Unexpected output type - recursion

I am doing practice with F#. I am trying to create a simple program capable to find me out a couple of prime numbers that, summed together, equal a natural number input. It is the Goldbach conjecture. A single couple of primes will be enough. We will assume the input to be a even number.
I first created a function to check if a number is prime:
let rec isPrime (x: int) (i: int) :bool =
match x % i with
| _ when float i > sqrt (float x) -> true
| 0 -> false
| _ -> isPrime x (i + 1)
Then, I am trying to develop a function that (a) looks for prime numbers, (b) compare their sum with the input 'z' and (c) returns a tuple when it finds the two numbers. The function should not be correct yet, but I would get the reason behind this problem:
let rec sumPrime (z: int) (j: int) (k: int) :int * int =
match isPrime j, isPrime k with
| 0, 0 when j + k > z -> (0, 0)
| 0, 0 -> sumPrime (j + 1) (k + 1)
| _, 0 -> sumPrime j (k + 1)
| 0, _ -> sumPrime (j + 1) k
| _, _ -> if j + k < z then
sumPrime (j + 1) k
elif j + k = z then
(j, k)
The problem: even if I specified that the output should be a tuple :int * int the compiler protests, claiming that the expected output should be of type bool. When in trouble, I usually refer to F# for fun and profit, that i love, but this time I cannot find out the problem. Any suggestion is greatly appreciated.

Your code has three problems that I've spotted:
Your isPrime returns a bool (as you've specified), but your match expression in sumPrime is matching against integers (in F#, the Boolean value false is not the same as the integer value 0). Your match expression should look like:
match isPrime j, isPrime k with
| false, false when j + k > z -> (0, 0)
| false, false -> ...
| true, false -> ...
| false, true -> ...
| true, true -> ...
You have an if...elif expression in your true, true case, but there's no final else. By default, the final else of an if expression returns (), the unit type. So once you fix your first problem, you'll find that F# is complaining about a type mismatch between int * int and unit. You'll need to add an else condition to your final match case to say what to do if j + k > z.
You are repeatedly calling your sumPrime function, which takes three parameters, with just two parameters. That is perfectly legal in F#, since it's a curried language: calling sumPrime with two parameters produces the type int -> int * int: a function that takes a single int and returns a tuple of ints. But that's not what you're actually trying to do. Make sure you specify a value for z in all your recursive calls.
With those three changes, you should probably see your compiler errors go away.

Related

how do I count the amount of times a (recursive) function executes itself in ocaml?

needing some help (if possible) in how to count the amount of times a recursive function executes itself.
I don't know how to make some sort of counter in OCaml.
Thanks!
Let's consider a very simple recursive function (not Schroder as I don't want to do homework for you) to calculate Fibonacci numbers.
let rec fib n =
match n with
| 0 | 1 -> 1
| _ when n > 0 -> fib (n - 2) + fib (n - 1)
| _ -> raise (Invalid_argument "Negative values not supported")
Now, if we want to know how many times it's been passed in, we can have it take a call number and return a tuple with that call number updated.
To get each updated call count and pass it along, we explicitly call fib in let bindings. Each time c shadows its previous binding, as we don't need that information.
let rec fib n c =
match n with
| 0 | 1 -> (1, c + 1)
| _ when n > 0 ->
let n', c = fib (n - 1) (c + 1) in
let n'', c = fib (n - 2) (c + 1) in
(n' + n'', c)
| _ -> raise (Invalid_argument "Negative values not supported")
And we can shadow that to not have to explicitly pass 0 on the first call.
let fib n = fib n 0
Now:
utop # fib 5;;
- : int * int = (8, 22)
The same pattern can be applied to the Schroder function you're trying to write.
You can create a reference in any higher scope like so
let counter = ref 0 in
let rec f ... =
counter := !counter + 1;
... (* Function body *)
If the higher scope happens to be the module scope (or file top-level scope) you should omit the in
You can return a tuple (x,y) where y you increment by one for each recursive call. It can be useful if your doing for example a Schroder sequence ;)

Why is it giving me this error? This expression has type Z.t but an expression was expected of type int

EDITED: Alright, this is the complete error :
45 | | _ -> Z.of_int 3 * Z.(s1 (num-1)) + Z.(sum_s1 num)
^^^^^^^^^^
Error: This expression has type Z.t but an expression was expected of type
int
And this is the code in question :
let rec s1 num =
match num with
| 0 -> Z.of_int(1)
| 1 -> Z.of_int(2)
| _ -> Z.of_int 3 * Z.(s1 (num-1)) + Z.(sum_s1 num)
and
sum_s1 num =
let rec sum_s1_impl (num, k) =
if (num-2 < 1) || (k > num-2) then 0
else (s1 k) * (s1 (num-k-1)) + (sum_s1_impl (num, k+1))
in sum_s1_impl (num, 1);;
I don't know where is the problem/how can I fix it (some tips)
Thanks!!
EDIT#2 :
let rec s1 num =
match num with
| 0 -> Z.of_int(1)
| 1 -> Z.of_int(2)
| _ -> Z.of_int(3 * (s1 (num-1)) + (sum_s1 num))
and
sum_s1 num =
let rec sum_s1_impl (num, k) =
if (num-2 < 1) || (k > num-2) then 0
else (s1 k) * (s1 (num-k-1)) + (sum_s1_impl (num, k+1))
in sum_s1_impl (num, 1);;
Even with the use of Z.of_int(3 * (s1 (num-1)) + (sum_s1 num))
I stil get the same error
Generally speaking you need to carefully track which of your parameters are of type int (ordinary OCaml integer) and which are Z.t (big integer). You seem to treat them as if they're the same type, which doesn't work in a strongly typed language.
The first reported error is for this expression:
Z.of_int 3 * Z.(s1 (num-1)) + Z.(sum_s1 num)
If I look at the code for s1 it shows that it expects an int parameter, since it matches the parameter against 0, 1, etc. Similarly, the code for sum_s1 expects an int parameter since it applies the built-in - operator to the parameter.
With these assumptions, the first problem in this expression is that Z.of_int returns a big integer (Z.t). You can't multiply a big integer using the built-in * operator.
But note that this subexpression looks wrong also:
Z.(s1 (num - 1))
Since the expression is prefixed with Z., the operators will come from the Z module. Hence the - is of type Z.t -> Z.t -> Z.t. But you're applying it to num and 1 which are ordinary OCaml ints.
You need to go through the expressions and figure out the type you want for each subpart. Generally you want to do everything using big integers, so you should convert using Z.of_int whenever you have a regular OCaml int. Most of the parameters and return values of your functions should (in my opinion) be big integers.
You are multiplying non int type Z.of_int 3 by an int (* operator).
Try to do your operations with ints, and then convert the end result to Z.of_int (your result)
EDIT : Also, you can use built-in zerith operators, ie :
val add : t -> t -> t
Addition.
Check https://www-apr.lip6.fr/~mine/enseignement/l3/2015-2016/doc-zarith/Z.html

Reversing an int in OCaml

I'm teaching myself OCaml, and the main resources I'm using for practice are some problem sets Cornell has made available from their 3110 class. One of the problems is to write a function to reverse an int (i.e: 1234 -> 4321, -1234 -> -4321, 2 -> 2, -10 -> -1 etc).
I have a working solution, but I'm concerned that it isn't exactly idiomatic OCaml:
let rev_int (i : int) : int =
let rec power cnt value =
if value / 10 = 0 then cnt
else power (10 * cnt) (value/10) in
let rec aux pow temp value =
if value <> 0 then aux (pow/10) (temp + (value mod 10 * pow)) (value / 10)
else temp in
aux (power 1 i) 0 i
It works properly in all cases as far as I can tell, but it just seems seriously "un-OCaml" to me, particularly because I'm running through the length of the int twice with two inner-functions. So I'm just wondering whether there's a more "OCaml" way to do this.
I would say, that the following is idiomatic enough.
(* [rev x] returns such value [y] that its decimal representation
is a reverse of decimal representation of [x], e.g.,
[rev 12345 = 54321] *)
let rev n =
let rec loop acc n =
if n = 0 then acc
else loop (acc * 10 + n mod 10) (n / 10) in
loop 0 n
But as Jeffrey said in a comment, your solution is quite idiomatic, although not the nicest one.
Btw, my own style, would be to write like this:
let rev n =
let rec loop acc = function
| 0 -> acc
| n -> loop (acc * 10 + n mod 10) (n / 10) in
loop 0 n
As I prefer pattern matching to if/then/else. But this is a matter of mine personal taste.
I can propose you some way of doing it:
let decompose_int i =
let r = i / 10 in
i - (r * 10) , r
This function allows me to decompose the integer as if I had a list.
For instance 1234 is decomposed into 4 and 123.
Then we reverse it.
let rec rev_int i = match decompose_int i with
| x , 0 -> 10 , x
| h , t ->
let (m,r) = rev_int t in
(10 * m, h * m + r)
The idea here is to return 10, 100, 1000... and so on to know where to place the last digit.
What I wanted to do here is to treat them as I would treat lists, decompose_int being a List.hd and List.tl equivalent.

Prime number check

I'm having some issues with my prime number checker in F#. It doesn't seem to give the right results so I'm guessing I've screwed up the logic somewhere but I can't figure out where. The implementation is a simple brute forcing one so the logic isn't complicated and I've implemented similiar solutions using for loops in imperative languages before.
let rec isPrime iterator (n : int) =
match iterator with
| 1 -> isPrime (iterator + 1) n
| a when a = n -> isPrime (iterator + 1) n
| _ -> match n % iterator = 0 with
| true -> false
| false -> isPrime (iterator + 1) n
As you already figured out in the comments, the problem is that the function should terminate and say true when the iterator reaches n. You can actually make it faster just by iterating up to square root of n or at least n/2 because by the time you reach n/2, you know it will be a prime.
This kind of logic seems to be easier to write using if rather than match - although you can easily fix it by fixing the case in match, I'd probably write something like:
let rec isPrime iterator (n : int) =
if iterator = n / 2 then true
elif iterator = 1 then isPrime (iterator + 1) n
elif n % iterator = 0 then false
else isPrime (iterator + 1) n
Also, you might not want to expose the iterator parameter to the user - you can write the code using a nested function which calls the loop starting with iterator = 2 (and then you don't need the iterator = 1 case at all):
let isPrime (n : int) =
let rec loop iterator =
if iterator = n/2 then true
elif n % iterator = 0 then false
else loop (iterator + 1)
loop 2

polynomial equation standard ml

I'm trying to make a function that will solve a univariante polynomial equation in Standard ML, but it keeps giving me error.
The code is below
(* Eval Function *)
- fun eval (x::xs, a:real):real =
let
val v = x (* The first element, since its not multiplied by anything *)
val count = 1 (* We start counting from the second element *)
in
v + elms(xs, a, count)
end;
(* Helper Function*)
- fun pow (base:real, 0) = 1.0
| pow (base:real, exp:int):real = base * pow(base, exp - 1);
(* A function that solves the equation except the last element in the equation, the constant *)
- fun elms (l:real list, a:real, count:int):real =
if (length l) = count then 0.0
else ((hd l) * pow(a, count)) + elms((tl l), a, count + 1);
now the input should be the coefficient if the polynomial elements and a number to substitute the variable, ie if we have the function 3x^2 + 5x + 1, and we want to substitute x by 2, then we would call the eval as follows:
eval ([1.0, 5.0, 3.0], 2.0);
and the result should be 23.0, but sometimes on different input, its giving me different answers, but on this imput its giving me the following error
uncaught exception Empty raised at:
smlnj/init/pervasive.sml:209.19-209.24
what could be my problem here?
Empty is raised when you run hd or tl on an empty list. hd and tl are almost never used in ML; lists are almost always deconstructed using pattern matching instead; it's much prettier and safer. You don't seem to have a case for empty lists, and I didn't go through your code to figure out what you did, but you should be able to work it out yourself.
After some recursive calls, elms function gets empty list as its argument. Since count is always greater than 0, (length l) = count is always false and the calls hd and tl on empty list are failed right after that.
A good way to fix it is using pattern matching to handle empty lists on both eval and elms:
fun elms ([], _, _) = 0.0
| elms (x::xs, a, count) = (x * pow(a, count)) + elms(xs, a, count + 1)
fun eval ([], _) = 0.0
| eval (x::xs, a) = x + elms(xs, a, 1)

Resources