How to see Bayesian computations as clean matrices in R - r

Given the clarity needed to understand how R can help doing Bayesian computations, in what follows, I will be asking R coding questions in this regard.
some necessary details:
Suppose, I have an object called mu, defined as:
mu <- rnorm( 1e4 , 178 , 20 ) ## A vector of hypothesized values
The object mu is going to serve as the mean argument of the next object called y.given.mu:
y.given.mu <- rnorm( 1e4 , mu , 1 ) ## A vector of normal densities conditional on `mu`
Question
I was wondering how I could:
A) cleanly see the matrix structure of y.given.mu?
B) multiply object mu by y.given.mu and cleanly see the matrix structure of the product of these two objects (i.e., joint distribution)
C) integrate out mu from B) so that I get p(y)?

As we discussed, we move all follow-up questions of your previous question What does it mean to put an `rnorm` as an argument of another `rnorm` in R? into another thread.
A reasonably sufficient grid
delta.mu <- 0.5 # this affects numerical integration precision
mu <- seq(178 - 3 * 20, 178 + 3 * 20, by = delta.mu)
delta.y <- 1 # this does not affect precision, by only plotting
y <- seq(min(mu) - 3, max(mu) + 3, by = delta.y)
# the range above is chosen using 3-sigma rule of normal distribution.
# normal distribution has near 0 density outside (3 * sd) range of its mean
Conditional density p(y | mu)
cond <- outer(y, mu, dnorm)
dimnames(cond) <- list(y = y, mu = mu)
# each column is a conditional density, conditioned on some `mu`
# you can view them by for example `plot(y, cond[, 1]), type = "l")
# you can view all of them by `matplot(y, cond, type = "l", lty = 2)`
Joint density p(y, mu)
# marginal of `mu`
p.mu <- dnorm(mu, 178, 20)
# multiply `p.mu` to `cond` column by column (i.e., column scaling)
joint <- cond * rep(p.mu, each = length(y))
Marginal density p(y)
# numerical integration by Simpson / Trapezoidal Rule
p.y <- rowSums(joint * delta.mu)
Now let's plot and check
plot(y, p.y, type = "l")

Related

get the derivative of an ECDF

Is it possible to differentiate an ECDF? Take the one obtained in the following for example example.
set.seed(1)
a <- sort(rnorm(100))
b <- ecdf(a)
plot(b)
I would like to take the derivative of b in order to obtain its probability density function (PDF).
n <- length(a) ## `a` must be sorted in non-decreasing order already
plot(a, 1:n / n, type = "s") ## "staircase" plot; not "line" plot
However I'm looking to find the derivative of b
In samples-based statistics, estimated density (for a continuous random variable) is not obtained from ECDF by differentiation, because the sample size is finite and and ECDF is not differentiable. Instead, we estimate the density directly. I guess plot(density(a)) is what you are really looking for.
a few days later..
Warning: the following is just a numerical solution without statistical ground!
I take it as an exercise to learn about R package scam for shape constrained additive models, a child package of mgcv by Prof Wood's early PhD student Dr Pya.
The logic is as such:
using scam::scam, fit a monotonically increasing P-spline to ECDF (you have to specify how many knots you want); [Note that monotonicity is not the only theoretical constraint. It is required that the smoothed ECDF are "clipped" on its two edges: the left edge at 0 and the right edge at 1. I am currently using weights to impose such constraint, by giving very large weight at two edges]
using stats::splinefun, reparametrize the fitted spline with a monotonic interpolation spline through knots and predicted values at knots;
return the interpolation spline function, which can also evaluate the 1st, 2nd and 3rd derivatives.
Why I expect this to work:
As sample size grows,
ECDF converges to CDF;
P-spline is consistent so a smoothed ECDF will be increasingly unbiased for ECDF;
the 1st derivative of smoothed ECDF will be increasingly unbiased for PDF.
Use with caution:
You have to choose number of knots yourself;
the derivative is NOT normalized so that the area under the curve is 1;
the result can be rather unstable, and is only good for large sample size.
function arguments:
x: a vector of samples;
n.knots: number of knots;
n.cells: number of grid points when plotting derivative function
You need to install scam package from CRAN.
library(scam)
test <- function (x, n.knots, n.cells) {
## get ECDF
n <- length(x)
x <- sort(x)
y <- 1:n / n
dat <- data.frame(x = x, y = y) ## make sure `scam` can find `x` and `y`
## fit a monotonically increasing P-spline for ECDF
fit <- scam::scam(y ~ s(x, bs = "mpi", k = n.knots), data = dat,
weights = c(n, rep(1, n - 2), 10 * n))
## interior knots
xk <- with(fit$smooth[[1]], knots[4:(length(knots) - 3)])
## spline values at interior knots
yk <- predict(fit, newdata = data.frame(x = xk))
## reparametrization into a monotone interpolation spline
f <- stats::splinefun(xk, yk, "hyman")
par(mfrow = c(1, 2))
plot(x, y, pch = 19, col = "gray") ## ECDF
lines(x, f(x), type = "l") ## smoothed ECDF
title(paste0("number of knots: ", n.knots,
"\neffective degree of freedom: ", round(sum(fit$edf), 2)),
cex.main = 0.8)
xg <- seq(min(x), max(x), length = n.cells)
plot(xg, f(xg, 1), type = "l") ## density estimated by scam
lines(stats::density(x), col = 2) ## a proper density estimate by density
## return smooth ECDF function
f
}
## try large sample size
set.seed(1)
x <- rnorm(1000)
f <- test(x, n.knots = 20, n.cells = 100)
f is a function as returned by stats::splinefun (read ?splinefun).
A naive, similar solution is to do interpolation spline on ECDF without smoothing. But this is a very bad idea, as we have no consistency.
g <- splinefun(sort(x), 1:length(x) / length(x), method = "hyman")
curve(g(x, deriv = 1), from = -3, to = 3)
A reminder: it is highly recommended to use stats::density for a direct density estimation.

Confidence interval of polynomial regression

I have a little issue with R and statistics.
I fitted a model with the Maximum Likelihood method, who gave me the following coefficients with their respective Standard Errors (among other parameters estimates):
ParamIndex Estimate SE
1 a0 0.2135187 0.02990105
2 a1 1.1343072 0.26123775
3 a2 -1.0000000 0.25552696
From what I can draw my curve:
y= 0.2135187 + 1.1343072 * x - 1 * I(x^2)
But from that, I have now to calculate the confidence interval around this curve, and I don't have a clear idea how to do that.
Apparently, I should use the propagation or error/uncertainty, but the methods I found require the raw data, or more than just the polynomial formula.
Is there any method to calculate the CI of my curve when the SE of the estimates are known with R?
Thank you for your help.
Edit:
So, right now, I have the covariance table (v) obtain with the function vcov:
a0 a1 a2
a0 0.000894073 -0.003622614 0.002874075
a1 -0.003622614 0.068245163 -0.065114661
a2 0.002874075 -0.065114661 0.065294027
and n = 279.
You don't have enough information right now. To compute confidence interval of your fitted curve, a complete variance-covariance matrix for your three coefficients is required, but right now you only have diagonal entries of that matrix.
If you have fitted an orthogonal polynomial, then variance-covariance matrix is diagonal, with identical diagonal elements. This is certainly not your case, as:
standard errors you show are different from each other;
you have explicitly used raw polynomial notation: x + I(x ^ 2)
but the methods I found require the raw data
It's not "raw data" used for fitting the model. It is "new data" where you want to produce the confidence band. However, you do need to know the number of data used for fitting the model, say n, as that is necessary to derive residual degree of freedom. In your case with 3 coefficients, this degree of freedom is n - 3.
Once you have:
the full variance-covariance matrix, let's say V;
n, the number of data used for model fitting;
a vector of points x giving where to produce confidence band,
you can first get prediction standard error from:
X <- cbind(1, x, x ^ 2) ## prediction matrix
e <- sqrt( rowSums(X * (X %*% V)) ) ## prediction standard error
You know how to get predicted mean, from your fitted polynomial formula, right? Suppose the mean is mu, now for 95%-CI, use
## residual degree of freedom: n - 3
mu + e * qt(0.025, n - 3) ## lower bound
mu - e * qt(0.025, n - 3) ## upper bound
A complete theory is at How does predict.lm() compute confidence interval and prediction interval?
Update
Based on your provided covariance matrix, it is now possible to produce some result and figures.
V <- structure(c(0.000894073, -0.003622614, 0.002874075, -0.003622614,
0.068245163, -0.065114661, 0.002874075, -0.065114661, 0.065294027
), .Dim = c(3L, 3L), .Dimnames = list(c("a0", "a1", "a2"), c("a0",
"a1", "a2")))
Suppose we want to produce CI at x = seq(-5, 5, by = 0.2):
beta <- c(0.2135187, 1.1343072, -1.0000000)
x <- seq(-5, 5, by = 0.2)
X <- cbind(1, x, x ^ 2)
mu <- X %*% beta
e <- sqrt( rowSums(X * (X %*% V)) )
n <- 279
lo <- mu + e * qt(0.025, n - 3)
up <- mu - e * qt(0.025, n - 3)
matplot(x, cbind(mu, lo, up), type = "l", col = 1, lty = c(1,2,2))

How to find interval prbability for a given distribution?

Suppose I have some data and I fit them to a gamma distribution, how to find the interval probability for Pr(1 < x <= 1.5), where x is an out-of-sample data point?
require(fitdistrplus)
a <- c(2.44121289,1.70292449,0.30550832,0.04332383,1.0553436,0.26912546,0.43590885,0.84514809,
0.36762336,0.94935435,1.30887437,1.08761895,0.66581035,0.83108270,1.7567334,1.00241339,
0.96263021,1.67488277,0.87400413,0.34639636,1.16804671,1.4182144,1.7378907,1.7462686,
1.7427784,0.8377457,0.1428738,0.71473956,0.8458882,0.2140742,0.9663167,0.7933085,
0.0475603,1.8657773,0.18307362,1.13519144)
fit <- fitdist(a, "gamma",lower = c(0, 0))
Someone does not like my above approach, which is conditional on MLE; now let's see something unconditional. If we take direct integration, we need a triple integration: one for shape, one for rate and finally one for x. This is not appealing. I will just produce Monte Carlo estimate instead.
Under Central Limit Theorem, MLE are normally distributed. fitdistrplus::fitdist does not give standard error, but we can use MASS::fitdistr which would performs exact inference here.
fit <- fitdistr(a, "gamma", lower = c(0,0))
b <- fit$estimate
# shape rate
#1.739737 1.816134
V <- fit$vcov ## covariance
shape rate
shape 0.1423679 0.1486193
rate 0.1486193 0.2078086
Now we would like to sample from parameter distribution and get samples of target probability.
set.seed(0)
## sample from bivariate normal with mean `b` and covariance `V`
## Cholesky method is used here
X <- matrix(rnorm(1000 * 2), 1000) ## 1000 `N(0, 1)` normal samples
R <- chol(V) ## upper triangular Cholesky factor of `V`
X <- X %*% R ## transform X under desired covariance
X <- X + b ## shift to desired mean
## you can use `cov(X)` to check it is very close to `V`
## now samples for `Pr(1 < x < 1.5)`
p <- pgamma(1.5, X[,1], X[,2]) - pgamma(1, X[,1], X[,2])
We can make a histogram of p (and maybe do a density estimation if you want):
hist(p, prob = TRUE)
Now, we often want sample mean for predictor:
mean(p)
# [1] 0.1906975
Here goes an example that uses MCMC techniques and a Bayesian mode of inference to estimate the posterior probability that a new observation falls in the interval (1:1.5). This is an unconditional estimate, as opposed to the conditional estimate obtained by integrating the gamma-distribution with maximum-likelihood parameter estimates.
This code requires that JAGS be installed on your computer (free and easy to install).
library(rjags)
a <- c(2.44121289,1.70292449,0.30550832,0.04332383,1.0553436,0.26912546,0.43590885,0.84514809,
0.36762336,0.94935435,1.30887437,1.08761895,0.66581035,0.83108270,1.7567334,1.00241339,
0.96263021,1.67488277,0.87400413,0.34639636,1.16804671,1.4182144,1.7378907,1.7462686,
1.7427784,0.8377457,0.1428738,0.71473956,0.8458882,0.2140742,0.9663167,0.7933085,
0.0475603,1.8657773,0.18307362,1.13519144)
# Specify the model in JAGS language using diffuse priors for shape and scale
sink("GammaModel.txt")
cat("model{
# Priors
shape ~ dgamma(.001,.001)
rate ~ dgamma(.001,.001)
# Model structure
for(i in 1:n){
a[i] ~ dgamma(shape, rate)
}
}
", fill=TRUE)
sink()
jags.data <- list(a=a, n=length(a))
# Give overdispersed initial values (not important for this simple model, but very important if running complicated models where you need to check convergence by monitoring multiple chains)
inits <- function(){list(shape=runif(1,0,10), rate=runif(1,0,10))}
# Specify which parameters to monitor
params <- c("shape", "rate")
# Set-up for MCMC run
nc <- 1 # number of chains
n.adapt <-1000 # number of adaptation steps
n.burn <- 1000 # number of burn-in steps
n.iter <- 500000 # number of posterior samples
thin <- 10 # thinning of posterior samples
# Running the model
gamma_mod <- jags.model('GammaModel.txt', data = jags.data, inits=inits, n.chains=nc, n.adapt=n.adapt)
update(gamma_mod, n.burn)
gamma_samples <- coda.samples(gamma_mod,params,n.iter=n.iter, thin=thin)
# Summarize the result
summary(gamma_samples)
# Compute improper (non-normalized) probability distribution for x
x <- rep(NA, 50000)
for(i in 1:50000){
x[i] <- rgamma(1, gamma_samples[[1]][i,1], rate = gamma_samples[[1]][i,2])
}
# Find which values of x fall in the desired range and normalize.
length(which(x>1 & x < 1.5))/length(x)
Answer:
Pr(1 < x <= 1.5) = 0.194
So pretty close to the conditional estimate, but this is not guaranteed to generally be the case.
You can just use pgamma with estimated parameters in fit.
b <- fit$estimate
# shape rate
#1.739679 1.815995
pgamma(1.5, b[1], b[2]) - pgamma(1, b[1], b[2])
# [1] 0.1896032
Thanks. But how about P(x > 2)?
Check out the lower.tail argument:
pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)
By default, pgamma(q) evaluates Pr(x <= q). Setting lower.tail = FALSE gives Pr(x > q). So you can do:
pgamma(2, b[1], b[2], lower.tail = FALSE)
# [1] 0.08935687
Or you can also use
1 - pgamma(2, b[1], b[2])
# [1] 0.08935687

Plotting classification decision boundary line based on perceptron coefficients

This is practically a repeat of this question. However, I want to ask a very specific question regarding plotting of the decision boundary line based on the perceptron coefficients I got with a rudimentary "manual" coding experiment. As you can see the coefficients extracted from a logistic regression result in a nice decision boundary line:
based on the glm() results:
(Intercept) test1 test2
1.718449 4.012903 3.743903
The coefficients on the perceptron experiment are radically different:
bias test1 test2
9.131054 19.095881 20.736352
To facilitate an answer, here is the data, and here is the code:
# DATA PRE-PROCESSING:
dat = read.csv("perceptron.txt", header=F)
dat[,1:2] = apply(dat[,1:2], MARGIN = 2, FUN = function(x) scale(x)) # scaling the data
data = data.frame(rep(1,nrow(dat)), dat) # introducing the "bias" column
colnames(data) = c("bias","test1","test2","y")
data$y[data$y==0] = -1 # Turning 0/1 dependent variable into -1/1.
data = as.matrix(data) # Turning data.frame into matrix to avoid mmult problems.
# PERCEPTRON:
set.seed(62416)
no.iter = 1000 # Number of loops
theta = rnorm(ncol(data) - 1) # Starting a random vector of coefficients.
theta = theta/sqrt(sum(theta^2)) # Normalizing the vector.
h = theta %*% t(data[,1:3]) # Performing the first f(theta^T X)
for (i in 1:no.iter){ # We will recalculate 1,000 times
for (j in 1:nrow(data)){ # Each time we go through each example.
if(h[j] * data[j, 4] < 0){ # If the hypothesis disagrees with the sign of y,
theta = theta + (sign(data[j,4]) * data[j, 1:3]) # We + or - the example from theta.
}
else
theta = theta # Else we let it be.
}
h = theta %*% t(data[,1:3]) # Calculating h() after iteration.
}
theta # Final coefficients
mean(sign(h) == data[,4]) # Accuracy
QUESTION: How to plot the boundary line (as I did above using the logistic regression coefficients) if we only have the perceptron coefficients?
Well... It turns out that it is exactly the same as in the case of logistic regression, and despite the widely different coefficients: pick the minimum and maximum of the abscissa (test 1), add a slight margin, and calculate the corresponding test 2 values at the decision boundary (when 0 = theta_o + theta_1 test1 + theta_2 test2), and draw the line between the points:
palette(c("tan3","purple4"))
plot(test2 ~ test1, col = as.factor(y), pch = 20, data=data,
main="College admissions")
(x = c(min(data[,2])-.2, max(data[,2])+ .2))
(y = c((-1/theta[3]) * (theta[2] * x + theta[1])))
lines(x, y, lwd=3, col=rgb(.7,0,.2,.5))
Perceptron weights are calculated so that when theta^T X > 0, it classifies as positive, and when theta^T X < 0 it classifies as negative. This means the equation theta^T X is your decision boundary for the perceptron.
The same logic applies to logistic regression except its now sigmoid(theta^T X) > 0.5.

Exponential curve fitting in R

time = 1:100
head(y)
0.07841589 0.07686316 0.07534116 0.07384931 0.07238699 0.07095363
plot(time,y)
This is an exponential curve.
How can I fit line on this curve without knowing the formula ? I can't use 'nls' as the formula is unknown (only data points are given).
How can I get the equation for this curve and determine the constants in the equation?
I tried loess but it doesn't give the intercepts.
You need a model to fit to the data.
Without knowing the full details of your model, let's say that this is an
exponential growth model,
which one could write as: y = a * e r*t
Where y is your measured variable, t is the time at which it was measured,
a is the value of y when t = 0 and r is the growth constant.
We want to estimate a and r.
This is a non-linear problem because we want to estimate the exponent, r.
However, in this case we can use some algebra and transform it into a linear equation by taking the log on both sides and solving (remember
logarithmic rules), resulting in:
log(y) = log(a) + r * t
We can visualise this with an example, by generating a curve from our model, assuming some values for a and r:
t <- 1:100 # these are your time points
a <- 10 # assume the size at t = 0 is 10
r <- 0.1 # assume a growth constant
y <- a*exp(r*t) # generate some y observations from our exponential model
# visualise
par(mfrow = c(1, 2))
plot(t, y) # on the original scale
plot(t, log(y)) # taking the log(y)
So, for this case, we could explore two possibilies:
Fit our non-linear model to the original data (for example using nls() function)
Fit our "linearised" model to the log-transformed data (for example using the lm() function)
Which option to choose (and there's more options), depends on what we think
(or assume) is the data-generating process behind our data.
Let's illustrate with some simulations that include added noise (sampled from
a normal distribution), to mimic real data. Please look at this
StackExchange post
for the reasoning behind this simulation (pointed out by Alejo Bernardin's comment).
set.seed(12) # for reproducible results
# errors constant across time - additive
y_add <- a*exp(r*t) + rnorm(length(t), sd = 5000) # or: rnorm(length(t), mean = a*exp(r*t), sd = 5000)
# errors grow as y grows - multiplicative (constant on the log-scale)
y_mult <- a*exp(r*t + rnorm(length(t), sd = 1)) # or: rlnorm(length(t), mean = log(a) + r*t, sd = 1)
# visualise
par(mfrow = c(1, 2))
plot(t, y_add, main = "additive error")
lines(t, a*exp(t*r), col = "red")
plot(t, y_mult, main = "multiplicative error")
lines(t, a*exp(t*r), col = "red")
For the additive model, we could use nls(), because the error is constant across
t. When using nls() we need to specify some starting values for the optimization algorithm (try to "guesstimate" what these are, because nls() often struggles to converge on a solution).
add_nls <- nls(y_add ~ a*exp(r*t),
start = list(a = 0.5, r = 0.2))
coef(add_nls)
# a r
# 11.30876845 0.09867135
Using the coef() function we can get the estimates for the two parameters.
This gives us OK estimates, close to what we simulated (a = 10 and r = 0.1).
You could see that the error variance is reasonably constant across the range of the data, by plotting the residuals of the model:
plot(t, resid(add_nls))
abline(h = 0, lty = 2)
For the multiplicative error case (our y_mult simulated values), we should use lm() on log-transformed data, because
the error is constant on that scale instead.
mult_lm <- lm(log(y_mult) ~ t)
coef(mult_lm)
# (Intercept) t
# 2.39448488 0.09837215
To interpret this output, remember again that our linearised model is log(y) = log(a) + r*t, which is equivalent to a linear model of the form Y = β0 + β1 * X, where β0 is our intercept and β1 our slope.
Therefore, in this output (Intercept) is equivalent to log(a) of our model and t is the coefficient for the time variable, so equivalent to our r.
To meaningfully interpret the (Intercept) we can take its exponential (exp(2.39448488)), giving us ~10.96, which is quite close to our simulated value.
It's worth noting what would happen if we'd fit data where the error is multiplicative
using the nls function instead:
mult_nls <- nls(y_mult ~ a*exp(r*t), start = list(a = 0.5, r = 0.2))
coef(mult_nls)
# a r
# 281.06913343 0.06955642
Now we over-estimate a and under-estimate r
(Mario Reutter
highlighted this in his comment). We can visualise the consequence of using the wrong approach to fit our model:
# get the model's coefficients
lm_coef <- coef(mult_lm)
nls_coef <- coef(mult_nls)
# make the plot
plot(t, y_mult)
lines(t, a*exp(r*t), col = "brown", lwd = 5)
lines(t, exp(lm_coef[1])*exp(lm_coef[2]*t), col = "dodgerblue", lwd = 2)
lines(t, nls_coef[1]*exp(nls_coef[2]*t), col = "orange2", lwd = 2)
legend("topleft", col = c("brown", "dodgerblue", "orange2"),
legend = c("known model", "nls fit", "lm fit"), lwd = 3)
We can see how the lm() fit to log-transformed data was substantially better than the nls() fit on the original data.
You can again plot the residuals of this model, to see that the variance is not constant across the range of the data (we can also see this in the graphs above, where the spread of the data increases for higher values of t):
plot(t, resid(mult_nls))
abline(h = 0, lty = 2)
Unfortunately taking the logarithm and fitting a linear model is not optimal.
The reason is that the errors for large y-values weight much more than those
for small y-values when apply the exponential function to go back to the
original model.
Here is one example:
f <- function(x){exp(0.3*x+5)}
squaredError <- function(a,b,x,y) {sum((exp(a*x+b)-f(x))^2)}
x <- 0:12
y <- f(x) * ( 1 + sample(-300:300,length(x),replace=TRUE)/10000 )
x
y
#--------------------------------------------------------------------
M <- lm(log(y)~x)
a <- unlist(M[1])[2]
b <- unlist(M[1])[1]
print(c(a,b))
squaredError(a,b,x,y)
approxPartAbl_a <- (squaredError(a+1e-8,b,x,y) - squaredError(a,b,x,y))/1e-8
for ( i in 0:10 )
{
eps <- -i*sign(approxPartAbl_a)*1e-5
print(c(eps,squaredError(a+eps,b,x,y)))
}
Result:
> f <- function(x){exp(0.3*x+5)}
> squaredError <- function(a,b,x,y) {sum((exp(a*x+b)-f(x))^2)}
> x <- 0:12
> y <- f(x) * ( 1 + sample(-300:300,length(x),replace=TRUE)/10000 )
> x
[1] 0 1 2 3 4 5 6 7 8 9 10 11 12
> y
[1] 151.2182 203.4020 278.3769 366.8992 503.5895 682.4353 880.1597 1186.5158 1630.9129 2238.1607 3035.8076 4094.6925 5559.3036
> #--------------------------------------------------------------------
>
> M <- lm(log(y)~x)
> a <- unlist(M[1])[2]
> b <- unlist(M[1])[1]
> print(c(a,b))
coefficients.x coefficients.(Intercept)
0.2995808 5.0135529
> squaredError(a,b,x,y)
[1] 5409.752
> approxPartAbl_a <- (squaredError(a+1e-8,b,x,y) - squaredError(a,b,x,y))/1e-8
> for ( i in 0:10 )
+ {
+ eps <- -i*sign(approxPartAbl_a)*1e-5
+ print(c(eps,squaredError(a+eps,b,x,y)))
+ }
[1] 0.000 5409.752
[1] -0.00001 5282.91927
[1] -0.00002 5157.68422
[1] -0.00003 5034.04589
[1] -0.00004 4912.00375
[1] -0.00005 4791.55728
[1] -0.00006 4672.70592
[1] -0.00007 4555.44917
[1] -0.00008 4439.78647
[1] -0.00009 4325.71730
[1] -0.0001 4213.2411
>
Perhaps one can try some numeric method, i.e. gradient search, to find the
minimum of the squared error function.
If it really is exponential, you can try taking the logarithm of your variable and fitting a linear model to that.

Resources