I am having an issue with the arulesSequences package in R. I was able to read baskets into the program, and create a data.frame, however it fails to recognize any other items beyond the first column. Below is a sample of my data set, which follows the form demonstrated here: Data Mining Algorithms in R/Sequence Mining/SPADE.
[sequenceID] [eventID] [SIZE] items
2 1 1 OB/Gyn
15 1 1 Internal_Medicine
15 2 1 Internal_Medicine
15 3 1 Internal_Medicine
56 1 2 Internal_Medicine Neurology
84 1 1 Oncology
151 1 2 Hematology Hematology
151 2 1 Hematology/Oncology
151 3 1 Hematology/Oncology
185 1 2 Gastroenterology Gastroenterology
The dataset was exported from SAS as a [.CSV] then converted to a tab-delimited [.TXT] file in Excel. Headers were removed for import into R, but I placed them in brackets above for clarity in this example. All spaces were replaced with an underscore ("_"), and item names were simplified as much as possible. Each item is listed in a separate column. The following command was used to import the file:
baskets <- read_baskets(con = "...filepath/spade.txt", sep = "[ \t]+",info=c("sequenceID", "eventID", "SIZE"))
I am presented with no errors, so I continue with the following command:
as(baskets, "data.frame")
Here, it returns the data.frame as requested, however it fails to capture the items beyond the first column:
items sequenceID eventID SIZE
{OB/Gyn} 2 1 1
{Internal_Medicine} 15 1 1
{Internal_Medicine} 15 2 1
{Internal_Medicine} 15 3 1
{Internal_Medicine} 56 1 2
{Oncology} 84 1 1
{Hematology} 151 1 2
{Hematology/Oncology} 151 2 1
{Hematology/Oncology} 151 3 1
{Gastroenterology} 185 1 2
Line 5 should look like:
{Internal_Medicine, Neurology} 56 1 2
I have tried importing the file directly as a [.CSV], but the data.frame results in a similar format to my above attempt using tabs, except it places a comma in front of the first item:
{,Internal_Medicine} 56 1 2
Any troubleshooting suggestions would be greatly appreciated. It seems like this package is picky when it comes to formatting.
Line 5 should look like:
{Internal_Medicine, Neurology} 56 1 2
Check out
library(arulesSequences)
packageVersion("arulesSequences")
# [1] ‘0.2.16’
packageVersion("arules")
# [1] ‘1.5.0’
txt <- readLines(n=10)
2 1 1 OB/Gyn
15 1 1 Internal_Medicine
15 2 1 Internal_Medicine
15 3 1 Internal_Medicine
56 1 2 Internal_Medicine Neurology
84 1 1 Oncology
151 1 2 Hematology Hematology
151 2 1 Hematology/Oncology
151 3 1 Hematology/Oncology
185 1 2 Gastroenterology Gastroenterology
writeLines(txt, tf<-tempfile())
baskets <- read_baskets(con = tf, sep = "[ \t]+",info=c("sequenceID", "eventID", "SIZE"))
as(baskets, "data.frame")
# items sequenceID eventID SIZE
# 1 {OB/Gyn} 2 1 1
# 2 {Internal_Medicine} 15 1 1
# 3 {Internal_Medicine} 15 2 1
# 4 {Internal_Medicine} 15 3 1
# 5 {Internal_Medicine,Neurology} 56 1 2 # <----------
# 6 {Oncology} 84 1 1
# 7 {Hematology} 151 1 2
# 8 {Hematology/Oncology} 151 2 1
# 9 {Hematology/Oncology} 151 3 1
# 10 {Gastroenterology} 185 1 2
Related
I have a list of RLEs that looks like this:
RleList of length 3
$item1
Lengths: 1 3 1 2 1 5
Values : NA 0 4 13 14 17
$item2
Lengths: 4 1 1 1 1 1 1 1 1 1
Values : 0 18 102 108 131 167 181 48 31 29
$item3
Lengths: 1 3 1 1 1 1 1 1 1 1 1
Values : 0 1 20 56 65 77 106 50 47 44 7
I used it to make a plot that has multiple lines in one plot. I want to find a line of maximum values of the 3 lines and plot that into a new plot. How can I achieve my goal? Do I need to convert the RLE to a vector and then find the max values for each position?
So I found out the solution!
I first turned them into vectors. And then used pmax to find the pairwise max for all of them!
This post helped a lot!
I made a frequency table with two variables in a data frame using this:
table(df$Variable1, df$Variable2)
The output was this:
1 2 3 4 5 D R
1 5000 21 39 2 10 0 112
2 1028 11 18 4 8 1 54
3 1501 6 12 2 3 0 68
4 355 2 4 0 0 0 23
5 421 4 4 0 0 0 49
Then I wanted to find the sum of the first two columns so I did this:
colSums(table(df$Variable1, df$Variable2))
The output was this:
1 2 3 4 5 D R
8305 44 77 8 21 1 306
Is there a way to find the sum of columns 1 and 2 from the colSums output above? What would the code be? Thanks in advance.
I have this two dataframe CDD26_FF (5593 rows) and CDD_HI (5508 rows) having a structure (columns) like below. CDDs are "consecutive dry days", and the two table show species exposure to CDD in far future (FF) and historical period (HI).
I want to focus only on "Biom" and "Species_name" columnes.
As you can see the two table have same "Species_names" and same "Biom" (areas in the world with sama climatic conditions). "Biom" values goes from 0 to 15. By the way, "Species_name" do not always appear in both tables (e.g. Abromoco_ben); Furthemore, the two tables not always have the combinations of "Species_name" and "Biom" (combinations are simply population of the same species belonging to that Biom)
CDD26_FF :
CDD26_FF
AreaCell
Area_total
Biom
Species_name
AreaCellSuAreaTotal
1
1
13
10
Abrocomo_ben
0.076923
1
1
8
1
Abrocomo_cin
0.125000
1
1
30
10
Abrocomo_cin
0.033333
1
2
10
1
Abrothrix_an
0.200000
1
1
44
10
Abrothrix_an
0.022727
1
3
6
2
Abrothrix_je
0.500000
1
1
7
12
Abrothrix_lo
0.142857
CDD_HI
CDD_HI
AreaCell
Area_total
Biom
Species_name
AreaCellSuAreaTot_HI
1
1
8
1
Abrocomo_cin
0.125000
1
5
30
10
Abrocomo_cin
0.166666
1
1
5
2
Abrocomo_cin
0.200000
1
1
10
1
Abrothrix_an
0.100000
1
1
44
10
Abrothrix_an
0.022727
1
6
18
1
Abrothrix_je
0.333333
1
1
23
4
Abrothrix_lo
0.130434
I want to highlight rows that have same matches of "Species_name" and "Biom": in the example they are lines 3, 4, 5 from CDD26_FF matching lines 2, 4, 5 from CDD_HI, respectively. I want to store these line in a new table, but I want to store not only "Species_name" and "Biom" column (as "compare()" function seems to do), but also all the other columns.
More precisely, I want then to calculate the ratio of "AreaCellSuAreaTot" / "AreaCellSuAreaTot_HI" from the highlighted lines.
How can I do that?
Aside from "compare()", I tried a "for" loop, but lengths of the table differ, so I tried with a 3-nested for loop, still without results. I also tried "compareDF()" and "semi_join()". No results untill now. Thank you for your help.
You could use an inner join (provided by dplyr). An inner join returns all datasets that are present in both tables/data.frames and with matching conditions (in this case: matching "Biom" and "Species_name").
Subsequently it's easy to calculate some ratio using mutate:
library(dplyr)
cdd26_f %>%
inner_join(cdd_hi, by=c("Biom", "Species_name")) %>%
mutate(ratio = AreaCellSuAreaTotal/AreaCellSuAreaTot_HI) %>%
select(Biom, Species_name, ratio)
returns
# A tibble: 4 x 3
Biom Species_name ratio
<dbl> <chr> <dbl>
1 1 Abrocomo_cin 1
2 10 Abrocomo_cin 0.200
3 1 Abrothrix_an 2
4 10 Abrothrix_an 1
Note: Remove the select-part, if you need all columns or manipulate it for other columns.
Data
cdd26_f <- readr::read_table2("CDD26_FF AreaCell Area_total Biom Species_name AreaCellSuAreaTotal
1 1 13 10 Abrocomo_ben 0.076923
1 1 8 1 Abrocomo_cin 0.125000
1 1 30 10 Abrocomo_cin 0.033333
1 2 10 1 Abrothrix_an 0.200000
1 1 44 10 Abrothrix_an 0.022727
1 3 6 2 Abrothrix_je 0.500000
1 1 7 12 Abrothrix_lo 0.142857")
cdd_hi <- readr::read_table2("CDD_HI AreaCell Area_total Biom Species_name AreaCellSuAreaTot_HI
1 1 8 1 Abrocomo_cin 0.125000
1 5 30 10 Abrocomo_cin 0.166666
1 1 5 2 Abrocomo_cin 0.200000
1 1 10 1 Abrothrix_an 0.100000
1 1 44 10 Abrothrix_an 0.022727
1 6 18 1 Abrothrix_je 0.333333
1 1 23 4 Abrothrix_lo 0.130434")
I have a dataset that looks like
A T Value into T A Value
1 1 32 1 1 32
1 2 33 1 2 55
1 3 34 1 3 96
2 1 55 2 1 33
2 2 56 2 2 56
2 3 57 2 3 97
3 1 96 3 1 34
3 2 97 3 2 57
3 3 98 3 3 98
and i want to use reshape (in R) to reshape this object on the left so that the T index comes in the first column and the A index in the second column to get the object on the right. I dont have the melt or cast functions.
Let df be your data.frame.
df <- df[order(df$T, df$A), c("T", "A", "Value")]
This can be found out easily by googling next time.
Looks like you just want to sort rows and move columns. If this is your sample input
tt<-read.table(text="A T Value
1 1 32
1 2 33
1 3 34
2 1 55
2 2 56
2 3 57
3 1 96
3 2 97
3 3 98", header=T)
you can do
tt[order(tt$T, tt$A), c("T","A","Value")]
I have an R script that allows me to select a sample size and take fifty individual random samples with replacement. Below is an example of this code:
## Creates data frame
df = as.data.table(data)
## Select sample size
sample.size = 5
## Creates Sample 1 (Size 5)
Sample.1<-df[,
Dollars[sample(.N, size=sample.size, replace=TRUE)], by = Num]
Sample.1$Sample <- c("01")
According to the R script above, I first created a data frame. I then select my sample size, which in this case is 5. This represents just one sample. Due to my lack of experience with R, I repeat this code 49 more times. The last piece of code looks like this:
## Creates Sample 50 (Size 5)
Sample.50<-df[,
Dollars[sample(.N, size=sample.size, replace=TRUE)], by = Num]
Sample.50$Sample <- c("50")
The sample output would look something like this (Sample Range 1 - 50):
Num Dollars Sample
1 85000 01
1 4900 01
1 18000 01
1 6900 01
1 11000 01
1 8800 50
1 3800 50
1 10400 50
1 2200 50
1 29000 50
It should be noted that varaible 'Num' was created for grouping purposes and has little to no influence on my overall question (which is posted below).
Instead of repeating this code fifty times, to get me fifty individual samples (with a size of 5), is there a loop I can create to help me limit my code? I have been recently asked to create ten thousand random samples, each of a size of 5. I obviously cannot repeat this code ten thousand times so I need some sort of loop.
A sample of my final output should look something like this (Sample Range 1 - 10,000):
Num Dollars Sample
1 85000 01
1 4900 01
1 18000 01
1 6900 01
1 11000 01
1 9900 10000
1 8300 10000
1 10700 10000
1 6800 10000
1 31000 10000
Thank you all in advance for your help, its greatly appreciated.
Here is some sample code if needed:
Num Dollars
1 31002
1 13728
1 23526
1 80068
1 86244
1 9330
1 27169
1 13694
1 4781
1 9742
1 20060
1 35230
1 15546
1 7618
1 21604
1 8738
1 5299
1 12081
1 7652
1 16779
A very simple method would be to use a for loop and store the results in a list:
lst <- list()
for(i in seq_len(3)){
lst[[i]] <- df[sample(seq_len(nrow(df)), 5, replace = TRUE),]
lst[[i]]["Sample"] <- i
}
> lst
[[1]]
Num Dollars Sample
20 1 16779 1
1 1 31002 1
12 1 35230 1
14 1 7618 1
14.1 1 7618 1
[[2]]
Num Dollars Sample
9 1 4781 2
13 1 15546 2
12 1 35230 2
17 1 5299 2
12.1 1 35230 2
[[3]]
Num Dollars Sample
1 1 31002 3
7 1 27169 3
17 1 5299 3
5 1 86244 3
6 1 9330 3
Then, to create a single data.frame, use do.call to rbind the list elements together:
do.call(rbind, lst)
Num Dollars Sample
20 1 16779 1
1 1 31002 1
12 1 35230 1
14 1 7618 1
14.1 1 7618 1
9 1 4781 2
13 1 15546 2
121 1 35230 2
17 1 5299 2
12.1 1 35230 2
11 1 31002 3
7 1 27169 3
171 1 5299 3
5 1 86244 3
6 1 9330 3
It's worth noting that if you're sampling with replacement, then drawing 50 (or 10,000) samples of size 5 is equivalent to drawing one sample of size 250 (or 50,000). Thus I would do it like this (you'll see I stole a line from #beginneR's answer):
df = as.data.table(data)
## Select sample size
sample.size = 5
n.samples = 10000
# Sample and assign groups
draws <- df[sample(seq_len(nrow(df)), sample.size * n.samples, replace = TRUE), ]
draws[, Sample := rep(1:n.samples, each = sample.size)]