Scheduler called asyncronously RTOS and time measuring - asynchronous

In order to shorten follow up latency I am forcing task scheduler to run form ISR. By doing so I found that those tasks that are blocked are sooner woken up. That is because scheduler tick counter was incremented not only by tick timer but form ISR as well.
Is there any other method to block task for exact amount of time even though scheduler is being called asynchronously without relaying on other hardware such as timers?

Related

Firebase-Queue Graceful Shutdown on GCE

This is a design question about the handling of tasks during the shutdown of a firebase-queue based app running on Google Compute Engine.
The use case I am working with is automatically scaling queue-workers depending on the load at any given time. Specific to our project is the fact that our tasks are long-running.
In an ideal world, the queue worker would have an opportunity to finish its current tasks before the virtual machine running the worker is terminated. We are working with Google Compute Engine / instance groups to handle the scaling of our queue worker app. Firebase-queue does provide a promise based method to shutdown a queue worker (i.e. queue.shutdown()). This will stop the worker from accepting new tasks and will allow running tasks to finish prior to resolving the promise.
The problem I am facing is how to allow the queue worker to shutdown gracefully prior to instance termination (this problem would also occur during a rolling update). One way is to trigger the worker shutdown and have the worker trigger instance shutdown, but this does not seem like the best design because control is taken away from whatever service is triggering the scale down in the first place.
GCE does provide a service which will run a shutdown script prior to instance termination, however, it will forcefully shutdown an instance after about 90 seconds, which does not work for us.
I am interested in design ideas / patterns to follow here. Any help is much appreciated.

Background vs. Foreground threads in .NET Core

I'm trying to write a daemon app using .NET Core (whether I also use ASP.NET Core is still TBD), and I intend to run this app on linux. The daemon process will essentially be a chron job, and my plan is to implement it as a Task that contains an infinite while loop, and in each iteration it does await Task.Delay(...) to "sleep" between intervals. I'm aware that I can also use a Timer or similar, but in my case each iteration can take a long time, and the duration is quite variable, so rather than run on a strictly fixed cadence, I'd prefer to run on a variable schedule such that the time between iterations is fixed.
Anyway, I don't think that's relevant to the question. The real question is: how can I implement a graceful shutdown of this daemon thread, such that it only shuts down in between iterations while awaiting the delay? One idea was to make the thread a foreground thread and handle cancellations at the delay step, I'm not sure how to do that (or even if that's a thing on linux - I read somewhere that bg/fg threads are a Windows concept).
Sample code would be a plus.

How does async task interrupt main thread (from itself - the main one)?

I can't seem to find this specific implementation detail, or even a pointer to where in an OS book to find this.
Basically, main thread calls an async task (to be run later) on itself. So... when does it run?
Does it wait for the run loop to finish? Or does it just randomly interrupt the run-loop in the middle of any function?
I understand the registers will be the same (unless separate thread), but not really the instruction pointer and what happens to the stack, if anything does happen.
Thank you
In C# the task is scheduled to be run on the current SynchronizationContext. The context basically has a queue of tasks which it schedules to run on the threads it is associated with, in a GUI app there is only one thread so the task is scheduled to run there.
The GUI thread is not interrupted but it executes the task when it finishes all other tasks preceding it in the queue.
The threads of a process all share the same address space, not the same CPU registers. The thread scheduling is done depends on the programming language and the O/S. Usually there are explicit scheduling points, such as returning from a system call, blocking awaiting I/O completion, or between p-code instructions for interpreted languages. Some O/S implemtations reschedule depending on how long a thread has run for time-based scheduling. Often languages include a function that explicitly offers the CPU to any other thread or process by transferring control to the process or thread scheduler component of the O/S.
The act of switching from one thread or process to another is known as a context switch and is carefully tuned code because this is often done thousands of times per second. This can make the code difficult to follow.
The best explanation of this I've ever seen is http://www.amazon.com/The-Design-UNIX-Operating-System/dp/0132017997 classic.

Cooperative Multitasking system

I'm trying to get around the concept of cooperative multitasking system and exactly how it works in a single threaded application.
My understanding is that this is a "form of multitasking in which multiple tasks execute by voluntarily ceding control to other tasks at programmer-defined points within each task."
So if you have a list of tasks and one task is executing, how do you determine to pass execution to another task? And when you give execution back to a previous task, how do resume from where you were previously?
I find this a bit confusing because I don't understand how this can be achieve without a multithreaded application.
Any advice would be very helpeful :)
Thanks
In your specific scenario where a single process (or thread of execution) uses cooperative multitasking, you can use something like Windows' fibers or POSIX setcontext family of functions. I will use the term fiber here.
Basically when one fiber is finished executing a chunk of work and wants to voluntarily allow other fibers to run (hence the "cooperative" term), it either manually switches to the other fiber's context or more typically it performs some kind of yield() or scheduler() call that jumps into the scheduler's context, then the scheduler finds a new fiber to run and switches to that fiber's context.
What do we mean by context here? Basically the stack and registers. There is nothing magic about the stack, it's just a block of memory the stack pointer happens to point to. There is also nothing magic about the program counter, it just points to the next instruction to execute. Switching contexts simply saves the current registers somewhere, changes the stack pointer to a different chunk of memory, updates the program counter to a different stream of instructions, copies that context's saved registers into the CPU, then does a jump. Bam, you're now executing different instructions with a different stack. Often the context switch code is written in assembly that is invoked in a way that doesn't modify the current stack or it backs out the changes, in either case it leaves no traces on the stack or in registers so when code resumes execution it has no idea anything happened. (Again, the theme: we assume that method calls fiddle with registers, push arguments to the stack, move the stack pointer, etc but that is just the C calling convention. Nothing requires you to maintain a stack at all or to have any particular method call leave any traces of itself on the stack).
Since each stack is separate, you don't have some continuous chain of seemingly random method calls eventually overflowing the stack (which might be the result if you naively tried to implement this scheme using standard C methods that continuously called each other). You could implement this manually with a state machine where each fiber kept a state machine of where it was in its work, periodically returning to the calling dispatcher's method, but why bother when actual fiber/co-routine support is widely available?
Also remember that cooperative multitasking is orthogonal to processes, protected memory, address spaces, etc. Witness Mac OS 9 or Windows 3.x. They supported the idea of separate processes. But when you yielded, the context was changed to the OS context, allowing the OS scheduler to run, which then potentially selected another process to switch to. In theory you could have a full protected virtual memory OS that still used cooperative multitasking. In those systems, if a errant process never yielded, the OS scheduler never ran, so all other processes in the system were frozen. **
The next natural question is what makes something pre-emptive... The answer is that the OS schedules an interrupt timer with the CPU to stop the currently executing task and switch back to the OS scheduler's context regardless of whether the current task cares to release the CPU or not, thus "pre-empting" it.
If the OS uses CPU privilege levels, the (kernel configured) timer is not cancelable by lower level (user mode) code, though in theory if the OS didn't use such protections an errant task could mask off or cancel the interrupt timer and hijack the CPU. There are some other scenarios like IO calls where the scheduler can be invoked outside the timer, and the scheduler may decide no other process has higher priority and return control to the same process without a switch... And in reality most OSes don't do a real context switch here because that's expensive, the scheduler code runs inside the context of whatever process was executing, so it has to be very careful not to step on the stack, to save register states, etc.
** You might ask why not just fire a timer if yield isn't called within a certain period of time. The answer lies in multi-threaded synchronization. In a cooperative system, you don't have to bother taking locks, worry about re-entrance, etc because you only yield when things are in a known good state. If this mythical timer fires, you have now potentially corrupted the state of the program that was interrupted. If programs have to be written to handle this, congrats... You now have a half-assed pre-emptive multitasking system. Might as well just do it right! And if you are changing things anyway, may as well add threads, protected memory, etc. That's pretty much the history of the major OSes right there.
The basic idea behind cooperative multitasking is trust - that each subtask will relinquish control, of its own accord, in a timely fashion, to avoid starving other tasks of processor time. This is why tasks in a cooperative multitasking system need to be tested extremely thoroughly, and in some cases certified for use.
I don't claim to be an expert, but I imagine cooperative tasks could be implemented as state machines, where passing control to the task would cause it to run for the absolute minimal amount of time it needs to make any kind of progress. For example, a file reader might read the next few bytes of a file, a parser might parse the next line of a document, or a sensor controller might take a single reading, before returning control back to a cooperative scheduler, which would check for task completion.
Each task would have to keep its internal state on the heap (at object level), rather than on the stack frame (at function level) like a conventional blocking function or thread.
And unlike conventional multitasking, which relies on a hardware timer to trigger a context switch, cooperative multitasking relies on the code to be written in such a way that each step of each long-running task is guaranteed to finish in an acceptably small amount of time.
The tasks will execute an explicit wait or pause or yield operation which makes the call to the dispatcher. There may be different operations for waiting on IO to complete or explicitly yielding in a heavy computation. In an application task's main loop, it could have a *wait_for_event* call instead of busy polling. This would suspend the task until it has input to process.
There may also be a time-out mechanism for catching runaway tasks, but it is not the primary means of switching (or else it wouldn't be cooperative).
One way to think of cooperative multitasking is to split a task into steps (or states). Each task keeps track of the next step it needs to execute. When it's the task's turn, it executes only that one step and returns. That way, in the main loop of your program you are simply calling each task in order, and because each task only takes up a small amount of time to complete a single step, we end up with a system which allows all of the tasks to share cpu time (ie. cooperate).

one timer per thread using Qt

I modified Qt's broadcast sender example so that it has ten threads and in each thread it starts a timer, but only timer of the first thread is triggered. How can I have one timer running for each thread?
Timers only work if the thread has an event loop.
A couple years later in OS course I learned:
Timers are a per process thing. When a the OS kernel sends a timer trigger even whatever thread that is currently running gets the call and processes it.
So I couldn't have ten timers per thread in a straight-forward manner.

Resources