I have a shinyscript prepared where i want to show a graph based on two widgets.
The first widget(selectInput) controls for the area i want to show a diagnostic plot for.
The second widget (checkboxGroupInput) controls for the amount of data i want to show for the area selected with the first widget. So, the options for the checkboxes depend on what is selected with the selectInput.
I solved this with a htmlOutput("") in the UI and a corresponding renderUI in the server.
Everything works fine, but when i proceed to the plotting, something weird happens.
I can use a reactive filter to control for the area as selected with selectInput, but when i extend the filter to also work work with the checkboxGroupInputi get the following error when i run the app:
Warning: Error in : Problem with filter() input ..2.
x Input ..2 must be of size 611 or 1, not size 0.
i Input ..2 is Code == input$code.
202:
This only shows when all the checkboxes are unchecked and no graph is visible. I Can plot the graph that corresponds with the checkboxes, but it only shows 5 barcharts (when for example ten are to be plotted) and the error is given.
Can someone tell me if there is something wrong with m code? And how i can resolve the error and work with these dependand widgets?
Below my code and data
Code
#libraries needed
library(shiny)
library(ggplot2)
library(dplyr)
#data needed
df <- "load in data"
# user interface ----
ui <- fluidPage(
tabsetPanel(
tabPanel("diagnostische tabellen",fluid = TRUE,
titlePanel("PQ analyse"),
sidebarLayout(
sidebarPanel(
helpText("selecteer terrein waar je de PQ-data van wil bekijken"),
#make first dropdownmenu for area
selectInput("terrein",
label = "Kies een terrein",
choices = sort((unique(df$Terrein))),
selected = 1),
htmlOutput("code")
),
mainPanel(plotOutput("map1"))))
)
)
# Server logic ----------------------------
server <- function(input, output){
# ceate a reactive list of PQ-codes based on previous selection for area
output$code <- renderUI({
data_available <- df[df$Terrein == input$terrein, "Code"]
checkboxGroupInput("code",
label = "PQ-code",
choices = sort(unique(data_available)),
selected = unique(data_available))
})
## filter the data for the graph
filtered_data <- reactive({
filter(df, Terrein == input$terrein, Code == input$code)
})
## GGplot graph
output$map1 <- renderPlot({
ggplot(filtered_data(), aes( x = Code, fill = as.character(Jaar))) +
geom_bar(position = position_stack(reverse = TRUE))+
theme(axis.text.x = element_text(angle = 45, size = 15))+
scale_fill_brewer()+
labs(fill='Jaar')+
ggtitle(paste("Aantal herhalingen PQ's op",input$terrein))
})
}
# Run app
shinyApp(ui, server)
df
structure(list(Terrein = structure(c(25L, 25L, 25L, 25L, 1L,
1L, 1L, 1L, 1L, 1L, 29L, 29L, 13L, 13L, 13L, 7L, 7L, 7L, 7L,
7L, 7L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 8L, 8L, 8L, 13L, 8L, 8L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 15L, 15L, 15L, 15L,
16L, 16L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 13L, 13L,
13L, 13L, 24L, 24L, 24L, 24L, 28L, 28L, 28L, 28L, 2L, 2L, 2L,
2L, 2L, 2L, 23L, 23L, 23L, 23L, 23L, 22L, 21L, 21L, 21L, 21L,
21L, 7L, 7L, 7L, 7L, 7L, 7L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
14L, 14L, 14L, 14L, 14L, 14L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
18L, 18L, 18L, 18L, 30L, 30L, 30L, 30L, 20L, 10L, 10L, 10L, 10L,
10L, 13L, 13L, 13L, 6L, 6L, 6L, 6L, 6L, 5L, 5L, 5L, 3L, 3L, 3L,
3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 25L, 1L, 1L, 17L, 17L, 17L, 17L,
13L, 13L, 13L, 13L, 13L, 13L, 23L, 23L, 23L, 23L, 23L, 3L, 3L,
3L, 13L, 3L, 10L, 10L, 25L, 25L, 25L, 25L, 14L, 14L, 14L, 14L,
14L, 14L, 23L, 23L, 23L, 23L, 23L, 15L, 15L, 15L, 15L, 16L, 16L,
16L, 5L, 5L, 5L, 5L, 5L, 12L, 12L, 12L, 12L, 12L, 19L, 15L, 15L,
15L, 15L, 9L, 16L, 16L, 16L, 8L, 19L, 16L, 19L, 8L, 8L, 16L,
16L, 16L, 8L, 8L, 8L, 8L, 8L, 19L, 16L, 19L, 8L, 16L, 16L, 16L,
8L, 16L, 25L, 15L, 15L, 15L, 15L, 15L, 15L, 25L, 21L, 21L, 21L,
7L, 7L, 7L, 12L, 12L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 10L, 10L, 10L, 15L, 15L, 28L, 28L,
28L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 25L, 25L, 25L, 7L, 7L,
7L, 22L, 23L, 23L, 23L, 23L, 23L, 1L, 1L, 1L, 1L, 1L, 23L, 23L,
23L, 23L, 15L, 15L, 15L, 15L, 29L, 29L, 26L, 26L, 26L, 26L, 26L,
26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L,
26L, 7L, 7L, 7L, 5L, 5L, 5L, 5L, 5L, 20L, 12L, 12L, 8L, 20L,
20L, 20L, 20L, 7L, 7L, 7L, 12L, 25L, 25L, 25L, 24L, 24L, 24L,
20L, 20L, 15L, 15L, 15L, 15L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 15L, 15L,
15L, 15L, 14L, 14L, 14L, 14L, 14L, 14L, 12L, 8L, 8L, 8L, 8L,
21L, 21L, 21L, 12L, 10L, 2L, 1L, 1L, 1L, 1L, 1L, 10L, 10L, 15L,
15L, 15L, 15L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L,
26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 6L, 6L, 6L, 6L,
6L, 14L, 14L, 14L, 14L, 23L, 23L, 23L, 23L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 21L, 21L, 21L, 26L, 26L, 26L, 25L, 25L, 23L,
23L, 23L, 23L, 26L, 26L, 26L, 13L, 15L, 15L, 15L, 15L, 10L, 10L,
10L, 10L, 26L, 26L, 26L, 13L, 13L, 13L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 23L, 23L, 23L, 23L, 23L, 1L, 1L, 1L, 1L,
1L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 15L, 15L, 15L, 15L, 23L,
23L, 23L, 23L, 23L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L,
25L, 25L, 21L, 21L, 21L, 12L, 13L, 13L, 13L, 13L, 2L), .Label = c("Arnhemse Heide",
"ASK Doornspijkse Heide", "ASK Oldenbroekse Heide", "Balloërveld",
"Convooi AOCS Nieuw-Milligen", "De Dellen", "de Kom", "De Stompert & Vlasakkers",
"Deelen, VB", "Eder- en Ginkelse Heide", "Ermelosche Heide",
"Havelte", "ISK Harskamp", "Joost Dourleinkazerne", "Kruispeel en Achterbroek",
"Leusderheide", "Luitenant-Generaal Best Kazerne (vml. VB de Peel)",
"Olst-Welsum", "Oude Kamp", "Oude Molen", "Radiostation Noordwijk",
"Rucphense Heide", "Schinveldse Bossen", "Stroese Zand", "Uilenbosch (Waalsdorp)",
"Vliehors", "Vughtse Heide", "Weerter- en Bosoverheide", "Woensdrechtse Heide",
"Zwaluwenberg"), class = "factor"), Code = structure(c(230L,
228L, 228L, 231L, 4L, 5L, 6L, 1L, 2L, 3L, 239L, 240L, 100L, 101L,
102L, 116L, 117L, 118L, 119L, 120L, 121L, 10L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 26L, 27L, 28L, 30L, 29L, 14L, 15L, 16L, 23L, 24L,
25L, 17L, 18L, 19L, 20L, 21L, 22L, 44L, 45L, 46L, 47L, 48L, 49L,
216L, 217L, 218L, 102L, 214L, 215L, 31L, 42L, 35L, 36L, 37L,
38L, 43L, 32L, 33L, 34L, 39L, 40L, 41L, 71L, 71L, 72L, 59L, 60L,
61L, 62L, 57L, 65L, 63L, 64L, 58L, 55L, 56L, 67L, 68L, 68L, 69L,
70L, 70L, 91L, 92L, 78L, 79L, 80L, 73L, 74L, 75L, 76L, 77L, 103L,
100L, 105L, 108L, 102L, 101L, 104L, 109L, 107L, 106L, 94L, 95L,
93L, 96L, 99L, 97L, 98L, 122L, 123L, 124L, 125L, 135L, 136L,
225L, 222L, 219L, 220L, 221L, 223L, 226L, 224L, 227L, 106L, 105L,
107L, 104L, 188L, 189L, 186L, 187L, 236L, 235L, 237L, 238L, 55L,
56L, 57L, 58L, 59L, 60L, 176L, 177L, 178L, 179L, 180L, 175L,
143L, 144L, 145L, 146L, 147L, 116L, 119L, 117L, 118L, 121L, 120L,
163L, 165L, 160L, 161L, 162L, 164L, 166L, 111L, 110L, 112L, 113L,
114L, 115L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 167L, 168L, 169L,
170L, 241L, 242L, 242L, 242L, 160L, 73L, 74L, 77L, 80L, 75L,
103L, 105L, 107L, 50L, 51L, 52L, 53L, 54L, 138L, 139L, 140L,
151L, 152L, 153L, 158L, 159L, 1L, 2L, 3L, 4L, 5L, 6L, 231L, 1L,
2L, 171L, 172L, 173L, 174L, 100L, 102L, 108L, 101L, 109L, 104L,
176L, 177L, 178L, 179L, 180L, 154L, 155L, 156L, 106L, 157L, 79L,
78L, 230L, 229L, 228L, 230L, 115L, 114L, 113L, 112L, 110L, 111L,
176L, 177L, 178L, 179L, 180L, 122L, 123L, 124L, 125L, 137L, 135L,
136L, 141L, 142L, 138L, 139L, 140L, 97L, 95L, 96L, 99L, 98L,
150L, 126L, 127L, 128L, 129L, 190L, 133L, 134L, 132L, 213L, 148L,
131L, 149L, 211L, 212L, 133L, 134L, 132L, 210L, 213L, 210L, 212L,
211L, 148L, 131L, 149L, 210L, 134L, 133L, 132L, 213L, 130L, 231L,
125L, 128L, 129L, 127L, 126L, 124L, 231L, 145L, 144L, 143L, 118L,
120L, 117L, 93L, 94L, 160L, 161L, 166L, 165L, 164L, 163L, 162L,
89L, 88L, 85L, 84L, 90L, 86L, 87L, 79L, 78L, 91L, 123L, 122L,
238L, 237L, 235L, 92L, 80L, 75L, 74L, 76L, 77L, 73L, 232L, 233L,
234L, 119L, 121L, 116L, 175L, 176L, 177L, 179L, 180L, 178L, 2L,
3L, 5L, 4L, 1L, 176L, 178L, 179L, 180L, 126L, 127L, 128L, 129L,
239L, 240L, 191L, 192L, 193L, 194L, 195L, 196L, 197L, 198L, 199L,
200L, 201L, 202L, 203L, 204L, 205L, 206L, 207L, 208L, 209L, 116L,
121L, 119L, 138L, 142L, 141L, 139L, 140L, 161L, 94L, 95L, 183L,
166L, 165L, 160L, 163L, 117L, 120L, 118L, 93L, 233L, 234L, 232L,
189L, 187L, 186L, 162L, 164L, 128L, 126L, 129L, 127L, 74L, 75L,
80L, 76L, 77L, 73L, 79L, 78L, 91L, 92L, 100L, 103L, 108L, 101L,
109L, 106L, 105L, 104L, 123L, 124L, 125L, 122L, 115L, 114L, 113L,
112L, 111L, 110L, 97L, 182L, 184L, 185L, 181L, 145L, 144L, 143L,
96L, 82L, 66L, 2L, 3L, 4L, 5L, 1L, 83L, 81L, 128L, 129L, 126L,
127L, 209L, 206L, 207L, 208L, 191L, 192L, 193L, 194L, 203L, 204L,
205L, 198L, 197L, 196L, 195L, 202L, 201L, 199L, 200L, 52L, 51L,
53L, 50L, 54L, 112L, 115L, 114L, 110L, 180L, 179L, 176L, 178L,
122L, 124L, 126L, 127L, 128L, 129L, 123L, 125L, 145L, 144L, 143L,
192L, 195L, 195L, 233L, 234L, 178L, 176L, 180L, 179L, 191L, 194L,
197L, 103L, 128L, 129L, 126L, 127L, 80L, 76L, 79L, 78L, 193L,
198L, 200L, 101L, 100L, 108L, 81L, 83L, 82L, 73L, 74L, 75L, 77L,
91L, 92L, 176L, 177L, 178L, 180L, 179L, 1L, 2L, 3L, 4L, 5L, 93L,
94L, 95L, 96L, 99L, 98L, 97L, 128L, 129L, 126L, 127L, 176L, 178L,
177L, 179L, 180L, 94L, 97L, 95L, 96L, 105L, 107L, 106L, 109L,
104L, 233L, 234L, 143L, 144L, 145L, 93L, 108L, 101L, 100L, 103L,
58L), .Label = c("AhQ001", "AhQ002", "AhQ003", "AhQ004", "AhQ005",
"AhQ006", "BvB001", "BvB002", "BvB003", "BvB028", "BvB029", "BvB033",
"BvB034", "BvExA1", "BvExA2", "BvExA3", "BvExB1", "BvExB2", "BvExB3",
"BvExC1", "BvExC2", "BvExC3", "BvExD1", "BvExD2", "BvExD3", "BvQ004",
"BvQ005", "BvQ006", "BvQ008", "BvQ009", "BvQ028", "BvQ029", "BvQ030",
"BvQ031", "BvQ056", "BvQ057", "BvQ061", "BvQ062", "BvQ074", "BvQ075",
"BvQ076", "BvQ077", "BvQ078", "BvQ104", "BvQ105", "BvQ120", "BvQ121",
"BvQ182", "BvQ183", "DeQ001", "DeQ002", "DeQ003", "DeQ004", "DeQ005",
"DsQ001", "DsQ002", "DsQ003", "DsQ004", "DsQ005", "DsQ006", "DsQ007",
"DsQ008", "DsQ009", "DsQ010", "DsQ011", "DsQ023", "DsQB01", "DsQB02",
"DsQB03", "DsQB04", "DsQB05", "DsQB06", "EhQ001", "EhQ002", "EhQ003",
"EhQ004", "EhQ005", "EhQ006", "EhQ007", "EhQ008", "EhQJ01", "EhQJ02",
"EhQJ03", "ErQ001", "ErQ002", "ErQ003", "ErQ004", "ErQ005", "ErQ006",
"ErQ007", "GiQ001", "GiQ002", "HaQ001", "HaQ002", "HaQ003", "HaQ004",
"HaQ005", "HaQ006", "HaQ007", "HkQ001", "HkQ002", "HkQ003", "HkQ004",
"HkQ005", "HkQ006", "HkQ007", "HkQ008", "HkQ009", "HkQ010", "JdQ001",
"JdQ002", "JdQ003", "JdQ004", "JdQ005", "JdQ006", "KoQ001", "KoQ002",
"KoQ003", "KoQ004", "KoQ005", "KoQ006", "KrQ001", "KrQ002", "KrQ003",
"KrQ004", "KrQ005", "KrQ006", "KrQ007", "KrQ008", "LhH004", "LhPro1",
"LhPro2", "LhPro4", "LhPRro3", "LhQ001", "LhQ002", "LhX031",
"NmQ001", "NmQ002", "NmQ003", "NmQ004", "NmQ005", "NrQ001", "NrQ002",
"NrQ003", "NrQ004", "NrQ005", "OkPro1", "OkPro2", "OkQ001", "OlQ001",
"OlQ002", "OlQ003", "OlQ004", "OlQ005", "OlQ006", "OlQ007", "OlR001",
"OlR002", "OmQ001", "OmQ002", "OmQ003", "OmQ004", "OmQ005", "OmQ006",
"OmQ007", "OwQ001", "OwQ002", "OwQ003", "OwQ004", "PeH011", "PeH012",
"PeH013", "PeH014", "RhQ001", "SbQ001", "SbQ002", "SbQ003", "SbQ004",
"SbQ005", "StQ001", "StQ002", "StQ003", "StQ004", "StQ005", "SzQ001",
"SzQ002", "SzQ003", "SzQ004", "VdR070", "VhQ001", "VhQ002", "VhQ003",
"VhQ004", "VhQ005", "VhQ006", "VhQ007", "VhQ008", "VhQ009", "VhQ010",
"VhQ011", "VhQ012", "VhQ013", "VhQ014", "VhQ015", "VhQ016", "VhQ017",
"VhQ018", "VhQ019", "VlPro1", "VlPro2", "VlPro3", "VlPro4", "VlQ001",
"VlQ002", "VlQ003", "VlQ004", "VlQ005", "VuQ001", "VuQ002", "VuQ003",
"VuQ004", "VuQ005", "VuQ006", "VuT001", "VuT002", "VuT003", "WaQ001",
"WaQ002", "WaQ003", "WaQ004", "WaQ005", "WaQ006", "WaQ007", "WeQ001",
"WeQ002", "WeQ003", "WeQ004", "WhQ001", "WhQ002", "ZwQ001", "ZwQ002"
), class = "factor")), row.names = c(NA, -611L), class = "data.frame")
As you have multiple Codes for each Terrein, you should use %in%. Also, you need to define each bar count. Try this
# user interface ----
ui <- fluidPage(
tabsetPanel(
tabPanel("diagnostische tabellen",fluid = TRUE,
titlePanel("PQ analyse"),
sidebarLayout(
sidebarPanel(
helpText("selecteer terrein waar je de PQ-data van wil bekijken"),
#make first dropdownmenu for area
selectInput("terrein",
label = "Kies een terrein",
choices = sort((unique(df$Terrein))),
selected = 1),
uiOutput("mycode")
),
mainPanel(plotOutput("map1"))))
)
)
# Server logic ----------------------------
server <- function(input, output){
# ceate a reactive list of PQ-codes based on previous selection for area
output$mycode <- renderUI({
data_available <- df[df$Terrein == input$terrein, "Code"]
checkboxGroupInput("code",
label = "PQ-code",
choices = sort(unique(data_available)),
selected = unique(data_available))
})
## filter the data for the graph
filtered_data <- reactive({
dat <- filter(df, Terrein == input$terrein & Code %in% input$code)
data <- dat %>% group_by(Code) %>%
dplyr::summarise(n=n())
data
})
## GGplot graph
output$map1 <- renderPlot({
ggplot(filtered_data(), aes( x = Code, y=n, fill = Code )) +
geom_bar(position = position_stack(reverse = TRUE), stat = "identity")+
theme(axis.text.x = element_text(angle = 45, size = 15))+
scale_fill_brewer()+
labs(fill=NULL)+
ggtitle(paste("Aantal herhalingen PQ's op",input$terrein))
})
}
# Run app
shinyApp(ui, server)
You will get this output:
Please note that there is no Jaar defined, so you may need to define it.
My basic idea is to compute the Means of chunks (column-wise) of a large matrix and store these Means as rows of a data frame. Note, the chunks have different sizes (number of rows) and these are stored in a vector vec1. Below is my code:
df <- setNames(data.frame(matrix(nrow = 4000, ncol = 3)),
c("Age","Weight", "height"))
#
i <- 1
j <- vec1[1] - 1
k <- 0
repeat {
elements <- as.vector(apply(mydata[i : (j + 1), 3:5], 2, mean))
df <- rbind(df, elements)
k <- k + 1
i = i + vec1[k]
j = j + vec1[k + 1]
if (j + 1 >= l){
break
}
}
N.B.: When I perform the computations manually without looping it works. But the result of the loop yields a 4000 * 3 matrix filled with NA apart from the first row.
vec1 is a vector with 4000 entries, and whose first 500 elements - head(vec1, 500) -are below:
c(15L, 45L, 111L, 32L, 25L, 13L, 144L, 31L, 150L, 124L, 22L,
94L, 60L, 156L, 4L, 30L, 12L, 12L, 16L, 23L, 242L, 58L, 65L,
17L, 63L, 193L, 148L, 162L, 79L, 6L, 22L, 30L, 188L, 44L, 7L,
130L, 49L, 10L, 87L, 11L, 6L, 113L, 113L, 100L, 42L, 5L, 64L,
127L, 73L, 36L, 13L, 120L, 44L, 34L, 153L, 10L, 35L, 205L, 31L,
102L, 181L, 26L, 105L, 75L, 42L, 122L, 42L, 221L, 216L, 120L,
50L, 171L, 56L, 1L, 89L, 11L, 103L, 167L, 96L, 31L, 67L, 182L,
114L, 45L, 4L, 118L, 19L, 243L, 241L, 48L, 36L, 64L, 94L, 63L,
16L, 8L, 213L, 26L, 127L, 139L, 71L, 91L, 133L, 23L, 88L, 31L,
28L, 70L, 112L, 6L, 25L, 82L, 17L, 24L, 196L, 39L, 78L, 23L,
73L, 110L, 64L, 87L, 84L, 11L, 101L, 19L, 6L, 25L, 39L, 59L,
68L, 31L, 183L, 52L, 142L, 63L, 41L, 214L, 19L, 120L, 85L, 104L,
3L, 8L, 38L, 11L, 12L, 21L, 12L, 53L, 37L, 85L, 106L, 12L, 31L,
106L, 75L, 10L, 121L, 60L, 137L, 96L, 177L, 102L, 97L, 145L,
52L, 11L, 112L, 73L, 67L, 8L, 235L, 203L, 182L, 168L, 101L, 144L,
238L, 73L, 38L, 85L, 56L, 14L, 162L, 131L, 14L, 154L, 28L, 30L,
75L, 88L, 268L, 169L, 255L, 127L, 111L, 63L, 42L, 156L, 12L,
22L, 71L, 140L, 110L, 33L, 99L, 79L, 47L, 7L, 131L, 69L, 10L,
61L, 2L, 57L, 96L, 111L, 41L, 250L, 77L, 22L, 198L, 187L, 15L,
108L, 130L, 76L, 190L, 249L, 68L, 117L, 79L, 2L, 13L, 108L, 9L,
39L, 42L, 43L, 149L, 62L, 47L, 66L, 85L, 197L, 109L, 21L, 263L,
54L, 13L, 61L, 72L, 73L, 80L, 46L, 7L, 110L, 128L, 236L, 27L,
240L, 61L, 23L, 82L, 157L, 92L, 95L, 6L, 137L, 237L, 2L, 20L,
45L, 48L, 200L, 20L, 127L, 21L, 64L, 49L, 38L, 108L, 11L, 16L,
108L, 18L, 62L, 15L, 61L, 81L, 28L, 20L, 33L, 50L, 222L, 267L,
29L, 3L, 44L, 46L, 3L, 212L, 53L, 67L, 131L, 43L, 3L, 123L, 134L,
106L, 91L, 194L, 2L, 97L, 43L, 39L, 65L, 96L, 233L, 36L, 81L,
6L, 57L, 29L, 10L, 17L, 10L, 92L, 28L, 168L, 78L, 52L, 227L,
86L, 134L, 58L, 65L, 175L, 20L, 113L, 33L, 143L, 11L, 87L, 101L,
19L, 106L, 63L, 68L, 38L, 263L, 140L, 45L, 169L, 268L, 182L,
114L, 88L, 39L, 6L, 53L, 244L, 84L, 99L, 46L, 53L, 1L, 111L,
88L, 115L, 93L, 35L, 124L, 145L, 262L, 47L, 10L, 84L, 20L, 159L,
207L, 102L, 48L, 79L, 28L, 51L, 77L, 3L, 58L, 20L, 81L, 54L,
46L, 29L, 12L, 74L, 28L, 4L, 18L, 18L, 38L, 29L, 157L, 108L,
94L, 56L, 23L, 92L, 60L, 86L, 39L, 59L, 85L, 14L, 53L, 23L, 88L,
130L, 8L, 149L, 65L, 71L, 88L, 31L, 67L, 83L, 106L, 44L, 35L,
23L, 76L, 90L, 271L, 12L, 167L, 30L, 87L, 3L, 7L, 15L, 159L,
199L, 7L, 35L, 193L, 207L, 6L, 98L, 61L, 81L, 95L, 66L, 2L, 65L,
242L, 221L, 51L, 6L, 5L, 265L, 119L, 126L, 7L, 159L, 74L, 63L,
188L, 15L, 42L, 26L, 41L, 116L, 50L, 62L, 121L, 67L, 1L, 10L,
192L, 59L, 42L, 84L, 187L, 26L, 32L, 35L, 60L, 117L, 227L, 20L,
20L, 125L, 191L, 24L, 270L, 13L, 14L, 59L, 214L, 96L, 100L, 15L,
22L, 100L, 49L, 146L, 137L, 257L, 93L, 91L, 23L, 234L, 108L,
52L, 7L, 124L, 48L, 2L, 42L, 82L, 99L, 85L, 11L, 141L, 185L,
30L, 1L, 269L, 83L, 25L, 187L, 122L, 222L, 11L, 201L, 95L, 40L,
146L, 75L, 218L, 3L, 39L, 76L, 205L, 21L, 23L, 36L, 43L, 105L,
89L, 10L, 155L, 32L, 144L, 160L, 181L, 144L, 139L, 5L, 2L, 26L,
48L, 55L, 177L, 178L, 108L, 221L, 149L, 32L, 77L, 29L, 160L,
115L, 23L, 193L, 113L, 1L, 154L, 87L, 239L, 221L, 36L, 100L,
34L, 42L, 77L, 62L, 20L, 73L, 81L, 17L, 21L, 33L, 3L, 33L, 84L,
92L, 31L, 9L, 65L, 187L, 62L, 87L, 48L, 218L, 6L, 41L, 90L, 102L,
67L, 27L, 1L, 270L, 159L, 46L, 31L, 50L, 19L, 2L, 30L, 35L, 211L,
103L, 12L, 99L, 75L, 37L, 99L, 83L, 49L, 38L, 125L, 53L, 29L,
11L, 23L, 50L, 41L, 114L, 72L, 44L, 32L, 105L, 25L, 67L, 203L,
24L, 82L, 167L, 205L, 28L, 89L, 75L, 52L, 36L, 29L, 16L, 137L,
95L, 230L, 43L, 4L, 194L, 12L, 21L, 25L, 6L, 176L, 48L, 6L, 142L,
24L, 15L, 101L, 160L, 43L, 9L, 125L, 122L, 53L, 55L, 226L, 241L,
259L, 150L, 142L, 47L, 89L, 13L, 2L, 173L, 147L, 5L, 15L, 159L,
7L, 27L, 117L, 97L, 38L, 71L, 7L, 35L, 91L, 172L, 149L, 103L,
51L, 117L, 67L, 142L, 63L, 53L, 87L, 105L, 2L, 1L, 17L, 30L,
114L, 55L, 202L, 34L, 70L, 50L, 37L, 167L, 45L, 7L, 102L, 238L,
176L, 27L, 7L, 86L, 43L, 269L, 88L, 1L, 18L, 41L, 14L, 71L, 88L,
144L, 44L, 19L, 189L, 258L, 76L, 13L, 44L, 20L, 152L, 133L, 86L,
32L, 1L, 56L, 140L, 65L, 74L, 131L, 155L, 40L, 40L, 112L, 186L,
178L, 249L, 42L, 184L, 43L, 5L, 13L, 90L, 111L, 173L, 220L, 71L,
223L, 5L, 178L, 42L, 126L, 56L, 6L, 15L, 249L, 254L, 148L, 60L,
133L, 218L, 111L, 29L, 77L, 16L, 71L, 128L, 100L, 4L, 13L, 72L,
21L, 133L, 130L, 51L, 62L, 14L, 189L, 99L, 32L, 211L, 5L, 15L,
35L, 72L, 153L, 59L, 85L, 165L, 18L, 51L, 21L, 123L, 15L, 93L,
53L, 2L, 210L, 126L, 196L, 62L, 156L, 57L, 179L, 79L, 27L, 22L,
52L, 167L, 33L, 150L, 72L, 30L, 3L, 65L, 36L, 89L, 54L, 18L,
55L, 137L, 119L, 258L, 33L, 21L, 32L, 116L, 12L, 176L, 91L, 168L,
74L, 6L, 4L, 138L, 149L, 39L, 47L, 49L, 81L, 35L, 61L, 4L, 58L,
31L, 172L, 30L, 27L, 184L, 41L, 51L, 24L, 115L, 81L, 71L, 61L,
154L, 206L, 182L, 149L, 42L, 49L, 6L, 104L, 2L, 217L, 27L, 148L,
37L, 159L, 182L, 139L, 49L, 30L, 41L, 20L, 2L, 15L, 35L, 157L,
86L, 261L, 161L, 145L, 105L, 87L, 220L, 12L, 99L, 233L, 190L,
59L, 95L, 151L, 38L, 46L, 32L, 56L, 48L, 71L, 22L, 44L, 143L,
34L, 34L, 7L, 20L, 87L, 106L, 114L, 26L, 7L, 110L, 93L, 113L,
83L, 76L, 43L, 22L, 2L, 101L, 22L, 65L, 17L, 112L, 116L, 138L,
122L, 68L, 5L, 247L, 155L, 149L, 4L, 49L, 130L, 46L, 13L, 223L,
74L, 15L, 175L, 24L, 2L, 96L, 114L, 125L, 56L, 27L, 67L, 30L,
206L, 38L, 42L, 9L, 118L, 24L, 11L, 156L, 109L, 154L, 40L, 175L,
107L, 193L, 30L, 75L, 72L, 44L, 232L, 37L, 130L, 47L, 81L, 18L,
120L, 126L, 93L, 51L, 138L, 6L, 47L, 76L, 65L, 91L, 14L, 92L,
45L, 73L, 107L, 42L, 87L, 158L, 124L, 14L, 151L, 11L, 148L, 122L,
36L, 169L, 149L, 41L, 152L, 116L, 122L, 39L, 196L, 124L, 142L,
12L, 21L, 107L, 4L, 236L, 18L, 193L, 225L, 31L, 147L, 151L, 14L,
63L, 12L, 79L, 55L, 198L, 7L, 84L, 101L, 22L, 194L, 150L, 5L,
20L, 153L, 45L, 231L, 33L, 44L, 174L, 171L, 74L, 9L, 114L, 97L,
107L, 7L, 87L, 113L, 49L, 14L, 32L, 1L, 43L, 131L, 43L, 22L,
32L, 36L, 201L, 206L, 18L, 170L, 79L, 55L, 218L, 198L, 10L, 51L,
35L, 144L, 163L, 255L, 23L, 180L, 20L, 40L, 89L, 107L, 82L, 67L,
115L, 255L, 14L, 155L, 9L, 53L, 55L, 16L, 38L, 16L, 26L, 155L,
4L, 154L, 147L, 223L, 57L, 75L, 54L, 50L, 104L, 79L, 145L, 71L,
39L, 110L, 20L, 23L, 10L, 110L, 67L, 171L, 16L, 5L, 28L, 163L,
204L, 250L, 144L, 101L, 18L, 36L, 139L, 10L, 102L, 57L, 125L,
66L, 33L, 20L, 188L, 15L, 41L, 20L, 112L, 109L, 64L, 28L, 10L,
149L, 196L, 108L, 26L, 173L, 1L, 58L, 185L, 35L, 44L, 37L, 106L,
45L, 58L, 162L, 34L, 151L, 122L, 48L, 8L, 9L, 33L, 4L, 21L, 105L,
36L, 32L, 133L, 55L, 87L, 18L, 18L, 6L, 46L, 79L, 113L, 17L,
70L, 138L, 22L, 42L, 104L, 43L, 9L, 24L, 94L, 142L, 31L, 241L,
23L, 2L, 86L, 62L, 36L, 80L, 2L, 76L, 89L, 160L, 13L, 12L, 4L,
57L, 25L, 85L, 22L, 88L, 170L, 120L, 218L, 14L, 75L, 12L, 9L,
198L, 225L, 139L, 75L, 1L, 6L, 35L, 23L, 67L, 19L, 157L, 68L,
69L, 9L, 6L, 57L, 18L, 169L, 255L, 3L, 20L, 8L, 54L, 94L, 154L,
34L, 151L, 52L, 68L, 85L, 107L, 9L, 232L, 165L, 50L, 153L, 14L,
200L, 78L, 94L, 140L, 222L, 143L, 56L, 37L, 101L, 83L, 48L, 53L,
38L, 155L, 8L, 132L, 148L, 39L, 53L, 151L, 3L, 5L, 59L, 3L, 56L,
100L, 37L, 65L, 192L, 30L, 212L, 70L, 149L, 10L, 43L, 92L, 28L,
97L, 20L, 105L, 133L, 134L, 4L, 65L, 83L, 16L, 158L, 168L, 119L,
47L, 55L, 51L, 38L, 80L, 16L, 124L, 105L, 68L, 178L, 23L, 15L,
177L, 146L, 71L, 7L, 2L, 36L, 7L, 3L, 89L, 54L, 42L, 67L, 133L,
64L, 44L, 39L, 119L, 64L, 15L, 44L, 73L, 41L, 49L, 92L, 8L, 110L,
167L, 59L, 224L, 102L, 23L, 6L, 69L, 126L, 97L, 240L, 21L, 32L,
52L, 59L, 34L, 17L, 12L, 270L, 60L, 119L, 103L, 92L, 218L, 62L,
127L, 15L, 65L, 64L, 63L, 17L, 135L, 67L, 49L, 149L, 24L, 24L,
24L, 54L, 27L, 167L, 7L, 8L, 53L, 72L, 85L, 47L, 92L, 36L, 158L,
113L, 26L, 126L, 3L, 127L, 19L, 27L, 98L, 34L, 82L, 217L, 44L,
105L, 104L, 65L, 35L, 63L, 82L, 41L, 167L, 12L, 136L, 52L, 205L,
18L, 96L, 136L, 74L, 163L, 52L, 194L, 32L, 74L, 217L, 11L, 54L,
228L, 33L, 22L, 51L, 42L, 52L, 8L, 235L, 250L, 38L, 130L, 126L,
57L, 18L, 53L, 108L, 126L, 54L, 128L, 17L, 230L, 40L, 49L, 31L,
38L, 42L, 18L, 14L, 203L, 114L, 73L, 226L, 4L, 4L, 271L, 48L,
86L, 221L, 18L, 55L, 176L, 119L, 255L, 18L, 124L, 63L, 58L, 77L,
159L, 118L, 116L, 71L, 123L, 22L, 38L, 61L, 114L, 114L, 1L, 104L,
115L, 9L, 192L, 4L, 199L, 118L, 199L, 4L, 13L, 114L, 175L, 11L,
39L, 189L, 30L, 113L, 112L, 13L, 102L, 11L, 26L, 130L, 2L, 47L,
90L, 77L, 184L, 76L, 15L, 116L, 166L, 20L, 21L, 3L, 136L, 108L,
106L, 87L, 60L, 78L, 106L, 18L, 45L, 85L, 41L, 11L, 85L, 46L,
33L, 244L, 26L, 35L, 14L, 8L, 45L, 98L, 7L, 203L, 9L, 118L, 70L,
85L, 178L, 23L, 8L, 29L, 221L, 171L, 67L, 106L, 118L, 95L, 216L,
32L, 177L, 72L, 16L, 21L, 161L, 49L, 52L, 80L, 174L, 5L, 70L,
41L, 43L, 13L, 238L, 5L, 70L, 128L, 152L, 53L, 128L, 18L, 19L,
107L, 70L, 94L, 119L, 63L, 2L, 7L, 2L, 208L, 128L, 37L, 73L,
8L, 166L, 243L, 216L, 137L, 115L, 178L, 32L, 31L, 49L, 13L, 4L,
217L, 4L, 40L, 48L, 24L, 127L, 25L, 46L, 238L, 107L, 28L, 76L,
54L, 97L, 104L, 9L, 142L, 4L, 32L, 21L, 46L, 36L, 11L, 75L, 175L,
46L, 109L, 25L, 106L, 115L, 78L, 69L, 152L, 2L, 51L, 10L, 63L,
142L, 66L, 168L, 78L, 11L, 147L, 271L, 90L, 88L, 10L, 143L, 71L,
202L, 259L, 133L, 23L, 71L, 238L, 37L, 38L, 24L, 64L, 133L, 8L,
194L, 24L, 92L, 25L, 230L, 195L, 34L, 162L, 18L, 69L, 75L, 18L,
20L, 34L, 99L, 24L, 152L, 83L, 24L, 4L, 41L, 103L, 77L, 86L,
23L, 46L, 53L, 63L, 98L, 54L, 17L, 122L, 9L, 25L, 237L, 71L,
82L, 42L, 259L, 37L, 35L, 21L, 77L, 2L, 5L, 2L, 41L, 46L, 26L,
100L, 265L, 224L, 45L, 68L, 263L, 136L, 243L, 109L, 122L, 25L,
186L, 1L, 7L, 135L, 116L, 18L, 32L, 94L, 192L, 29L, 184L, 174L,
41L, 71L, 14L, 125L, 61L, 70L, 178L, 90L, 7L, 14L, 194L, 167L,
5L, 2L, 21L, 100L, 60L, 230L, 66L, 10L, 162L, 39L, 99L, 91L,
65L, 22L, 162L, 139L, 43L, 230L, 59L, 61L, 168L, 14L, 23L, 73L,
35L, 141L, 73L, 71L, 44L, 59L, 131L, 127L, 68L, 122L, 164L, 2L,
17L, 111L, 4L, 34L, 147L, 33L, 11L, 33L, 54L, 48L, 235L, 136L,
27L, 57L, 8L, 86L, 63L, 86L, 24L, 212L, 92L, 131L, 113L, 47L,
132L, 5L, 175L, 12L, 51L, 81L, 29L, 232L, 126L, 20L, 157L, 158L,
17L, 16L, 62L, 25L, 74L, 58L, 25L, 35L, 85L, 61L, 112L, 241L,
135L, 183L, 77L, 41L, 12L, 101L, 12L, 25L, 113L, 38L, 28L, 95L,
232L, 6L, 98L, 67L, 13L, 46L, 9L, 107L, 88L, 164L, 79L, 18L,
13L, 200L, 20L, 152L, 107L, 40L, 31L, 146L, 121L, 75L, 6L, 237L,
153L, 150L, 161L, 198L, 174L, 167L, 15L, 154L, 160L, 171L, 169L,
23L, 22L, 187L, 226L, 40L, 213L, 87L, 269L, 136L, 153L, 103L,
141L, 21L, 79L, 22L, 144L, 119L, 1L, 11L, 13L, 7L, 128L, 43L,
77L, 50L, 142L, 79L, 5L, 182L, 19L, 39L, 5L, 63L, 228L, 13L,
5L, 49L, 58L, 14L, 145L, 129L, 102L, 211L, 152L, 43L, 269L, 67L,
36L, 10L, 103L, 98L, 83L, 13L, 25L, 155L, 11L, 33L, 127L, 79L,
46L, 64L, 40L, 88L, 23L, 52L, 204L, 125L, 39L, 10L, 184L, 38L,
113L, 123L, 68L, 69L, 126L, 7L, 36L, 43L, 3L, 243L, 82L, 50L,
109L, 122L, 44L, 40L, 41L, 140L, 134L, 168L, 122L, 16L, 2L, 61L,
37L, 73L, 163L, 70L, 18L, 9L, 205L, 12L, 89L, 1L, 17L, 119L,
17L, 54L, 31L, 13L, 185L, 157L, 113L, 53L, 156L, 157L, 72L, 61L,
29L, 52L, 69L, 23L, 261L, 51L, 118L, 48L, 98L, 49L, 250L, 29L,
222L, 55L, 14L, 130L, 72L, 27L, 23L, 45L, 27L, 5L, 62L, 46L,
208L, 183L, 32L, 37L, 168L, 39L, 47L, 3L, 88L, 74L, 40L, 254L,
5L, 28L, 165L, 109L, 181L, 209L, 142L, 107L, 21L, 14L, 42L, 58L,
198L, 30L, 91L, 175L, 108L, 18L, 60L, 86L, 6L, 82L, 26L, 8L,
85L, 202L, 261L, 113L, 142L, 19L, 67L, 96L, 116L, 262L, 60L,
55L, 47L, 56L, 33L, 39L, 196L, 77L, 10L, 86L, 142L, 11L, 49L,
7L, 56L, 38L, 26L, 180L, 74L, 60L, 236L, 7L, 37L, 81L, 119L,
26L, 7L, 103L, 38L, 6L, 184L, 153L, 90L, 42L, 22L, 140L, 57L,
50L, 97L, 14L, 42L, 3L, 14L, 16L, 66L, 56L, 89L, 21L, 58L, 7L,
101L, 16L, 125L, 224L, 64L, 110L, 20L, 5L, 67L, 57L, 161L, 271L,
13L, 18L, 51L, 119L, 42L, 122L, 51L, 116L, 41L, 2L, 89L, 229L,
2L, 45L, 22L, 180L, 3L, 127L, 195L, 8L, 230L, 203L, 72L, 203L,
61L, 7L, 61L, 253L, 37L, 46L, 59L, 161L, 110L, 5L, 223L, 195L,
45L, 1L, 48L, 163L, 3L, 56L, 76L, 77L, 107L, 183L, 7L, 30L, 145L,
4L, 26L, 174L, 76L, 83L, 73L, 172L, 226L, 2L, 18L, 1L, 8L, 90L,
36L, 8L, 44L, 36L, 90L, 64L, 89L, 127L, 24L, 67L, 7L, 263L, 71L,
178L, 21L, 21L, 28L, 236L, 116L, 46L, 82L, 79L, 17L, 18L, 131L,
49L, 90L, 65L, 168L, 93L, 2L, 267L, 59L, 35L, 126L, 35L, 185L,
6L, 45L, 31L, 42L, 71L, 67L, 85L, 11L, 9L, 30L, 22L, 24L, 123L,
119L, 14L, 98L, 31L, 101L, 137L, 81L, 47L, 79L, 4L, 167L, 78L,
11L, 30L, 9L, 115L, 32L, 12L, 80L, 33L, 68L, 36L, 130L, 31L,
7L, 169L, 54L, 9L, 155L, 61L, 250L, 89L, 149L, 2L, 101L, 66L,
166L, 41L, 4L, 62L, 9L, 160L, 189L, 144L, 101L, 190L, 129L, 11L,
124L, 22L, 13L, 151L, 1L, 58L, 173L, 195L, 47L, 3L, 3L, 24L,
26L, 27L, 177L, 43L, 29L, 27L, 7L, 3L, 154L, 100L, 125L, 91L,
212L, 224L, 77L, 53L, 135L, 2L, 11L, 65L, 60L, 115L, 78L, 55L,
66L, 31L, 88L, 72L, 87L, 181L, 198L, 75L, 239L, 111L, 10L, 128L,
103L, 68L, 27L, 127L, 4L, 24L, 102L, 3L, 19L, 103L, 268L, 5L,
153L, 216L, 9L, 56L, 154L, 3L, 13L, 128L, 252L, 17L, 10L, 78L,
65L, 245L, 53L, 166L, 11L, 28L, 43L, 85L, 11L, 179L, 200L, 127L,
235L, 61L, 7L, 4L, 35L, 28L, 85L, 118L, 69L, 92L, 158L, 40L,
91L, 104L, 165L, 135L, 30L, 230L, 121L, 204L, 44L, 106L, 5L,
51L, 19L, 145L, 34L, 184L, 16L, 217L, 62L, 67L, 44L, 16L, 5L,
39L, 13L, 16L, 95L, 158L, 43L, 93L, 37L, 47L, 33L, 18L, 178L,
13L, 65L, 123L, 54L, 165L, 265L, 9L, 118L, 93L, 10L, 3L, 114L,
13L, 8L, 48L, 103L, 160L, 92L, 135L, 50L, 7L, 38L, 16L, 64L,
85L, 215L, 13L, 251L, 41L, 10L, 67L, 13L, 56L, 202L, 72L, 156L,
249L, 56L, 38L, 27L, 15L, 177L, 39L, 36L, 62L, 53L, 86L, 62L,
126L, 177L, 46L, 30L, 81L, 6L, 74L, 37L, 65L, 54L, 67L, 123L,
66L, 144L, 90L, 48L, 173L, 47L, 49L, 108L, 22L, 103L, 22L, 144L,
23L, 233L, 78L, 181L, 136L, 27L, 3L, 135L, 46L, 34L, 30L, 42L,
6L, 53L, 49L, 180L, 247L, 106L, 22L, 124L, 9L, 161L, 43L, 82L,
112L, 225L, 153L, 124L, 53L, 90L, 64L, 86L, 35L, 121L, 118L,
129L, 39L, 3L, 16L, 24L, 224L, 128L, 145L, 108L, 124L, 32L, 9L,
7L, 22L, 16L, 207L, 51L, 27L, 22L, 6L, 132L, 154L, 26L, 223L,
145L, 105L, 78L, 44L, 171L, 29L, 53L, 229L, 89L, 47L, 41L, 81L,
62L, 169L, 102L, 241L, 35L, 6L, 174L, 51L, 181L, 83L, 52L, 92L,
31L, 110L, 148L, 52L, 7L, 73L, 136L, 25L, 29L, 42L, 84L, 190L,
49L, 139L, 62L, 7L, 86L, 13L, 182L, 203L, 68L, 127L, 13L, 27L,
244L, 69L, 65L, 92L, 14L, 257L, 7L, 49L, 20L, 44L, 17L, 13L,
73L, 20L, 43L, 33L, 242L, 4L, 66L, 70L, 99L, 193L, 12L, 179L,
63L, 14L, 53L, 49L, 105L, 59L, 113L, 79L, 124L, 35L, 9L, 7L,
44L, 6L, 21L, 8L, 114L, 36L, 90L, 121L, 113L, 96L, 26L, 253L,
14L, 53L, 10L, 25L, 18L, 18L, 10L, 87L, 4L, 159L, 179L, 17L,
9L, 222L, 68L, 268L, 120L, 197L, 21L, 67L, 59L, 250L, 221L, 233L,
41L, 114L, 20L, 136L, 136L, 94L, 19L, 29L, 11L, 81L, 179L, 154L,
20L, 29L, 148L, 249L, 34L, 246L, 212L, 46L, 4L, 33L, 118L, 47L,
246L, 116L, 42L, 91L, 60L, 49L, 186L, 37L, 85L, 8L, 26L, 5L,
30L, 44L, 22L, 28L, 48L, 144L, 200L, 33L, 29L, 77L, 15L, 120L,
33L, 27L, 53L, 126L, 183L, 79L, 62L, 102L, 61L, 112L, 56L, 77L,
201L, 74L, 7L, 99L, 120L, 110L, 148L, 35L, 48L, 18L, 4L, 16L,
84L, 53L, 39L, 20L, 36L, 159L, 30L, 3L, 46L, 247L, 31L, 127L,
61L, 127L, 238L, 109L, 154L, 178L, 78L, 31L, 5L, 77L, 69L, 3L,
49L, 165L, 91L, 29L, 72L, 24L, 30L, 105L, 55L, 225L, 28L, 36L,
13L, 18L, 106L, 56L, 143L, 105L, 55L, 33L, 4L, 100L, 215L, 59L,
169L, 103L, 70L, 76L, 189L, 42L, 94L, 101L, 41L, 83L, 52L, 231L,
120L, 111L, 37L, 198L, 69L, 57L, 51L, 13L, 14L, 55L, 24L, 74L,
136L, 1L, 218L, 110L, 125L, 26L, 106L, 203L, 46L, 57L, 16L, 90L,
186L, 209L, 64L, 254L, 1L, 103L, 175L, 3L, 5L, 41L, 51L, 232L,
89L, 73L, 67L, 260L, 85L, 189L, 249L, 166L, 72L, 250L, 56L, 2L,
66L, 232L, 33L, 259L, 12L, 47L, 7L, 106L, 193L, 63L, 132L, 3L,
21L, 76L, 195L, 15L, 43L, 171L, 29L, 108L, 84L, 199L, 189L, 98L,
43L, 83L, 28L, 67L, 47L, 195L, 62L, 57L, 53L, 163L, 48L, 65L,
188L, 3L, 52L, 257L, 62L, 62L, 114L, 38L, 128L, 26L, 205L, 100L,
75L, 104L, 56L, 146L, 105L, 35L, 26L, 18L, 46L, 25L, 96L, 61L,
1L, 91L, 13L, 169L, 35L, 54L, 77L, 35L, 9L, 213L, 124L, 22L,
29L, 52L, 203L, 98L, 61L, 8L, 33L, 14L, 11L, 13L, 48L, 105L,
76L, 22L, 136L, 123L, 18L, 39L, 39L, 9L, 212L, 11L, 37L, 9L,
59L, 254L, 18L, 85L, 38L, 180L, 159L, 94L, 42L, 15L, 230L, 38L,
35L, 19L, 98L, 185L, 10L, 24L, 103L, 67L, 8L, 63L, 200L, 135L,
34L, 39L, 19L, 62L, 175L, 13L, 9L, 1L, 37L, 116L, 41L, 42L, 105L,
54L, 17L, 90L, 47L, 38L, 34L, 23L, 105L, 23L, 57L, 115L, 107L,
58L, 50L, 121L, 123L, 23L, 99L, 31L, 148L, 9L, 106L, 4L, 76L,
55L, 102L, 66L, 135L, 43L, 73L, 7L, 255L, 15L, 24L, 229L, 115L,
55L, 52L, 18L, 22L, 39L, 181L, 1L, 135L, 45L, 103L, 24L, 180L,
118L, 228L, 219L, 116L, 90L, 154L, 35L, 73L, 65L, 48L, 58L, 35L,
26L, 166L, 66L, 128L, 15L, 28L, 109L, 154L, 3L, 24L, 52L, 89L,
50L, 53L, 69L, 17L, 15L, 124L, 50L, 134L, 267L, 11L, 194L, 6L,
143L, 40L, 35L, 223L, 12L, 27L, 45L, 181L, 60L, 37L, 19L, 6L,
24L, 57L, 75L, 12L, 93L, 38L, 27L, 140L, 32L, 57L, 115L, 82L,
262L, 5L, 185L, 223L, 10L, 72L, 7L, 110L, 12L, 81L, 61L, 29L,
91L, 12L, 85L, 62L, 34L, 73L, 27L, 16L, 85L, 216L, 228L, 157L,
66L, 73L, 38L, 88L, 26L, 83L, 184L, 10L, 108L, 43L, 11L, 3L,
47L, 61L, 139L, 10L, 8L, 69L, 11L, 63L, 224L, 82L, 5L, 22L, 3L,
51L, 39L, 5L, 232L, 150L, 93L, 89L, 174L, 5L, 85L, 159L, 49L,
150L, 187L, 101L, 29L, 20L, 48L, 4L, 142L, 44L, 57L, 105L, 79L,
51L, 91L, 89L, 115L, 14L, 67L, 2L, 165L, 114L, 2L, 17L, 67L,
38L, 108L, 23L, 103L, 223L, 1L, 34L, 21L, 41L, 73L, 186L, 55L,
14L, 61L, 81L, 75L, 15L, 95L, 85L, 145L, 222L, 139L, 231L, 162L,
79L, 67L, 80L, 75L, 17L, 27L, 48L, 38L, 27L, 71L, 100L, 51L,
132L, 2L, 183L, 110L, 23L, 37L, 103L, 30L, 43L, 138L, 1L, 13L,
83L, 180L, 27L, 21L, 236L, 78L, 118L, 93L, 95L, 83L, 28L, 15L,
236L, 41L, 51L, 11L, 181L, 91L, 4L, 40L, 86L, 165L, 24L, 115L,
252L, 28L, 35L, 13L, 15L, 7L, 9L, 27L, 33L, 9L, 40L, 5L, 105L,
28L, 5L, 16L, 117L, 153L, 27L, 141L, 52L, 168L, 10L, 84L, 17L,
47L, 56L, 233L, 140L, 69L, 221L, 19L, 8L, 71L, 37L, 123L, 137L,
10L, 55L, 146L, 14L, 41L, 69L, 142L, 89L, 4L, 37L, 170L, 37L,
35L, 182L, 70L, 24L, 158L, 83L, 25L, 38L, 116L, 132L, 209L, 69L,
221L, 41L, 114L, 28L, 20L, 42L, 132L, 83L, 168L, 87L, 64L, 249L,
155L, 66L, 113L, 44L, 35L, 100L, 133L, 31L, 126L, 10L, 184L,
53L, 64L, 57L, 22L, 2L, 30L, 25L, 39L, 151L, 164L, 42L, 72L,
2L, 38L, 29L, 8L, 22L, 9L, 91L, 58L, 58L, 78L, 82L, 117L, 104L,
29L, 80L, 70L, 137L, 137L, 115L, 10L, 87L, 66L, 1L, 11L, 21L,
118L, 262L, 70L, 5L, 153L, 118L, 35L, 249L, 68L, 38L, 79L, 30L,
39L, 39L, 158L, 17L, 145L, 5L, 8L, 47L, 177L, 77L, 203L, 94L,
107L, 96L, 68L, 7L, 12L, 24L, 18L, 146L, 13L, 164L, 54L, 73L,
143L, 96L, 22L, 5L, 100L, 71L, 65L, 1L, 16L, 22L, 13L, 39L, 101L,
39L, 75L, 148L, 45L, 257L, 67L, 18L, 50L, 62L, 29L, 222L, 96L,
7L, 7L, 130L, 108L, 44L, 48L, 109L, 67L, 112L, 100L, 169L, 260L,
130L, 169L, 79L, 111L, 121L, 15L, 21L, 240L, 220L, 56L, 8L, 18L,
4L, 37L, 98L, 46L, 247L, 66L, 69L, 19L, 66L, 112L, 42L, 103L,
122L, 155L, 36L, 4L, 60L, 39L, 25L, 2L, 182L, 105L, 157L, 5L,
70L, 16L, 55L, 52L, 39L, 156L, 14L, 118L, 88L, 91L, 132L, 52L,
18L, 38L, 31L, 35L, 75L, 186L, 45L, 110L, 232L, 52L, 135L, 33L,
11L, 29L, 129L, 147L, 20L, 20L, 59L, 46L, 6L, 53L, 251L, 120L,
192L, 41L, 87L, 38L, 134L, 5L, 120L, 130L, 71L, 121L, 84L, 183L,
166L, 20L, 8L, 20L, 74L, 201L, 35L, 176L, 189L, 17L, 231L, 48L,
38L, 3L, 142L, 53L, 199L, 135L, 6L, 38L, 256L, 76L, 6L, 56L,
154L, 25L, 76L, 69L, 149L, 107L, 113L, 246L, 61L, 23L, 6L, 76L,
3L, 68L, 70L, 89L, 130L, 226L, 31L, 157L, 24L, 80L, 170L, 169L,
64L, 12L, 110L, 47L, 141L, 159L, 22L, 53L, 167L, 61L, 81L, 98L,
172L, 261L, 99L, 9L, 13L, 132L, 103L, 16L, 97L, 186L, 35L, 128L,
73L, 136L, 62L, 187L, 30L, 31L, 26L, 115L, 76L, 260L, 54L, 11L,
169L, 227L, 43L, 6L, 23L, 212L, 23L, 68L, 119L, 181L, 34L, 137L,
144L, 48L, 101L, 25L, 10L, 92L, 5L, 92L, 132L, 206L, 44L, 113L,
9L, 25L, 249L, 69L, 250L, 67L, 35L, 6L, 60L, 251L, 6L, 32L, 94L,
13L, 224L, 21L, 43L, 81L, 9L, 9L, 95L, 11L, 7L, 26L, 172L, 46L,
17L, 3L, 2L, 39L, 26L, 7L, 18L, 57L, 88L, 16L, 47L, 136L, 135L,
73L, 26L, 60L, 56L, 77L, 158L, 23L, 1L, 139L, 234L, 76L, 99L,
28L, 22L, 83L, 114L, 6L, 122L, 7L, 36L, 59L, 4L, 33L, 79L, 25L,
26L, 8L, 28L, 19L, 33L, 2L, 23L, 44L, 158L, 56L, 14L, 8L, 56L,
16L, 36L, 90L, 18L, 22L, 7L, 74L, 70L, 2L, 51L, 13L, 130L, 25L,
17L, 23L, 48L, 37L, 60L, 17L, 58L, 15L, 41L, 261L, 245L, 35L,
17L, 41L, 234L, 13L, 11L, 192L, 3L, 5L, 29L, 14L, 34L, 4L, 110L,
63L, 47L, 157L, 9L, 116L, 120L, 29L, 126L, 26L, 106L, 219L, 209L,
93L, 255L, 137L, 88L, 96L, 87L, 229L, 23L, 128L, 101L, 62L, 2L,
193L, 58L, 1L, 8L, 146L, 44L, 12L, 27L, 99L, 270L, 54L, 41L,
161L, 231L, 53L, 126L, 139L, 77L, 55L, 32L, 6L, 159L, 131L, 54L,
266L, 87L, 13L, 205L, 154L, 3L, 82L, 35L, 11L, 2L, 56L, 84L,
110L, 116L, 28L, 30L, 60L, 74L, 12L, 147L, 31L, 206L, 31L, 56L,
209L, 115L, 149L, 33L, 198L, 205L, 71L, 28L, 40L, 201L, 32L,
3L, 40L, 75L, 91L, 32L, 9L, 4L, 192L, 11L, 41L, 30L, 46L, 57L,
44L, 243L, 67L, 118L, 108L, 181L, 83L, 45L, 93L, 13L, 2L, 104L,
163L, 92L, 8L, 17L, 14L, 150L, 5L, 60L, 123L, 100L, 105L, 110L,
225L, 249L, 207L, 100L, 188L, 138L, 6L, 176L, 68L, 91L, 8L, 20L,
18L, 21L, 79L, 20L, 4L, 99L, 136L, 28L, 156L, 7L, 36L, 226L,
33L, 42L, 1L, 28L, 227L, 11L, 9L, 157L, 206L, 34L, 17L, 61L,
113L, 112L, 158L, 24L, 18L, 36L, 75L, 40L, 18L, 183L, 3L, 37L,
92L, 69L, 13L, 213L, 48L, 163L, 188L, 251L, 59L, 75L, 1L, 12L,
46L, 232L, 13L, 74L, 32L, 149L, 219L, 22L, 59L, 109L, 264L, 25L,
141L, 5L, 67L, 41L, 5L, 71L, 19L, 63L, 114L, 28L, 76L, 80L, 86L,
71L, 18L, 166L, 40L, 57L, 185L, 88L, 115L)
The problem is that you initially created 4000 * 3 data.frame filled in with NA. Please see the corrected code. I did not put your actual data vec1 (too long) and simulated vec1 with sampling from exponential distribution. Additionally I used colMeans as more effective than apply. See the code below:
# vec1, mydata, l - simulation
set.seed(123)
vec1 <- (sample(1:271, 4000, replace = TRUE, prob = dexp(1:271, rate = .01)))
mydata <- matrix(1:(300 * 300), nrow = 300)
l <- 300
# data given by OP
df <- data.frame(Age = 1, Weight = 1, height = 1 )
df <- df[-1, ]
i <- 1
j <- vec1[1] - 1
k <- 0
repeat{
elements <- as.vector(colMeans(mydata[i:(j + 1), 3:5]))
df <- rbind(df, elements)
k <- k + 1
i = i + vec1[k]
j = j + vec1[k + 1]
if (j + 1 >= l){
break
}
}
df <- setNames(df, c("Age","Weight", "height"))
df
Output:
Age Weight height
1 608.0 908.0 1208.0
2 638.0 938.0 1238.0
3 716.0 1016.0 1316.0
4 787.5 1087.5 1387.5
5 816.0 1116.0 1416.0
6 835.0 1135.0 1435.0
I'm running a report, and have pulled out some data around something happening over time. I have then summarised that data into a dataframe of date/times and counts. When I try to plot it via ggplot2 I get an error
> ggplot(foo, aes(x=Date, y=Count))+
+ geom_line()
Error in cut.default(unclass(x), unclass(breaks), labels = labels, right = right, :
cannot allocate vector of length 1317423601
>
> ggplot(foo[2:349,], aes(x=Date, y=Count))+
+ geom_line()
Plot produced...
My data is using POSIXct dates, which do seem to cover the end of British Summer Time. I also note that if I excldue the first row of data it works !. Any ideas ?
Here's my data
> dput(foo)
structure(list(Date = structure(c(1317423600, 1317445200, 1317466800,
1317488400, 1317510000, 1317553200, 1317574800, 1317596400, 1317618000,
1317639600, 1317661200, 1317682800, 1317704400, 1317726000, 1317747600,
1317769200, 1317790800, 1317812400, 1317834000, 1317855600, 1317877200,
1317898800, 1317920400, 1317942000, 1317963600, 1317985200, 1318006800,
1318028400, 1318050000, 1318071600, 1318093200, 1318114800, 1318136400,
1318158000, 1318179600, 1318201200, 1318222800, 1318244400, 1318266000,
1318287600, 1318309200, 1318330800, 1318352400, 1318374000, 1318395600,
1318417200, 1318438800, 1318460400, 1318503600, 1318525200, 1318546800,
1318568400, 1318590000, 1318611600, 1318633200, 1318654800, 1318676400,
1318698000, 1318719600, 1318762800, 1318784400, 1318806000, 1318827600,
1318849200, 1318870800, 1318892400, 1318914000, 1318935600, 1318957200,
1318978800, 1319000400, 1319022000, 1319043600, 1319065200, 1319086800,
1319108400, 1319130000, 1319151600, 1319173200, 1319194800, 1319216400,
1319238000, 1319259600, 1319281200, 1319302800, 1319324400, 1319346000,
1319367600, 1319410800, 1319432400, 1319454000, 1319475600, 1319497200,
1319518800, 1319540400, 1319562000, 1319583600, 1319605200, 1319626800,
1319648400, 1319670000, 1319691600, 1319713200, 1319734800, 1319756400,
1319778000, 1319799600, 1319821200, 1319842800, 1319864400, 1319886000,
1319907600, 1319929200, 1319994000, 1320015600, 1320037200, 1320058800,
1320080400, 1320102000, 1320123600, 1320145200, 1320166800, 1320188400,
1320210000, 1320231600, 1320253200, 1320274800, 1320296400, 1320318000,
1320339600, 1320361200, 1320382800, 1320404400, 1320426000, 1320447600,
1320469200, 1320490800, 1320512400, 1320534000, 1320577200, 1320598800,
1320620400, 1320642000, 1320663600, 1320685200, 1320706800, 1320750000,
1320771600, 1320793200, 1320814800, 1320836400, 1320858000, 1320879600,
1320901200, 1320922800, 1320944400, 1320966000, 1320987600, 1321009200,
1321030800, 1321052400, 1321074000, 1321095600, 1321117200, 1321138800,
1321182000, 1321203600, 1321225200, 1321246800, 1321268400, 1321290000,
1321311600, 1321333200, 1321354800, 1321376400, 1321398000, 1321419600,
1321441200, 1321462800, 1321484400, 1321506000, 1321527600, 1321549200,
1321570800, 1321592400, 1321614000, 1321635600, 1321657200, 1321678800,
1321700400, 1321722000, 1321743600, 1321765200, 1321786800, 1321808400,
1321830000, 1321851600, 1321873200, 1321894800, 1321916400, 1321938000,
1321959600, 1321981200, 1322002800, 1322024400, 1322046000, 1322067600,
1322089200, 1322110800, 1322132400, 1322154000, 1322175600, 1322197200,
1322218800, 1322240400, 1322262000, 1322305200, 1322326800, 1322370000,
1322391600, 1322413200, 1322434800, 1322456400, 1322478000, 1322499600,
1322521200, 1322542800, 1322564400, 1322586000, 1322607600, 1322629200,
1322650800, 1322672400, 1322694000, 1322715600, 1322737200, 1322758800,
1322780400, 1322802000, 1322823600, 1322845200, 1322866800, 1322888400,
1322910000, 1322931600, 1322953200, 1322974800, 1322996400, 1323018000,
1323039600, 1323061200, 1323082800, 1323104400, 1323126000, 1323147600,
1323169200, 1323190800, 1323212400, 1323234000, 1323255600, 1323277200,
1323298800, 1323320400, 1323342000, 1323363600, 1323385200, 1323406800,
1323428400, 1323450000, 1323471600, 1323493200, 1323514800, 1323558000,
1323579600, 1323601200, 1323622800, 1323644400, 1323666000, 1323687600,
1323709200, 1323730800, 1323752400, 1323774000, 1323795600, 1323817200,
1323838800, 1323860400, 1323882000, 1323903600, 1323925200, 1323946800,
1323968400, 1323990000, 1324011600, 1324033200, 1324054800, 1324076400,
1324098000, 1324119600, 1324141200, 1324162800, 1324206000, 1324227600,
1324249200, 1324270800, 1324292400, 1324314000, 1324335600, 1324357200,
1324378800, 1324400400, 1324422000, 1324443600, 1324465200, 1324486800,
1324508400, 1324530000, 1324551600, 1324573200, 1324594800, 1324616400,
1324638000, 1324659600, 1324681200, 1324702800, 1324724400, 1324767600,
1324832400, 1324854000, 1324875600, 1324897200, 1324918800, 1324940400,
1324962000, 1324983600, 1325005200, 1325026800, 1325048400, 1325070000,
1325091600, 1325113200, 1325134800, 1325156400, 1325178000, 1325199600,
1325221200, 1325242800, 1325264400, 1325286000), class = c("POSIXct",
"POSIXt"), tzone = ""), Count = c(3L, 0L, 9L, 1L, 0L, 1L, 6L,
4L, 4L, 52L, 19L, 7L, 5L, 59L, 30L, 3L, 2L, 50L, 25L, 8L, 4L,
41L, 22L, 4L, 8L, 57L, 12L, 14L, 3L, 10L, 2L, 6L, 0L, 1L, 7L,
10L, 12L, 44L, 19L, 11L, 3L, 47L, 31L, 7L, 9L, 56L, 21L, 11L,
54L, 20L, 10L, 6L, 54L, 17L, 0L, 1L, 11L, 2L, 0L, 2L, 4L, 14L,
9L, 52L, 19L, 11L, 10L, 56L, 33L, 12L, 9L, 57L, 20L, 12L, 5L,
51L, 23L, 14L, 5L, 50L, 9L, 1L, 2L, 5L, 7L, 1L, 0L, 3L, 9L, 13L,
57L, 27L, 10L, 7L, 62L, 29L, 5L, 6L, 53L, 22L, 8L, 10L, 53L,
12L, 7L, 9L, 38L, 8L, 1L, 0L, 9L, 3L, 0L, 6L, 9L, 3L, 81L, 27L,
6L, 5L, 67L, 45L, 6L, 3L, 63L, 43L, 10L, 2L, 57L, 38L, 19L, 12L,
54L, 22L, 1L, 0L, 5L, 4L, 0L, 4L, 2L, 10L, 4L, 53L, 44L, 7L,
65L, 41L, 11L, 7L, 61L, 46L, 7L, 4L, 64L, 48L, 10L, 11L, 56L,
39L, 6L, 1L, 4L, 3L, 0L, 7L, 3L, 10L, 4L, 46L, 45L, 16L, 6L,
69L, 46L, 17L, 1L, 67L, 43L, 15L, 5L, 57L, 40L, 14L, 4L, 56L,
36L, 3L, 0L, 11L, 3L, 0L, 1L, 5L, 2L, 5L, 9L, 59L, 45L, 9L, 7L,
71L, 35L, 19L, 10L, 65L, 23L, 5L, 7L, 10L, 2L, 5L, 6L, 5L, 1L,
0L, 3L, 2L, 0L, 5L, 7L, 10L, 8L, 58L, 46L, 16L, 6L, 70L, 52L,
14L, 8L, 84L, 42L, 10L, 6L, 62L, 44L, 11L, 3L, 58L, 28L, 3L,
0L, 9L, 8L, 1L, 0L, 4L, 2L, 10L, 11L, 65L, 53L, 14L, 11L, 73L,
42L, 14L, 8L, 74L, 33L, 15L, 13L, 75L, 53L, 11L, 10L, 61L, 31L,
1L, 2L, 9L, 2L, 0L, 3L, 1L, 15L, 16L, 114L, 52L, 10L, 14L, 75L,
50L, 14L, 9L, 69L, 52L, 12L, 15L, 77L, 35L, 10L, 5L, 69L, 37L,
5L, 1L, 12L, 10L, 0L, 9L, 4L, 14L, 18L, 90L, 35L, 12L, 9L, 87L,
49L, 10L, 22L, 83L, 41L, 15L, 14L, 79L, 48L, 17L, 6L, 40L, 8L,
2L, 0L, 2L, 0L, 1L, 7L, 2L, 1L, 2L, 6L, 2L, 54L, 31L, 11L, 6L,
54L, 32L, 7L, 9L, 63L, 23L, 16L, 6L, 43L, 17L, 3L)), .Names = c("Date",
"Count"), row.names = c(1L, 2L, 3L, 4L, 5L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L,
24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L,
37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L,
51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 63L, 64L,
65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L,
78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L,
91L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L,
104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L,
115L, 116L, 117L, 120L, 121L, 122L, 123L, 124L, 125L, 126L, 127L,
128L, 129L, 130L, 131L, 132L, 133L, 134L, 135L, 136L, 137L, 138L,
139L, 140L, 141L, 142L, 143L, 144L, 145L, 147L, 148L, 149L, 150L,
151L, 152L, 153L, 155L, 156L, 157L, 158L, 159L, 160L, 161L, 162L,
163L, 164L, 165L, 166L, 167L, 168L, 169L, 170L, 171L, 172L, 173L,
175L, 176L, 177L, 178L, 179L, 180L, 181L, 182L, 183L, 184L, 185L,
186L, 187L, 188L, 189L, 190L, 191L, 192L, 193L, 194L, 195L, 196L,
197L, 198L, 199L, 200L, 201L, 202L, 203L, 204L, 205L, 206L, 207L,
208L, 209L, 210L, 211L, 212L, 213L, 214L, 215L, 216L, 217L, 218L,
219L, 220L, 221L, 222L, 223L, 224L, 225L, 227L, 228L, 230L, 231L,
232L, 233L, 234L, 235L, 236L, 237L, 238L, 239L, 240L, 241L, 242L,
243L, 244L, 245L, 246L, 247L, 248L, 249L, 250L, 251L, 252L, 253L,
254L, 255L, 256L, 257L, 258L, 259L, 260L, 261L, 262L, 263L, 264L,
265L, 266L, 267L, 268L, 269L, 270L, 271L, 272L, 273L, 274L, 275L,
276L, 277L, 278L, 279L, 280L, 281L, 282L, 283L, 285L, 286L, 287L,
288L, 289L, 290L, 291L, 292L, 293L, 294L, 295L, 296L, 297L, 298L,
299L, 300L, 301L, 302L, 303L, 304L, 305L, 306L, 307L, 308L, 309L,
310L, 311L, 312L, 313L, 315L, 316L, 317L, 318L, 319L, 320L, 321L,
322L, 323L, 324L, 325L, 326L, 327L, 328L, 329L, 330L, 331L, 332L,
333L, 334L, 335L, 336L, 337L, 338L, 339L, 341L, 344L, 345L, 346L,
347L, 348L, 349L, 350L, 351L, 352L, 353L, 354L, 355L, 356L, 357L,
358L, 359L, 360L, 361L, 362L, 363L, 364L, 365L), class = "data.frame")
and here's my original code
ggplot(foo, aes(x=Date, y=Count))+
geom_line()