameters)
b["ReferenceValue"]=i
r <- POST(url, body = parameters,encode = "json")
r_c<-toJSON(content(r))
print(r_c)
}
}
)
A simple way to get a data frame to persist across all environments used within your Shiny app, is to use the '<<-' assignment instead of the '<-" assignment. This is not a great programming technique, but it may be what you're hoping to find.
# To get a data frame to persist, use
a <<- b
# instead of
a <- b
** Updated answer **
Based on your updated answer, I would wrap you API call into an observeEvent which gets triggered once the action button is pressed. Since you do not provide a working example with some real code, I am not sure whether the example below is of help. I further assume that your for loop is correct and working (on my end, I cannot know without a real API and some real values).
library(dplyr)
library(shiny)
library(httr)
library(jsonlite)
shinyApp(ui = fluidPage(
selectInput(inputId = "cyl",
label = "Number cylinders:",
choices = c("all",sort(unique(mtcars$cyl))),
selected = "all"),
actionButton("capture",
"capture value")
), # closes fluidPage
server = function(input, output) {
# some example reactive data
cars_react <- reactive({
mtcars %>%
filter(cyl == input$cyl | input$cyl == "all")
})
# here we access the reactive data with isolate and make it non-reactive, but can update the values through a button click
observeEvent(input$capture, {
for (i in unique(cars_react()$hp))
{
url = "https://oscar.com/prweb/PRRestService/"
parameters<-'{
"Reference":"Account"
,"ReferenceValue":""
}'
b<-fromJSON(parameters)
b["ReferenceValue"]=i
r <- POST(url, body = parameters,encode = "json")
r_c<-toJSON(content(r))
print(r_c)
}
})
}
)
Old answer
It is not clear from your question how, where and how often you want to use the vector of your reactive data frame. But it is an important question, since the concept of reactivity and how to access it is very hard to grasp when you come from a pure non reactive R environment.
Below is a simple example app which shows how to access vectors in reactive data frames, and how they could be used.
I hope it helps to get a better understanding of reactivity in shiny.
library(dplyr)
library(shiny)
shinyApp(ui = fluidPage(
sidebarLayout(
sidebarPanel(
selectInput(inputId = "cyl",
label = "Number cylinders:",
choices = c("all",sort(unique(mtcars$cyl))),
selected = "all"),
actionButton("capture",
"capture value")
), # closes sidebarPanel
mainPanel(
tableOutput("text"),
tableOutput("text2"),
tableOutput("text3"),
tableOutput("table")
) # closes mainPanel
) # closes sidebarLayout
), # closes fluidPage
server = function(input, output) {
# some example reactive data
cars_react <- reactive({
mtcars %>%
filter(cyl == input$cyl | input$cyl == "all")
})
# simply global assignment of a reactive vector
observeEvent(cars_react(), {
# here is a globally assigned vector taken from the reactive data
# reused in a render statement it will not react to change, since it is not reactive
test_vec3 <<- unique(cars_react()$hp)
})
# here a file is written to the working directory of your shiny app
# everytime cars_react() changes write (and overwrite) vector to a file
observeEvent(cars_react(), {
test_vec = unique(cars_react()$hp)
saveRDS(test_vec, file = "test_vec.Rdata")
})
# same as above but the file is gradually growing and not overwritten
# everytime cars_react() changes add vector to a (over several sessions growing) list
observeEvent(cars_react(), {
test_vec2 = unique(cars_react()$hp)
if (file.exists("test_list.Rdata")) {
temp = readRDS("test_list.Rdata")
test_list = c(temp, list(test_vec2))
} else {
test_list = list(test_vec2)
}
saveRDS(test_list, file = "test_list.Rdata")
})
# here we access the reactive data with isolate and make it non-reactive, but can update the values through a button click
text_vec <- eventReactive(input$capture, {
isolate(unique(cars_react()$hp))
})
# output of our reactive data as table
output$table <- renderTable({
cars_react()
})
# text output of globally assigned non-reactive vector test_vec3 (not changing!)
output$text <- renderText({
test_vec3
})
# you can capture values of reactives with isolate, but then, they don't change anymore
# text output of isolated formely reactive vector unique(cars_react()$hp (not changing!)
output$text2 <- renderText({
isolate(unique(cars_react()$hp))
})
# text output of new reactive vector (changes when input$capture button is clicked)
output$text3 <- renderText({
text_vec()
})
}
)

Shiny R observeEvent with Multiple Conditions from selectInput

I'm working on a shiny app and I'm running into difficulty with observeEvent() function when creating a complex expression of multiple inputs that all derive from selectInput().
My issue is some of the expressions within the observeEvent() function are triggered at startup, causing the event to prematurely execute (i.e. my actionButton() is disabled at startup, as it should be, but becomes enabled when at least one of the inputs are selected when ideally I would want it to become enabled only when ALL inputs are selected). As seen below:
observeEvent({
#input$cohort_file
input$cohort_IDvar
input$cohort_index_date
input$cohort_EOF_date
input$cohort_EOF_type
input$cohort_Y_name
input$cohort_L0
}, {
enable("set_cohort_button")
})
For reference, I'm using the shinyjs package by #daattali found on github to enable/disable actionButton().
All but the last input (i.e. input$cohort_L0) appear to be initialized at startup so observeEvent() enables actionButton only when input$cohort_L0 is selected. If you run my app and select input in sequential order from top to bottom, it appears that observeEvent() is working as intended. I only discovered that it wasn't working as intended when I decided to choose inputs at random and discovered that selecting input$cohort_L0 was the only input I needed to select to enable actionButton().
The UI portion of the code looks like this:
# Variable selection
selectInput('cohort_IDvar', 'ID', choices = ''),
selectInput('cohort_index_date', 'Index date', choices = ''),
selectInput('cohort_EOF_date', 'End of follow-up date', choices = ''),
selectInput('cohort_EOF_type', 'End of follow-up reason', choices = ''),
selectInput('cohort_Y_name', 'Outcome', choices = ''),
selectInput('cohort_L0', 'Baseline covariate measurements', choices = '', multiple=TRUE, selectize=TRUE),
And I'm using observe() to collect the column names of an upload data-set to direct them to selectInput() as follows:
### Collecting column names of dataset and making them selectable input
observe({
value <- c("",names(cohort_data()))
updateSelectInput(session,"cohort_IDvar",choices = value)
updateSelectInput(session,"cohort_index_date",choices = value)
updateSelectInput(session,"cohort_EOF_date",choices = value)
updateSelectInput(session,"cohort_EOF_type",choices = value)
updateSelectInput(session,"cohort_L0",choices = value)
})
I've looked into using the argument ignoreInit = TRUE but it does nothing for my case of having multiple expressions within observeEvent(). I've also looked into forcing no default selection in selectInput() but had no luck with that.
So my two-part question is how can I execute observEvent() when only ALL inputs are selected/how do I stop from the inputs from being initialized at startup?
My entire code:
library(shiny)
library(shinyjs)
ui <- fluidPage(
useShinyjs(),
navbarPage("Test",
tabPanel("Cohort",
sidebarLayout(
sidebarPanel(
fileInput("cohort_file", "Choose CSV File",
multiple = FALSE,
accept = c("text/csv",
"text/comma-separated-values,text/plain",
".csv")),
# Horizontal line ----
tags$hr(),
# Variable selection
selectInput('cohort_IDvar', 'ID', choices = ''),
selectInput('cohort_index_date', 'Index date', choices = ''),
selectInput('cohort_EOF_date', 'End of follow-up date', choices = ''),
selectInput('cohort_EOF_type', 'End of follow-up reason', choices = ''),
selectInput('cohort_Y_name', 'Outcome', choices = ''),
selectInput('cohort_L0', 'Baseline covariate measurements', choices = '', multiple=TRUE, selectize=TRUE),
# Horizontal line ----
tags$hr(),
disabled(
actionButton("set_cohort_button","Set cohort")
)
#actionButton("refresh_cohort_button","Refresh")
),
mainPanel(
DT::dataTableOutput("cohort_table"),
tags$div(id = 'cohort_r_template')
)
)
)
)
)
server <- function(input, output, session) {
################################################
################# Cohort code
################################################
cohort_data <- reactive({
inFile_cohort <- input$cohort_file
if (is.null(inFile_cohort))
return(NULL)
df <- read.csv(inFile_cohort$datapath,
sep = ',')
return(df)
})
rv <- reactiveValues(cohort.data = NULL)
rv <- reactiveValues(cohort.id = NULL)
rv <- reactiveValues(cohort.index.date = NULL)
rv <- reactiveValues(cohort.eof.date = NULL)
rv <- reactiveValues(cohort.eof.type = NULL)
### Creating a reactiveValue of the loaded dataset
observeEvent(input$cohort_file, rv$cohort.data <- cohort_data())
### Displaying loaded dataset in UI
output$cohort_table <- DT::renderDataTable({
df <- cohort_data()
DT::datatable(df,options=list(scrollX=TRUE, scrollCollapse=TRUE))
})
### Collecting column names of dataset and making them selectable input
observe({
value <- c("",names(cohort_data()))
updateSelectInput(session,"cohort_IDvar",choices = value)
updateSelectInput(session,"cohort_index_date",choices = value)
updateSelectInput(session,"cohort_EOF_date",choices = value)
updateSelectInput(session,"cohort_EOF_type",choices = value)
updateSelectInput(session,"cohort_L0",choices = value)
})
### Creating selectable input for Outcome based on End of Follow-Up unique values
observeEvent(input$cohort_EOF_type,{
updateSelectInput(session,"cohort_Y_name",choices = unique(cohort_data()[,input$cohort_EOF_type]))
})
### Series of observeEvents for creating vector reactiveValues of selected column
observeEvent(input$cohort_IDvar, {
rv$cohort.id <- cohort_data()[,input$cohort_IDvar]
})
observeEvent(input$cohort_index_date, {
rv$cohort.index.date <- cohort_data()[,input$cohort_index_date]
})
observeEvent(input$cohort_EOF_date, {
rv$cohort.eof.date <- cohort_data()[,input$cohort_EOF_date]
})
observeEvent(input$cohort_EOF_type, {
rv$cohort.eof.type <- cohort_data()[,input$cohort_EOF_type]
})
### ATTENTION: Following eventReactive not needed for example so commenting out
### Setting id and eof.type as characters and index.date and eof.date as Dates
#cohort_data_final <- eventReactive(input$set_cohort_button,{
# rv$cohort.data[,input$cohort_IDvar] <- as.character(rv$cohort.id)
# rv$cohort.data[,input$cohort_index_date] <- as.Date(rv$cohort.index.date)
# rv$cohort.data[,input$cohort_EOF_date] <- as.Date(rv$cohort.eof.date)
# rv$cohort.data[,input$cohort_EOF_type] <- as.character(rv$cohort.eof.type)
# return(rv$cohort.data)
#})
### Applying desired R function
#set_cohort <- eventReactive(input$set_cohort_button,{
#function::setCohort(data.table::as.data.table(cohort_data_final()), input$cohort_IDvar, input$cohort_index_date, input$cohort_EOF_date, input$cohort_EOF_type, input$cohort_Y_name, input$cohort_L0)
#})
### R code template of function
cohort_code <- eventReactive(input$set_cohort_button,{
paste0("cohort <- setCohort(data = as.data.table(",input$cohort_file$name,"), IDvar = ",input$cohort_IDvar,", index_date = ",input$cohort_index_date,", EOF_date = ",input$cohort_EOF_date,", EOF_type = ",input$cohort_EOF_type,", Y_name = ",input$cohort_Y_name,", L0 = c(",paste0(input$cohort_L0,collapse=","),"))")
})
### R code template output fo UI
output$cohort_code <- renderText({
paste0("cohort <- setCohort(data = as.data.table(",input$cohort_file$name,"), IDvar = ",input$cohort_IDvar,", index_date = ",input$cohort_index_date,", EOF_date = ",input$cohort_EOF_date,", EOF_type = ",input$cohort_EOF_type,", Y_name = ",input$cohort_Y_name,", L0 = c(",paste0(input$cohort_L0,collapse=","),"))")
})
### Disables cohort button when "Set cohort" button is clicked
observeEvent(input$set_cohort_button, {
disable("set_cohort_button")
})
### Disables cohort button if different dataset is loaded
observeEvent(input$cohort_file, {
disable("set_cohort_button")
})
### This is where I run into trouble
observeEvent({
#input$cohort_file
input$cohort_IDvar
input$cohort_index_date
input$cohort_EOF_date
input$cohort_EOF_type
input$cohort_Y_name
input$cohort_L0
}, {
enable("set_cohort_button")
})
### Inserts heading and R template code in UI when "Set cohort" button is clicked
observeEvent(input$set_cohort_button, {
insertUI(
selector = '#cohort_r_template',
ui = tags$div(id = "cohort_insertUI",
h3("R Template Code"),
verbatimTextOutput("cohort_code"))
)
})
### Removes heading and R template code in UI when new file is uploaded or when input is changed
observeEvent({
input$cohort_file
input$cohort_IDvar
input$cohort_index_date
input$cohort_EOF_date
input$cohort_EOF_type
input$cohort_Y_name
input$cohort_L0
}, {
removeUI(
selector = '#cohort_insertUI'
)
})
}
# Run the application
shinyApp(ui = ui, server = server)
The code chunk that you're passing to the observeEvent as the trigger event is
{
input$cohort_IDvar
input$cohort_index_date
input$cohort_EOF_date
input$cohort_EOF_type
input$cohort_Y_name
input$cohort_L0
}
This means that, just like any other reactive code block, when ANY of these values changes, that reactive block is considered invalidated and therefore the observer will trigger. So the behaviour you're seeing makes sense.
It sounds like what you want is to execute only when all values are set. That sounds like a great use of the req() function! Try something like this:
observe({
req(input$cohort_IDvar, input$cohort_index_date, input$cohort_EOF_date, ...)
enable("set_cohort_button")
})
Note that for shinyjs::enable() specifically, you can instead use the shinyjs::toggleState() function. I think in this case the req() function is the better option though.

Render values of inputs in shiny so that these selections are deletable

To filter a data.frame with lots of variables I created a selectizeInput which allows you to select one of the columns of the data. This then creates another selectizeInput for the selected variable which can be used for subsetting the data. The selected value of the second selectizeInput is rendered below.
This is what it looks like
I want to render the selected values of these inputs so that these can be deleted by the user by clicking the black cross. Also a selection of var2 should not be deleted when the Filter selectizeInput is changed to var1.
So it should look like this (assuming the user previously selected value z in var2 and then value a in var1.
Anyone knows a good solution in shiny?
This is the code:
library(shiny)
data <- data.frame(var1 = c("a", "b"), var2 = c("y", "z"))
ui <- fluidPage(
selectizeInput("filter", label = "Filter",
multiple = FALSE, choices = c("var1", "var2")),
uiOutput("filter_var"),
uiOutput("selected_filter_value")
)
server <- function(input, output) {
observeEvent(input$filter, {
# dynamically generate selectizeInput for filter
output$filter_var <- renderUI({
selectizeInput(input$filter, label = input$filter,
choices = data[input$filter], multiple = TRUE)
})
})
# show selected filter values
# selected filter values should stay when choosing new input filter variable
# these should be deletable
observeEvent(input[[input$filter]], {
output$selected_filter_value <- renderUI({
textOutput("text_out")
})
output$text_out <- renderText({
paste0(input$filter, ": ", input[[input$filter]])
})
})
}
shinyApp(ui, server)
Well, I had to rearrange quite a lot and this whole problem is more about finding the right implementation for your case.
You can probably deduct most of it just looking at the code at the end of this post.
Main things explained: You didn't actually say what deleting means to you. So I just assumed you wanted the cells to not appear in the select boxes anymore. For that, I excluded NAs and replaced cells with an NA to show that they are deleted.
I rearranged the select values, such that we actually can delete certain cells, giving row and column names instead of just their values.
And most important, the buttons you wanted to create are dynamic UI elements with dynamic observers, which are then addressed to delete the certain cell.
Note: This solution is not optimal, since I specifically aimed to stay just on the R side of shiny. You can achieve a much more elegant and resource saving solution if you use JavaScript and shiny's custom messages.
Also: I did not address your request to let the selected values visible if the first select box changes. But this is a rather small issue, if you reconsider your setup. And I didn't want to diverge too much from you original code to not be confusing.
Code now:
library(shiny)
data <- data.frame(var1 = c("a", "b"), var2 = c("y", "z"))
ui <- fluidPage(
selectizeInput("filter", label = "Filter",
multiple = FALSE, choices = c("var1", "var2")),
uiOutput("filter_var"),
uiOutput("selected_filter_value")
)
server <- function(input, output) {
# Pulled out from original observeEvent
makeSecondInput <- function() {
output$filter_var <- renderUI({
# Names are not enough when wanting to delete data.frame rows (because of duplicates).
# So we instead use row numbers and set the actual values as labels.
choiceData <- na.exclude(data[input$filter])
choices <- rownames(choiceData)
names(choices) <- choiceData[, input$filter]
selectizeInput(input$filter, label = input$filter, selected = input[[input$filter]],
choices = choices, multiple = TRUE)
})
}
observeEvent(input$filter, {
makeSecondInput()
})
# Install a manual trigger to redraw input field, when an option is killed.
trigger <- reactiveVal()
observeEvent(trigger(), ignoreNULL = TRUE, {
makeSecondInput()
})
# Keep track of created observers, so dynamic creation does not wildly stack them up.
observersCreated <- character()
makeButtonObserver <- function(buttonname, colname, rowname) {
# For each delete-button created, install observer to delete data.frame cell.
observeEvent(input[[buttonname]], {
data[rowname, colname] <<- NA
# Force re-evaluation of observer above.
trigger(runif(1))
})
# Track that this button is equipped. (And re-creation of the same button does not add another obs.)
# Note: Observers DON'T get automagically removed after actionButton is no longer in the UI.
observersCreated <<- c(observersCreated, buttonname)
}
observeEvent(input[[input$filter]], {
output$selected_filter_value <- renderUI({
# Could be a list, so splitting that up.
lapply(input[[input$filter]], function(v) {
buttonname <- paste("kill", input$filter, v, sep = "_")
if (!(buttonname %in% observersCreated)) {
makeButtonObserver(buttonname, input$filter, v)
}
span(
paste0(input$filter, ": ", data[v, input$filter]),
actionButton(buttonname, "x")
)
})
})
})
}
shinyApp(ui, server)
This is what I currently have. There are still some issues which I couldn't solve.
Problems:
if I make some selections in input1, then switch from input1 to input2 and unclick one of the selections from input1 and then switch back to input1 these changes will be unmade
the checkboxes are rerendered when a new one is added and in this process sorted which changes the order
Code:
library(shiny)
library(shinyWidgets)
data <- data.frame(var1 = c("a", "b"), var2 = c("y", "z"))
ui <- fluidPage(
selectizeInput("filter", label = "Filter",
multiple = FALSE, choices = c("var1", "var2")),
uiOutput("filter_var"),
uiOutput("selected_filter_value")
)
server <- function(input, output, session) {
values <- reactiveValues(
filter_vals = list(var1 = list(), var2 = list()),
observers = NULL
)
# dynamically generate selectizeInput for variable selected in filter
# set selected values to previous selections
observeEvent(input$filter, {
output$filter_var <- renderUI({
selectInput(input$filter, label = input$filter,
selected = values$filter_vals[[input$filter]],
choices = data[input$filter], multiple = TRUE, selectize = TRUE)
})
})
# store selected values in list
observeEvent(input[[input$filter]], {
values$filter_vals[[input$filter]] <- input[[input$filter]]
})
# we need this because observeEvent is not triggered if input is empty after deleting all selections
observe({
if (is.null(input[[input$filter]])) {
values$filter_vals[[input$filter]] <- list()
}
})
# add an observer for newly created checkbox
# if checkbox is clicked delete entry in list
# keep a list of all existing observers
make_delete_observer <- function(name) {
observeEvent(input[[name]], {
req(input[[name]] == FALSE)
var <- stringr::str_split(name, "_")[[1]][1]
val <- as.integer(stringr::str_split(name, "_")[[1]][2])
values$filter_vals[[var]] <- intersect(values$filter_vals[[var]][-val],
values$filter_vals[[var]])
updateSelectInput(session, var, selected = values$filter_vals[[var]])
})
}
# render selected values which are stored in a list as checkboxes
# add an observeEvent for each checkbox
# store selected values in list
output$selected_filter_value <- renderUI({
req(values$filter_vals[[input$filter]])
req(any(sapply(values$filter_vals, length) > 0))
tag_list <- tagList()
for (i in seq_along(values$filter_vals)) {
for (j in seq_along(values$filter_vals[[i]])) {
new_input_name <- paste0(names(values$filter_vals)[i], "_", j)
new_input <- prettyCheckbox(
inputId = new_input_name, value = TRUE,
label = paste0(names(values$filter_vals)[i], ": ", values$filter_vals[[i]][j]),
icon = icon("close"), status = "danger", outline = FALSE, plain = TRUE
)
# create observer only if it does not exist yet
if (!(new_input_name %in% values$observers)) {
values$observers <- append(values$observers, new_input_name)
make_delete_observer(new_input_name)
}
tag_list <- tagAppendChild(tag_list, new_input)
}
}
tag_list
})
}
shinyApp(ui, server)

Display only one value in selectInput in R Shiny app

I am trying to dynamically populate the values of the selectInput from the data file uploaded by the user. The selectInput must contain only numeric columns.
Here is my code snippet for server.R
...
idx <- sapply(data.file, is.numeric)
numeric_columns <- data.file[, idx]
factor_columns <- data.file[, !idx]
updateSelectInput(session, "bar_x", "Select1", choices = names(numeric_columns))
updateSelectInput(session, "bar_y", "Select2", choices = names(factor_columns))
...
Corresponding ui.r
...
selectInput("bar_x", "Select1", choices = NULL),
selectInput("bar_y", "Select2", choices = NULL)
...
The code works fine as long as there are more than one values in any dropdown. However, it fails as soon as it encounters only one value to be displayed in the selectInput.
How can I handle this specific condition, given that the data is uploaded and it cannot be controlled if there is just one column as numeric?
It appears that in 2019, this issue still exists. The issue that I have seen is that when there is only one option in the dropdown, the name of the column is displayed instead of the one option.
This appears to only be a graphical problem, as querying the value for the selectInput element returns the correct underlying data.
I was unable to figure out why this problem exists, but an easy way around this bug is to simply change the name of the column so that it looks like the first element in the list.
library(shiny)
ui <- fluidPage(
selectInput("siExample",
label = "Example Choices",
choices = list("Loading...")),
)
server <- function(input, output, session) {
# load some choices into a single column data frame
sampleSet <- data.frame(Example = c("test value"))
# rename the set if there is only one value
if (length(sampleSet$Example) == 1) {
# This should only be done on a copy of your original data,
# you don't want to accidentally mutate your original data set
names(sampleSet) <- c(sampleSet$Example[1])
}
# populate the dropdown with the sampleSet
updateSelectInput(session,
"siExample",
choices = sampleSet)
}
shinyApp(ui = ui, server = server)
Info: Code was adapted by OP to make error reproducible.
To solve your issue use val2 <- val[,idx, drop = FALSE]
You dropped the column names by subsetting the data.frame().
To avoid this use drop = FALSE; see Keep column name when select one column from a data frame/matrix in R.
library(shiny)
# Define UI for application that draws a histogram
ui <- fluidPage(
# Sidebar with a slider input for number of bins
sidebarLayout(
sidebarPanel(
# drj's changes START block 1
#selectInput('states', 'Select states', choices = c(1,2,4))
selectInput('states', 'Select states', choices = NULL)
# drj's changes END block 1
),
# Show a plot of the generated distribution
mainPanel(
plotOutput("distPlot")
)
)
)
# Define server logic required to draw a histogram
server <- function(input, output, session) {
observe({
#drj's changes START block 2
#val <- c(1,2,3)
#names(val) <- c("a","b","c")
#updateSelectInput(session, 'states', 'Select states', choices = names(val[1]))
val <- as.data.frame(cbind(c("_1","_2","_3"), c(4, 4, 6)))
names(val) <- c("a","b")
val$b <- as.numeric(val$b)
idx <- sapply(val, is.numeric)
val2 <- val[,idx, drop = FALSE]
updateSelectInput(session, 'states', 'Select states', choices = names(val2))
#drj's changes END block 2
})
}
# Run the application
shinyApp(ui = ui, server = server)

R Shiny: How to dynamically append arbitrary number of input widgets

The goal
I am working on a Shiny app that allows the user to upload their own data and focus on the entire data or a subset by providing data filtering widgets described by the below graph
The select input "Variable 1" will display all the column names of the data uploaded by the user and the selectize input "Value" will display all the unique values of the corresponding column selected in "Variable 1". Ideally, the user will be able to add as many such rows ("Variable X" + "Value") as possible by some sort of trigger, one possibility being clicking the "Add more" action button.
A possible solution
After looking up online, I've found one promising solution given by Nick Carchedi pasted below
ui.R
library(shiny)
shinyUI(pageWithSidebar(
# Application title
headerPanel("Dynamically append arbitrary number of inputs"),
# Sidebar with a slider input for number of bins
sidebarPanel(
uiOutput("allInputs"),
actionButton("appendInput", "Append Input")
),
# Show a plot of the generated distribution
mainPanel(
p("The crux of the problem is to dynamically add an arbitrary number of inputs
without resetting the values of existing inputs each time a new input is added.
For example, add a new input, set the new input's value to Option 2, then add
another input. Note that the value of the first input resets to Option 1."),
p("I suppose one hack would be to store the values of all existing inputs prior
to adding a new input. Then,", code("updateSelectInput()"), "could be used to
return inputs to their previously set values, but I'm wondering if there is a
more efficient method of doing this.")
)
))
server.R
library(shiny)
shinyServer(function(input, output) {
# Initialize list of inputs
inputTagList <- tagList()
output$allInputs <- renderUI({
# Get value of button, which represents number of times pressed
# (i.e. number of inputs added)
i <- input$appendInput
# Return if button not pressed yet
if(is.null(i) || i < 1) return()
# Define unique input id and label
newInputId <- paste0("input", i)
newInputLabel <- paste("Input", i)
# Define new input
newInput <- selectInput(newInputId, newInputLabel,
c("Option 1", "Option 2", "Option 3"))
# Append new input to list of existing inputs
inputTagList <<- tagAppendChild(inputTagList, newInput)
# Return updated list of inputs
inputTagList
})
})
The downside
As pointed by Nick Carchedi himself, all the existing input widgets will undesirably get reset every time when a new one is added.
A promising solution for data subsetting/filtering in Shiny
As suggested by warmoverflow, the datatable function in DT package provides a nice way to filter the data in Shiny. See below a minimal example with data filtering enabled.
library(shiny)
shinyApp(
ui = fluidPage(DT::dataTableOutput('tbl')),
server = function(input, output) {
output$tbl = DT::renderDataTable(
iris, filter = 'top', options = list(autoWidth = TRUE)
)
}
)
If you are going to use it in your Shiny app, there are some important aspects that are worth noting.
Filtering box type
For numeric/date/time columns: range sliders are used to filter rows within ranges
For factor columns: selectize inputs are used to display all possible categories
For character columns: ordinary search boxes are used
How to obtain the filtered data
Suppose the table output id is tableId, use input$tableId_rows_all as the indices of rows on all pages (after the table is filtered by the search strings). Please note that input$tableId_rows_all returns the indices of rows on all pages for DT (>= 0.1.26). If you use the DT version by regular install.packages('DT'), only the indices of the current page are returned
To install DT (>= 0.1.26), refer to its GitHub page
Column width
If the data have many columns, column width and filter box width will be narrow, which makes it hard to see the text as report here
Still to be solved
Despite some known issues, datatable in DT package stands as a promising solution for data subsetting in Shiny. The question itself, i.e. how to dynamically append arbitrary number of input widgets in Shiny, nevertheless, is interesting and also challenging. Until people find a good way to solve it, I will leave this question open :)
Thank you!
are you looking for something like this?
library(shiny)
LHSchoices <- c("X1", "X2", "X3", "X4")
#------------------------------------------------------------------------------#
# MODULE UI ----
variablesUI <- function(id, number) {
ns <- NS(id)
tagList(
fluidRow(
column(6,
selectInput(ns("variable"),
paste0("Select Variable ", number),
choices = c("Choose" = "", LHSchoices)
)
),
column(6,
numericInput(ns("value.variable"),
label = paste0("Value ", number),
value = 0, min = 0
)
)
)
)
}
#------------------------------------------------------------------------------#
# MODULE SERVER ----
variables <- function(input, output, session, variable.number){
reactive({
req(input$variable, input$value.variable)
# Create Pair: variable and its value
df <- data.frame(
"variable.number" = variable.number,
"variable" = input$variable,
"value" = input$value.variable,
stringsAsFactors = FALSE
)
return(df)
})
}
#------------------------------------------------------------------------------#
# Shiny UI ----
ui <- fixedPage(
verbatimTextOutput("test1"),
tableOutput("test2"),
variablesUI("var1", 1),
h5(""),
actionButton("insertBtn", "Add another line")
)
# Shiny Server ----
server <- function(input, output) {
add.variable <- reactiveValues()
add.variable$df <- data.frame("variable.number" = numeric(0),
"variable" = character(0),
"value" = numeric(0),
stringsAsFactors = FALSE)
var1 <- callModule(variables, paste0("var", 1), 1)
observe(add.variable$df[1, ] <- var1())
observeEvent(input$insertBtn, {
btn <- sum(input$insertBtn, 1)
insertUI(
selector = "h5",
where = "beforeEnd",
ui = tagList(
variablesUI(paste0("var", btn), btn)
)
)
newline <- callModule(variables, paste0("var", btn), btn)
observeEvent(newline(), {
add.variable$df[btn, ] <- newline()
})
})
output$test1 <- renderPrint({
print(add.variable$df)
})
output$test2 <- renderTable({
add.variable$df
})
}
#------------------------------------------------------------------------------#
shinyApp(ui, server)
Now, I think that I understand better the problem.
Suppose the user selects the datasets::airquality dataset (here, I'm showing only the first 10 rows):
The field 'Select Variable 1' shows all the possible variables based on the column names of said dataset:
Then, the user selects the condition and the value to filter the dataset by:
Then, we want to add a second filter (still maintaining the first one):
Finally, we get the dataset filtered by the two conditions:
If we want to add a third filter:
You can keep adding filters until you run out of data.
You can also change the conditions to accommodate factors or character variables. All you need to do is change the selectInput and numericInput to whatever you want.
If this is what you want, I've solved it using modules and by creating a reactiveValue (tmpFilters) that contains all selections (variable + condition + value). From it, I created a list with all filters (tmpList) and from it I created the proper filter (tmpListFilters) to use with subset.
This works because the final dataset is "constantly" being subset by this reactiveValue (the tmpFilters). At the beginning, tmpFilters is empty, so we get the original dataset. Whenever the user adds the first filter (and other filters after that), this reactiveValue gets updated and so does the dataset.
Here's the code for it:
library(shiny)
# > MODULE #####################################################################
## |__ MODULE UI ===============================================================
variablesUI <- function(id, number, LHSchoices) {
ns <- NS(id)
tagList(
fluidRow(
column(
width = 4,
selectInput(
inputId = ns("variable"),
label = paste0("Select Variable ", number),
choices = c("Choose" = "", LHSchoices)
)
),
column(
width = 4,
selectInput(
inputId = ns("condition"),
label = paste0("Select condition ", number),
choices = c("Choose" = "", c("==", "!=", ">", ">=", "<", "<="))
)
),
column(
width = 4,
numericInput(
inputId = ns("value.variable"),
label = paste0("Value ", number),
value = NA,
min = 0
)
)
)
)
}
## |__ MODULE SERVER ===========================================================
filter <- function(input, output, session){
reactive({
req(input$variable, input$condition, input$value.variable)
fullFilter <- paste0(
input$variable,
input$condition,
input$value.variable
)
return(fullFilter)
})
}
# Shiny ########################################################################
## |__ UI ======================================================================
ui <- fixedPage(
fixedRow(
column(
width = 5,
selectInput(
inputId = "userDataset",
label = paste0("Select dataset"),
choices = c("Choose" = "", ls("package:datasets"))
),
h5(""),
actionButton("insertBtn", "Add another filter")
),
column(
width = 7,
tableOutput("finalTable")
)
)
)
## |__ Server ==================================================================
server <- function(input, output) {
### \__ Get dataset from user selection ------------------------------------
originalDF <- reactive({
req(input$userDataset)
tmpData <- eval(parse(text = paste0("datasets::", input$userDataset)))
if (!class(tmpData) == "data.frame") {
stop("Please select a dataset of class data.frame")
}
tmpData
})
### \__ Get the column names -----------------------------------------------
columnNames <- reactive({
req(input$userDataset)
tmpData <- eval(parse(text = paste0("datasets::", input$userDataset)))
names(tmpData)
})
### \__ Create Reactive Filter ---------------------------------------------
tmpFilters <- reactiveValues()
### \__ First UI Element ---------------------------------------------------
### Add first UI element with column names
observeEvent(input$userDataset, {
insertUI(
selector = "h5",
where = "beforeEnd",
ui = tagList(variablesUI(paste0("var", 1), 1, columnNames()))
)
})
### Update Reactive Filter with first filter
filter01 <- callModule(filter, paste0("var", 1))
observe(tmpFilters[['1']] <- filter01())
### \__ Other UI Elements --------------------------------------------------
### Add other UI elements with column names and update the filter
observeEvent(input$insertBtn, {
btn <- sum(input$insertBtn, 1)
insertUI(
selector = "h5",
where = "beforeEnd",
ui = tagList(variablesUI(paste0("var", btn), btn, columnNames()))
)
newFilter <- callModule(filter, paste0("var", btn))
observeEvent(newFilter(), {
tmpFilters[[paste0("'", btn, "'")]] <- newFilter()
})
})
### \__ Dataset with Filtered Results --------------------------------------
resultsFiltered <- reactive({
req(filter01())
tmpDF <- originalDF()
tmpList <- reactiveValuesToList(tmpFilters)
if (length(tmpList) > 1) {
tmpListFilters <- paste(tmpList, "", collapse = "& ")
} else {
tmpListFilters <- unlist(tmpList)
}
tmpResult <- subset(tmpDF, eval(parse(text = tmpListFilters)))
tmpResult
})
### \__ Print the Dataset with Filtered Results ----------------------------
output$finalTable <- renderTable({
req(input$userDataset)
if (is.null(tmpFilters[['1']])) {
head(originalDF(), 10)
} else {
head(resultsFiltered(), 10)
}
})
}
#------------------------------------------------------------------------------#
shinyApp(ui, server)
# End
If you are looking for a data subsetting/filtering in Shiny Module :
filterData from package shinytools can do the work. It returns an expression as a call but it can also return the data (if your dataset is not too big).
library(shiny)
# remotes::install_github("ardata-fr/shinytools")
library(shinytools)
ui <- fluidPage(
fluidRow(
column(
3,
filterDataUI(id = "ex"),
actionButton("AB", label = "Apply filters")
),
column(
3,
tags$strong("Expression"),
verbatimTextOutput("expression"),
tags$br(),
DT::dataTableOutput("DT")
)
)
)
server <- function(input, output) {
x <- reactive({iris})
res <- callModule(module = filterDataServer, id = "ex", x = x, return_data = FALSE)
output$expression <- renderPrint({
print(res$expr)
})
output$DT <- DT::renderDataTable({
datatable(data_filtered())
})
data_filtered <- eventReactive(input$AB, {
filters <- eval(expr = res$expr, envir = x())
x()[filters,]
})
}
shinyApp(ui, server)
You can also use lazyeval or rlang to evaluate the expression :
filters <- lazyeval::lazy_eval(res$expr, data = x())
filters <- rlang::eval_tidy(res$expr, data = x())
You need to check for existing input values and use them if available:
# Prevent dynamic inputs from resetting
newInputValue <- "Option 1"
if (newInputId %in% names(input)) {
newInputValue <- input[[newInputId]]
}
# Define new input
newInput <- selectInput(newInputId, newInputLabel, c("Option 1", "Option 2", "Option 3"), selected=newInputValue)
A working version of the gist (without the reset problem) can be found here: https://gist.github.com/motin/0d0ed0d98fb423dbcb95c2760cda3a30
Copied below:
ui.R
library(shiny)
shinyUI(pageWithSidebar(
# Application title
headerPanel("Dynamically append arbitrary number of inputs"),
# Sidebar with a slider input for number of bins
sidebarPanel(
uiOutput("allInputs"),
actionButton("appendInput", "Append Input")
),
# Show a plot of the generated distribution
mainPanel(
p("This shows how to add an arbitrary number of inputs
without resetting the values of existing inputs each time a new input is added.
For example, add a new input, set the new input's value to Option 2, then add
another input. Note that the value of the first input does not reset to Option 1.")
)
))
server.R
library(shiny)
shinyServer(function(input, output) {
output$allInputs <- renderUI({
# Get value of button, which represents number of times pressed (i.e. number of inputs added)
inputsToShow <- input$appendInput
# Return if button not pressed yet
if(is.null(inputsToShow) || inputsToShow < 1) return()
# Initialize list of inputs
inputTagList <- tagList()
# Populate the list of inputs
lapply(1:inputsToShow,function(i){
# Define unique input id and label
newInputId <- paste0("input", i)
newInputLabel <- paste("Input", i)
# Prevent dynamic inputs from resetting
newInputValue <- "Option 1"
if (newInputId %in% names(input)) {
newInputValue <- input[[newInputId]]
}
# Define new input
newInput <- selectInput(newInputId, newInputLabel, c("Option 1", "Option 2", "Option 3"), selected=newInputValue)
# Append new input to list of existing inputs
inputTagList <<- tagAppendChild(inputTagList, newInput)
})
# Return updated list of inputs
inputTagList
})
})
(The solution was guided on Nick's hints in the original gist from where you got the code of the promising solution)

Resources