Scale Y-Achsis in plotly candlestick chart - r

I am searching for a way to (auto-)scale the y-axis of a candlestick chart. If you take a look at the following example (from https://plot.ly/r/candlestick-charts/)
library(plotly)
library(quantmod)
getSymbols("AAPL",src='yahoo')
df <- data.frame(Date=index(AAPL),coredata(AAPL))
df <- tail(df, 365)
p <- df %>%
plot_ly(x = ~Date, type="candlestick",
open = ~AAPL.Open, close = ~AAPL.Close,
high = ~AAPL.High, low = ~AAPL.Low) %>%
add_lines(y = ~AAPL.Open, line = list(color = 'black', width = 0.75)) %>%
layout(showlegend = FALSE)
The y-axis has autoscal="normal", so it takes min and max from the dataset, but if you zoom, these values stay the same. It would be clearer for me to have the min and max of the current (zoomed/viewed) part of the graph
Until now i could not find a way to implement this feature, does anyone know a way to do so?
Amother solution for me would be just to get the "normal" zoom from charts like in this example:
library(plotly)
set.seed(100)
d <- diamonds[sample(nrow(diamonds), 1000), ]
plot_ly(d, x = ~carat, y = ~price, color = ~carat,
size = ~carat, text = ~paste("Clarity: ", clarity))

Moving the slider within the candlestick chart is not autoscaling the y-axis for me either. Plotly team may not have solved it yet for candlesticks charts. autorange = TRUE is working neither.
But if anyone is using this in a shiny application, the workaround which can work is to have a date slider reactively connected to Plotly graph. The steps are as following:
create a date slider with a start and end selected
ui.R
...
uiOutput("dateSlider")
...
server.R
output$dateSlider <- renderUI({
sliderInput(
"dtSlider",
"Select a date range:",
min = min_date,
max = max_date,
value = c(max_date - 30, max_date), # in this case last 30 defines start and end
timeFormat = "%Y-%m-%d",
width = '80%'
)
output$dateSlider <- renderUI({
In the RenderPlotly section of server.R calculate a data.frame with data filtered from start to end using input$dtSlider[1] and input$dtSlider[2] correspondingly and then use the new reactively filtered data.frame in the Plotly code.
ui.R
plotlyOutput("candleChart")
server.R
output$candleChart <- renderPlotly({
...
df <- as.data.frame(dbFetch(res)) # querying DB to pull data with new input$dtSlider[1] as start and input$dtSlider[2] as end
...
fig <- df %>% plot_ly(x = ~timestamp, type="candlestick",
open = ~open, close = ~close,
high = ~high, low = ~low )
...
})
So now if we change the date slider, y-axis range changes automatically as shown below from same data.frame object:

Related

Selecting point with shiny and plotly

I have been trying for some time to debug my Shiny gadget but still cannot manage it. Really appreciate any help.
My gadget consists of a scatterplot generated with Plotly. The user can click one of the points, which will allow you to change some parameters associated with that point. To emphasise the fact that the user has selected that point, I wanted to highlight the selected point.
Alternatively, the user can also select a point from a dropdown menu, which also should highlight the corresponding point.
As an added feature, I want to additionally highlight points that are below a certain threshold on the x axis. This threshold is represented by a dotted line, which you can turn on and off, and move the value of the threshold.
In summary, the points on the plot should all be blue circles, except for the following two cases:
if it is clicked, i.e. it is the "active point" (this should create a red border around the point)
if it is below the threshold on the x-axis (the point should turn to an orange square)
If it is active AND below the threshold, it should be an orange square with a red border, as you would expect.
My gadget works, kind of. But in some cases not. In the example below, one of the points is already below the threshold, but when I select that point, the red marker appears on another point! Despite the active variable being the correct one.
I also get a weird behaviour that the points turn purple if the threshold is below all of the points. But if I move the threshold to be above one of the points, the colours are corrected.
I have a suspicion that this is something to do with the points being on different traces? Therefore when I try to highlight certain points, perhaps I am not indexing the vector as I am expecting. But I am finding it really difficult to debug inside Shiny and Plotly, and I have no good understanding of the Plotly object, so I don't have much clue as to what is going on.
The code below is a reproducible example. You have to run "dat1" through the "rew8r" function. I have taken out other features of the app to try to focus on the problem. Thanks very much to anyone who might take the time to have a look at this, and give any hints!
library(plotly)
library(dplyr)
library(shiny)
library(reactable)
dat1 <- data.frame(
Indicator = c("v1","v2","v3"),
Weight = rep(1,3),
Correlation = c(0.1, 0.8, 0.6) )
rew8r <- function(dat){
# get indicator names
inames <- dat$Indicator
## Create the shiny UI layout
ui <- fluidPage(
# the side panel
sidebarPanel(
selectInput("vseldrop", "Select indicator here or by clicking a point on plot.",
c("<Select>",inames)),
hr(style = "border-top: 1px solid #000000;"),
fluidRow(
column(6,numericInput("locorval", "Low correlation threshold:", 0.2, min = -1, max = 1, step = 0.05)),
column(6,br(),checkboxInput("locorsw", "Enable", value = FALSE)))
),
# the main panel (graph, table, etc)
mainPanel(
plotlyOutput("corrplot"),
textOutput("info")
)
)
## Create the Shiny Server layout
server <- function(input, output, session) {
# this is the plotly click data
event.data <- reactive({event_data(event = "plotly_click", source = "scplot")})
# First, monitor which variable is active
# Create reactive value for active var
acvar <- reactiveVal(NULL)
# update active variable via plot click
observeEvent(event.data(),{
acvar(event.data()$key)})
# update active variable via dropdown
observeEvent(input$vseldrop,
acvar(input$vseldrop))
## Create the plotly plot that compares price vs scoops
output$corrplot <- renderPlotly({
# colours around markers when selected or not
lincol <- ifelse(inames %in% acvar(), "red", "blue")
# size of line around marker (set to 0 if not selected)
linsize <- ifelse(inames %in% acvar(), 3, 0)
# symbol when above/below corr threshold
symbs <- if(input$locorsw==TRUE){c(16,15)}else{c(16,16)}
# colour when above/below threshold
pcols <- if(input$locorsw==TRUE){c("blue", "orange")}else{c("blue", "blue")}
# generate main plot
p <- plot_ly(dat, x = ~Correlation, y = ~Weight, type = "scatter", mode = "markers",
text = ~Indicator, key = ~Indicator, source = "scplot",
marker = list(size = 10, line = list(color = lincol, width = linsize)),
symbol = ~Correlation < input$locorval, symbols = symbs,
color = ~Correlation < input$locorval, colors = pcols) %>%
layout(showlegend = FALSE, yaxis = list(
range = c(0, 1.25),
autotick = FALSE,
dtick = 0.25),
xaxis = list(
range = c(-0.5, 1),
autotick = FALSE,
dtick = 0.2))
# add low correlation line, if activated
if(input$locorsw==TRUE){
p <- p %>% add_segments(x = input$locorval, xend = input$locorval, y = 0, yend = 1.25,
marker = list(color = 'red', opacity=0),
line = list(dash = 'dash')) %>%
layout(showlegend = FALSE)
}
p
})
# Text info
output$info <- renderText({
paste(acvar(), class(acvar()))
})
# update dropdown menu
observeEvent(acvar(),{
updateSelectInput(session, "vseldrop", selected = acvar())
})
}
runGadget(ui, server, viewer = browserViewer())
}

R Shiny XTS - Change name of the default tooltip using ggplot

I have a xts object that has dates as values, I'm using ggplot2 and shiny app for show the result.
But I want to change the default names of the tooltip when the mouse is on the line.
From:
index: 2020-03-19
value: 70
To:
Date: 2020-03-19
Cantidad: 70
Code for XTS:
data<-rnorm(10)
dates <- seq(as.Date("2016-01-01"), length =10, by = "days")
xtsMyData <- xts(x = data, order.by = dates)
Plot:
r <- ggplot(tidy(xtsMyData), aes(x=index,y=value, color=series, type = 'scatter', mode = 'lines')
) + geom_line(size=2)
The result is:
I'm triyng the following code:
r <- ggplot(tidy(xtsMyData), aes(x=index,y=value, color=series, type = 'scatter', mode = 'lines')
) + geom_line(size=2)
return(ggplotly(r, tooltip = **c("x","y", "series" )**) %>% plotly::config(displayModeBar = T) %>%
layout(legend = list(orientation = "h", x = 0.4, y = -0.2)))
And the result is:
How can I change the tooltip? Can I add words? I tried with paste("Dates","x") but doesn't work.
Thanks for your help.
You can use text in style to change the hover text.
The plotly object will have values accessible through a list as below. The date values will need to be converted with as.Date.
Edit: The code includes a full shiny app as a demo.
library(xts)
library(shiny)
data<-rnorm(10)
dates <- seq(as.Date("2016-01-01"), length =10, by = "days")
xtsMyData <- xts(x = data, order.by = dates)
ui <- fluidPage(
plotlyOutput("myplot")
)
server <- function(input, output, session) {
output$myplot <- renderPlotly({
r <- ggplot(tidy(xtsMyData), aes(x=index,y=value, color=series, type = 'scatter', mode = 'lines')) +
geom_line(size=2)
r <- ggplotly(r) %>%
plotly::config(displayModeBar = T) %>%
layout(legend = list(orientation = "h", x = 0.4, y = -0.2))
r %>%
style(text = paste0("Date:", as.Date(r$x$data[[1]]$x),
"</br></br>",
"Cantidad:", r$x$data[[1]]$y))
})
}
shinyApp(ui, server)
Plot
The first answer gave me the idea to change manually all, because I had 2 different geom_lines and that didn't work for me , this labels are stored in r$x$data[[1]]$text (the following line plots are in r$x$data[[2]]$text,r$x$data[[3]]$text... ), so, if you use an gsub, you could change everything you want, it's very dumb but it works. (You can use the same philosophy to delete the last label, manipulating strings)
I put an example for your problem, despite you already solve it, other person could have more than one line plot.
r$x$data[[1]]$text<-gsub(r$x$data[[1]]$text,pattern='index', replacement='Fecha')
r$x$data[[1]]$text<-gsub(r$x$data[[1]]$text,pattern='value', replacement='Valor')
r$x$data[[1]]$text<-gsub(r$x$data[[1]]$text,pattern='series', replacement='Serie')

How can I make the color scale in mapdeck static

I am developing a shiny app which steps through time by each hour and shows the precipitation on a mapdeck map. I read in the weather data for the entire day and using reactivity filtering the data for the hour and plotting them as scatterplot using mapdeck_update to update the data. The color scale changes whenever the map updates based on the range of data in that hour. What I want is a static color scale based on the data range for the day. Is it possible?
I have tried using manual colors but for some reason they are not working
library(mapdeck)
ui <- fluidPage(
fluidRow(sliderInput(inputId = "hr",label = "Hour",min = 1,max = 3,value = 1)),
fluidRow(mapdeckOutput(outputId = "wx"))
)
sr <- function(input, output, session) {
mydata <- read.table(header=TRUE, sep=",",text="
ROW,COL,Center Latitude,Center Longitude,vil_int_36,hr
28,439,23.669885449218786,-97.2498101160108,20,1
41,433,24.37845221074034,-97.59803936272704,21,1
59,441,25.35333762373948,-97.11966878019186,22,1
61,441,25.461905262766468,-97.11878391116397,23,1
62,443,25.515163854569053,-96.99946877404128,24,1
29,439,23.724265738052193,-97.24945283742396,25,2
43,433,24.48713046908765,-97.59764743717052,26,2
59,442,25.35284441116698,-97.06032252207848,27,2
61,442,25.46141127997772,-97.05937801465758,28,2
62,444,25.514605007836384,-96.94003374232112,29,2
29,440,23.723846594719276,-97.19096992696834,30,3
43,434,24.486897474919978,-97.53876699838483,31,3
60,443,25.406603480942334,-97.00047511628769,32,3
62,441,25.516184831702166,-97.11834002241596,33,3
62,449,25.511327212479294,-96.64286546489153,34,3
")
wx_map <- mapdeck(data=NULL,token = Sys.getenv("MAPBOX_API_TOKEN"),style = 'mapbox://styles/mapbox/dark-v9',zoom = 6, location = c(-97,24.5))
observe({
wx_dt <- mydata %>% dplyr::filter(hr == input$hr)
mapdeck_update(map_id = "wx") %>%
add_scatterplot(data=wx_dt,lon = "Center.Longitude",lat = "Center.Latitude",radius = 15000,fill_colour = "vil_int_36",legend = TRUE,layer_id = "wxlyr",update_view = FALSE,focus_layer=FALSE)
})
output$wx <- renderMapdeck(wx_map)
}
shinyApp(ui, sr)
Notice how the range of color scale in the legend changes but the color of the dots stay almost the same. I want the color to represent the min-max of the entire data set (not just the hour) so that I can see change in intensity while stepping through each hour. Thank you.
Good question; you're right you need to create a manual legend so it remains static, otherwise it will update each time the values in the plot update.
The manual legend needs to use the same colours as the map. The map gets coloured by library(colourvalues). So you can use this to make the colours outside of the map, then use the results as the manual legend
l <- colourvalues::colour_values(
x = mydata$vil_int_36
, n_summaries = 5
)
legend <- mapdeck::legend_element(
variables = l$summary_values
, colours = l$summary_colours
, colour_type = "fill"
, variable_type = "category"
)
js_legend <- mapdeck::mapdeck_legend(legend)
Now this js_legend object is in the correct JSON format for the map to render it as a legend
js_legend
# {"fill_colour":{"colour":["#440154FF","#3B528BFF","#21908CFF","#5DC963FF","#FDE725FF"],"variable":["20.00","23.50","27.00","30.50","34.00"],"colourType":["fill_colour"],"type":["category"],"title":[""],"css":[""]}}
Here it is in your shiny
library(mapdeck)
library(shiny)
ui <- fluidPage(
fluidRow(sliderInput(inputId = "hr",label = "Hour",min = 1,max = 3,value = 1)),
fluidRow(mapdeckOutput(outputId = "wx"))
)
sr <- function(input, output, session) {
mydata <- read.table(header=TRUE, sep=",",text="
ROW,COL,Center Latitude,Center Longitude,vil_int_36,hr
28,439,23.669885449218786,-97.2498101160108,20,1
41,433,24.37845221074034,-97.59803936272704,21,1
59,441,25.35333762373948,-97.11966878019186,22,1
61,441,25.461905262766468,-97.11878391116397,23,1
62,443,25.515163854569053,-96.99946877404128,24,1
29,439,23.724265738052193,-97.24945283742396,25,2
43,433,24.48713046908765,-97.59764743717052,26,2
59,442,25.35284441116698,-97.06032252207848,27,2
61,442,25.46141127997772,-97.05937801465758,28,2
62,444,25.514605007836384,-96.94003374232112,29,2
29,440,23.723846594719276,-97.19096992696834,30,3
43,434,24.486897474919978,-97.53876699838483,31,3
60,443,25.406603480942334,-97.00047511628769,32,3
62,441,25.516184831702166,-97.11834002241596,33,3
62,449,25.511327212479294,-96.64286546489153,34,3
")
## create a manual legend
l <- colourvalues::colour_values(
x = mydata$vil_int_36
, n_summaries = 5
)
legend <- mapdeck::legend_element(
variables = l$summary_values
, colours = l$summary_colours
, colour_type = "fill"
, variable_type = "category"
)
js_legend <- mapdeck::mapdeck_legend(legend)
### --------------------------------
wx_map <- mapdeck(
style = 'mapbox://styles/mapbox/dark-v9'
, zoom = 6
, location = c(-97,24.5)
)
observe({
wx_dt <- mydata %>% dplyr::filter(hr == input$hr)
mapdeck_update(map_id = "wx") %>%
add_scatterplot(
data = wx_dt
, lon = "Center.Longitude"
, lat = "Center.Latitude"
, radius = 15000
, fill_colour = "vil_int_36"
, legend = js_legend
, layer_id = "wxlyr"
, update_view = FALSE
, focus_layer = FALSE
)
})
output$wx <- renderMapdeck(wx_map)
}
shinyApp(ui, sr)

Using ggplotly rangeslider for interactive relative performance (stock returns)

I am trying to make an interactive stock performance plot from R. It is to compare the relative performance of several stocks. Each stock's performance line should start at 0%.
For static plots I would use dplyr group_by and mutate to calculate performance (see my code).
With ggplot2 and plotly/ggplotly, rangeslider() allows to interactively select the x-axis range. Now I'd like performance to be starting at 0 from any start range selected.
How can I either move the dplyr calculation into the plotting or have a feedback loop to recalculate as the range is changed?
Ideally it should be usable in static RMarkdown HTML. Alternatively I'd also switch to Shiny.
I tried several options for rangeslider. Also I tried with ggplot stat_function but could not achieve the desired result. Also I found dygraphs which has dyRangeSelector. But also here I face the same problem.
This is my code:
library(plotly)
library(tidyquant)
stocks <- tq_get(c("AAPL", "MSFT"), from = "2019-01-01")
range_from <- as.Date("2019-02-01")
stocks_range <- stocks %>%
filter(date >= range_from) %>%
group_by(symbol) %>%
mutate(performance = adjusted/first(adjusted)-1)
p <- stocks_range %>%
ggplot(aes(x = date, y = performance, color = symbol)) +
geom_line()
ggplotly(p, dynamicTicks = T) %>%
rangeslider(borderwidth = 1) %>%
layout(hovermode = "x", yaxis = list(tickformat = "%"))
If you do not want to use shiny, you can either use the dyRebase option in dygraphs, or you have to insert custom javascript code in plotly. In both examples, I rebase to one, not zero.
Option 1: with dygraphs
library(dygraphs)
library(tidyquant)
library(timetk)
library(tidyr)
stocks <- tq_get(c("AAPL", "MSFT"), from = "2019-01-01")
stocks %>%
dplyr::select(symbol, date, adjusted) %>%
tidyr::spread(key = symbol, value = adjusted) %>%
timetk::tk_xts() %>%
dygraph() %>%
dyRebase(value = 1) %>%
dyRangeSelector()
Note that `dyRebase(value = 0) does not work.
Option 2: with plotly using event handlers. I try to avoid ggplotly, hence my plot_ly solution. Here the time selection is just by zooming, but I think it can be done by a range selector as well. The javascript code in onRenderRebaseTxt rebases every trace to the first visible data point (taking care of possible missing values). It is only called with the relayout event, hence the first rebasing must be done before the plot.
library(tidyquant)
library(plotly)
library(htmlwidgets)
library(dplyr)
stocks <- tq_get(c("AAPL", "MSFT"), from = "2019-01-01")
pltly <-
stocks %>%
dplyr::group_by(symbol) %>%
dplyr::mutate(adjusted = adjusted / adjusted[1L]) %>%
plotly::plot_ly(x = ~date, y = ~adjusted, color = ~symbol,
type = "scatter", mode = "lines") %>%
plotly::layout(dragmode = "zoom",
datarevision = 0)
onRenderRebaseTxt <- "
function(el, x) {
el.on('plotly_relayout', function(rlyt) {
var nrTrcs = el.data.length;
// array of x index to rebase to; defaults to zero when all x are shown, needs to be one per trace
baseX = Array.from({length: nrTrcs}, (v, i) => 0);
// if x zoomed, increase baseX until first x point larger than x-range start
if (el.layout.xaxis.autorange == false) {
for (var trc = 0; trc < nrTrcs; trc++) {
while (el.data[[trc]].x[baseX[trc]] < el.layout.xaxis.range[0]) {baseX[trc]++;}
}
}
// rebase each trace
for (var trc = 0; trc < nrTrcs; trc++) {
el.data[trc].y = el.data[[trc]].y.map(x => x / el.data[[trc]].y[baseX[trc]]);
}
el.layout.yaxis.autorange = true; // to show all traces if y was zoomed as well
el.layout.datarevision++; // needs to change for react method to show data changes
Plotly.react(el, el.data, el.layout);
});
}
"
htmlwidgets::onRender(pltly, onRenderRebaseTxt)
I found a solution with plotly_relayout which reads out the visible x-axis range. This is used to recompute the performance. It works as a Shiny app. Here's my code:
library(shiny)
library(plotly)
library(tidyquant)
library(lubridate)
stocks <- tq_get(c("AAPL", "MSFT"), from = "2019-01-01")
ui <- fluidPage(
titlePanel("Rangesliding performance"),
mainPanel(
plotlyOutput("plot")
)
)
server <- function(input, output) {
d <- reactive({ e <- event_data("plotly_relayout")
if (is.null(e)) {
e$xaxis.range <- c(min(stocks$date), max(stocks$date))
}
e })
stocks_range_dyn <- reactive({
s <- stocks %>%
group_by(symbol) %>%
mutate(performance = adjusted/first(adjusted)-1)
if (!is.null(d())) {
s <- s %>%
mutate(performance = adjusted/nth(adjusted, which.min(abs(date - date(d()$xaxis.range[[1]]))))-1)
}
s
})
output$plot <- renderPlotly({
plot_ly(stocks_range_dyn(), x = ~date, y = ~performance, color = ~symbol) %>%
add_lines() %>%
rangeslider(start = d()$xaxis.range[[1]], end = d()$xaxis.range[[2]], borderwidth = 1)
})
}
shinyApp(ui = ui, server = server)
Definign the start/end of the rangeslider only works with plot_ly, not with a ggplot object converted by ggplotly. I am unsure if this is a bug, therefore opened an issue on Github.

Shiny R dynamic heatmap with ggplot. Scale and speed issues

I am attempting to use some public information to produce a heat-map of Canada for some labor statistics. Using the spacial files from the census, and data from Statistics Canada (these are large zip files that are not necessary to dig into). Below is a working example that illustrates both the problems I am having with little relative change between regions( though there may be a big absolute change between periods, and the slow draw time.To get this to work, you need to download the .zip file from the census link and unzip the files to a data folder.
library(shiny)
library(maptools)
library(ggplot2)
require(reshape2)
library(tidyr)
library(maptools)
library(ggplot2)
library(RColorBrewer)
ui <- fluidPage(
titlePanel("heatmap"),
# Sidebar with a slider input for year of interest
sidebarLayout(
sidebarPanel(
sliderInput("year",h3("Select year or push play button"),
min = 2000, max = 2002, step = 1, value = 2000,
animate = TRUE)
),
# Output of the map
mainPanel(
plotOutput("unemployment")
)
)
)
server <- function(input, output) {
#to get the spacial data: from file in link above
provinces<-maptools::readShapeSpatial("data/gpr_000a11a_e.shp")
data.p<- ggplot2::fortify(provinces, region = "PRUID")
data.p<-data.p[which(data.p$id<60),]
#dataframe with same structure as statscan csv after processing
unem <- runif(10,min=0,max=100)
unem1 <- unem+runif(1,-10,10)
unem2 <- unem1+runif(1,-10,10)
unemployment <- c(unem,unem1,unem2)
#dataframe with same structure as statscan csv after processing
X <- data.frame("id" = c(10,11,12,13,24,35,46,47,48,59,
10,11,12,13,24,35,46,47,48,59,
10,11,12,13,24,35,46,47,48,59),
"Unemployment" = unemployment,
"year" = c(rep(2000,10),rep(2001,10),rep(2002,10))
)
plot.data<- reactive({
a<- X[which(X$year == input$year),]
return(merge(data.p,a,by = "id"))
})
output$unemployment <- renderPlot({
ggplot(plot.data(),
aes(x = long, y = lat,
group = group , fill =Unemployment)) +
geom_polygon() +
coord_equal()
})
}
# Run the application
shinyApp(ui = ui, server = server)
Any help with either of the issues would be greatly appreciated
For this type of animation it is much faster to use leaflet instead of ggplot as leaflet allows you to only re-render the polygons, not the entire map.
I use two other tricks to speed up the animation:
I join the data outside of the reactive. Within the reactive it is just a simple subset. Note, the join could be done outside of the app and read in as a pre-processed .rds file.
I simplify the polygons with the rmapshaper package to reduce drawing time by leaflet. Again, this could be done outside the app to reduce loading time at the start.
The animation could likely be even more seamless if you use circles (i.e. centroid of each province) instead of polygons. Circle size could vary with Unemployment value.
Note, you need the leaflet, sf, dplyr and rmapshaper packages for this approach.
library(shiny)
library(dplyr)
library(leaflet)
library(sf)
library(rmapshaper)
ui <- fluidPage(
titlePanel("heatmap"),
# Sidebar with a slider input for year of interest
sidebarLayout(
sidebarPanel(
sliderInput("year",h3("Select year or push play button"),
min = 2000, max = 2002, step = 1, value = 2000,
animate = TRUE)
),
# Output of the map
mainPanel(
leafletOutput("unemployment")
)
)
)
server <- function(input, output) {
#to get the spacial data: from file in link above
data.p <- sf::st_read("input/gpr_000a11a_e.shp") %>%
st_transform(4326) %>%
rmapshaper::ms_simplify()
data.p$PRUID <- as.character(data.p$PRUID) %>% as.numeric
data.p <- data.p[which(data.p$PRUID < 60),]
lng.center <- -99
lat.center <- 60
zoom.def <- 3
#dataframe with same structure as statscan csv after processing
unem <- runif(10,min=0,max=100)
unem1 <- unem+runif(1,-10,10)
unem2 <- unem1+runif(1,-10,10)
unemployment <- c(unem,unem1,unem2)
#dataframe with same structure as statscan csv after processing
X <- data.frame("id" = c(10,11,12,13,24,35,46,47,48,59,
10,11,12,13,24,35,46,47,48,59,
10,11,12,13,24,35,46,47,48,59),
"Unemployment" = unemployment,
"year" = c(rep(2000,10),rep(2001,10),rep(2002,10))
)
data <- left_join(data.p, X, by = c("PRUID"= "id"))
output$unemployment <- renderLeaflet({
leaflet(data = data.p) %>%
addProviderTiles("OpenStreetMap.Mapnik", options = providerTileOptions(opacity = 1), group = "Open Street Map") %>%
setView(lng = lng.center, lat = lat.center, zoom = zoom.def) %>%
addPolygons(group = 'base',
fillColor = 'transparent',
color = 'black',
weight = 1.5) %>%
addLegend(pal = pal(), values = X$Unemployment, opacity = 0.7, title = NULL,
position = "topright")
})
get_data <- reactive({
data[which(data$year == input$year),]
})
pal <- reactive({
colorNumeric("viridis", domain = X$Unemployment)
})
observe({
data <- get_data()
leafletProxy('unemployment', data = data) %>%
clearGroup('polygons') %>%
addPolygons(group = 'polygons',
fillColor = ~pal()(Unemployment),
fillOpacity = 0.9,
color = 'black',
weight = 1.5)
})
}
# Run the application
shinyApp(ui = ui, server = server)
I didn't find the drawing time to be unreasonably long at ~2-3 seconds, which for a 2.4mb shapefile seems about right. It takes just as long outside shiny as it does in the app on my machine, anyway.
To hold a constant colour gradient you can specify limits in scale_fill_gradient which will hold the same gradient despite changes to your maps:
output$unemployment <- renderPlot({
ggplot(plot.data(),
aes(x = long, y = lat,
group = group , fill =Unemployment)) +
geom_polygon() +
scale_fill_gradient(limits=c(0,100)) +
coord_equal()
})

Resources