I created a cumsum function in an R package with rcpp which will cumulatively sum a vector until it hits the user defined ceiling or floor. However, if one wants the cumsum to be bounded above, the user must still specify a floor.
Example:
a = c(1, 1, 1, 1, 1, 1, 1)
If i wanted to cumsum a and have an upper bound of 3, I could cumsum_bounded(a, lower = 1, upper = 3). I would rather not have to specify the lower bound.
My code:
#include <Rcpp.h>
#include <float.h>
#include <cmath>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector cumsum_bounded(NumericVector x, int upper, int lower) {
NumericVector res(x.size());
double acc = 0;
for (int i=0; i < x.size(); ++i) {
acc += x[i];
if (acc < lower) acc = lower;
else if (acc > upper) acc = upper;
res[i] = acc;
}
return res;
}
What I would like:
#include <Rcpp.h>
#include <float.h>
#include <cmath>
#include <climits> //for LLONG_MIN and LLONG_MAX
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector cumsum_bounded(NumericVector x, long long int upper = LLONG_MAX, long long int lower = LLONG_MIN) {
NumericVector res(x.size());
double acc = 0;
for (int i=0; i < x.size(); ++i) {
acc += x[i];
if (acc < lower) acc = lower;
else if (acc > upper) acc = upper;
res[i] = acc;
}
return res;
}
In short, yes its possible but it requires finesse that involves creating an intermediary function or embedding sorting logic within the main function.
In long, Rcpp attributes only supports a limit feature set of values. These values are listed in the Rcpp FAQ 3.12 entry
String literals delimited by quotes (e.g. "foo")
Integer and Decimal numeric values (e.g. 10 or 4.5)
Pre-defined constants including:
Booleans: true and false
Null Values: R_NilValue, NA_STRING, NA_INTEGER, NA_REAL, and NA_LOGICAL.
Selected vector types can be instantiated using the
empty form of the ::create static member function.
CharacterVector, IntegerVector, and NumericVector
Matrix types instantiated using the rows, cols constructor Rcpp::Matrix n(rows,cols)
CharacterMatrix, IntegerMatrix, and NumericMatrix)
If you were to specify numerical values for LLONG_MAX and LLONG_MIN this would meet the criteria to directly use Rcpp attributes on the function. However, these values are implementation specific. Thus, it would not be ideal to hardcode them. Thus, we have to seek an outside solution: the Rcpp::Nullable<T> class to enable the default NULL value. The reason why we have to wrap the parameter type with Rcpp::Nullable<T> is that NULL is a very special and can cause heartache if not careful.
The NULL value, unlike others on the real number line, will not be used to bound your values in this case. As a result, it is the perfect candidate to use on the function call. There are two choices you then have to make: use Rcpp::Nullable<T> as the parameters on the main function or create a "logic" helper function that has the correct parameters and can be used elsewhere within your application without worry. I've opted for the later below.
#include <Rcpp.h>
#include <float.h>
#include <cmath>
#include <climits> //for LLONG_MIN and LLONG_MAX
using namespace Rcpp;
NumericVector cumsum_bounded_logic(NumericVector x,
long long int upper = LLONG_MAX,
long long int lower = LLONG_MIN) {
NumericVector res(x.size());
double acc = 0;
for (int i=0; i < x.size(); ++i) {
acc += x[i];
if (acc < lower) acc = lower;
else if (acc > upper) acc = upper;
res[i] = acc;
}
return res;
}
// [[Rcpp::export]]
NumericVector cumsum_bounded(NumericVector x,
Rcpp::Nullable<long long int> upper = R_NilValue,
Rcpp::Nullable<long long int> lower = R_NilValue) {
if(upper.isNotNull() && lower.isNotNull()){
return cumsum_bounded_logic(x, Rcpp::as< long long int >(upper), Rcpp::as< long long int >(lower));
} else if(upper.isNull() && lower.isNotNull()){
return cumsum_bounded_logic(x, LLONG_MAX, Rcpp::as< long long int >(lower));
} else if(upper.isNotNull() && lower.isNull()) {
return cumsum_bounded_logic(x, Rcpp::as< long long int >(upper), LLONG_MIN);
} else {
return cumsum_bounded_logic(x, LLONG_MAX, LLONG_MIN);
}
// Required to quiet compiler
return x;
}
Test Output
cumsum_bounded(a, 5)
## [1] 1 2 3 4 5 5 5
cumsum_bounded(a, 5, 2)
## [1] 2 3 4 5 5 5 5
Related
Hi I am new to rcpp and computing the inner product of two variables but getting an error "inner_product was not declared in this scope" for the following code:
#include <math.h>
#include <RcppCommon.h>
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector polynomial_kernel(NumericVector x, NumericMatrix Y, double scale = 1, double offset =
1, int d=1){
int n = Y.nrow();
NumericVector kernel(n);
for (int j = 0; j < n; j++){
NumericVector v = Y( j,_ );
double crossProd =innerProduct(x,v);
kernel[j]= pow((scale*crossProd+offset),2);
}
return kernel;
}
Please help me to resolve this problem.
Below is simpler, repaired version of your code that actually compiles. It uses Armadillo types for consistency, and instead of calling a non-existing "inner_product" routines computes the inner product of two vectors the standard way via multiplication.
#include <RcppArmadillo.h> // also pulls in Rcpp.h amd cmath
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]
arma::vec polynomial_kernel(arma::vec x, arma::mat Y,
double scale = 1, double offset = 1, int d=1) {
int n = Y.n_rows;
arma::vec kernel(n);
for (int j = 0; j < n; j++){
arma::rowvec v = Y.row(j);
double crossProd = arma::as_scalar(v * x);
kernel[j] = std::pow((scale*crossProd+offset),2);
}
return kernel;
}
Your example was not a minimallyc complete verifiable example so I cannot show it any data you could have supplied with. On some made up data it seems to work:
R> set.seed(123)
R> polynomial_kernel(runif(4), matrix(rnorm(16),4))
[,1]
[1,] 3.317483
[2,] 3.055690
[3,] 1.208345
[4,] 0.301834
R>
In a very first attempt at creating a C++ function which can be called from R using Rcpp, I have a simple function to compute a minimum spanning tree from a distance matrix using Prim's algorithm. This function has been converted into C++ from a former version in ANSI C (which works fine).
Here it is:
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
DataFrame primlm(const int n, NumericMatrix d)
{
double const din = 9999999.e0;
long int i1, nc, nc1;
double dlarge, dtot;
NumericVector is, l, lp, dist;
l(1) = 1;
is(1) = 1;
for (int i=2; i <= n; i++) {
is(i) = 0;
}
for (int i=2; i <= n; i++) {
dlarge = din;
i1 = i - 1;
for (int j=1; j <= i1; j++) {
for (int k=1; k <= n; k++) {
if (l(j) == k)
continue;
if (d[l(j), k] > dlarge)
continue;
if (is(k) == 1)
continue;
nc = k;
nc1 = l(j);
dlarge = d(nc1, nc);
}
}
is(nc) = 1;
l(i) = nc;
lp(i) = nc1;
dist(i) = dlarge;
}
dtot = 0.e0;
for (int i=2; i <= n; i++){
dtot += dist(i);
}
return DataFrame::create(Named("l") = l,
Named("lp") = lp,
Named("dist") = dist,
Named("dtot") = dtot);
}
When I compile this function using Rcpp under RStudio, I get two warnings, complaining that variables 'nc' and 'nc1' have not been initialized. Frankly, I could not understand that, as it seems to me that both variables are being initialized inside the third loop. Also, why there is no similar complaint about variable 'i1'?
Perhaps it comes as no surprise that, when attempting to call this function from R, using the below code, what I get is a crash of the R system!
# Read test data
df <- read.csv("zygo.csv", header=TRUE)
lonlat <- data.frame(df$Longitude, df$Latitude)
colnames(lonlat) <- c("lon", "lat")
# Compute distance matrix using geosphere library
library(geosphere)
d <- distm(lonlat, lonlat, fun=distVincentyEllipsoid)
# Calls Prim minimum spanning tree routine via Rcpp
library(Rcpp)
sourceCpp("Prim.cpp")
n <- nrow(df)
p <- primlm(n, d)
Here is the dataset I use for testing purposes:
"Scientific name",Locality,Longitude,Latitude Zygodontmys,Bush Bush
Forest,-61.05,10.4 Zygodontmys,Cerro Azul,-79.4333333333,9.15
Zygodontmys,Dividive,-70.6666666667,9.53333333333 Zygodontmys,Hato El
Frio,-63.1166666667,7.91666666667 Zygodontmys,Finca Vuelta
Larga,-63.1166666667,10.55 Zygodontmys,Isla
Cebaco,-81.1833333333,7.51666666667 Zygodontmys,Kayserberg
Airstrip,-56.4833333333,3.1 Zygodontmys,Limao,-60.5,3.93333333333
Zygodontmys,Montijo Bay,-81.0166666667,7.66666666667
Zygodontmys,Parcela 200,-67.4333333333,8.93333333333 Zygodontmys,Rio
Chico,-65.9666666667,10.3166666667 Zygodontmys,San Miguel
Island,-78.9333333333,8.38333333333
Zygodontmys,Tukuko,-72.8666666667,9.83333333333
Zygodontmys,Urama,-68.4,10.6166666667
Zygodontmys,Valledup,-72.9833333333,10.6166666667
Could anyone give me a hint?
The initializations of ncand nc1 are never reached if one of the three if statements is true. It might be that this is not possible with your data, but the compiler has no way knowing that.
However, this is not the reason for the crash. When I run your code I get:
Index out of bounds: [index=1; extent=0].
This comes from here:
NumericVector is, l, lp, dist;
l(1) = 1;
is(1) = 1;
When declaring a NumericVector you have to tell the required size if you want to assign values by index. In your case
NumericVector is(n), l(n), lp(n), dist(n);
might work. You have to analyze the C code carefully w.r.t. memory allocation and array boundaries.
Alternatively you could use the C code as is and use Rcpp to build a wrapper function, e.g.
#include <array>
#include <Rcpp.h>
using namespace Rcpp;
// One possibility for the function signature ...
double prim(const int n, double *d, double *l, double *lp, double *dist) {
....
}
// [[Rcpp::export]]
List primlm(NumericMatrix d) {
int n = d.nrow();
std::array<double, n> lp; // adjust size as needed!
std::array<double, n> dist; // adjust size as needed!
double dtot = prim(n, d.begin(), l.begin(), lp.begin(), dist.begin());
return List::create(Named("l") = l,
Named("lp") = lp,
Named("dist") = dist,
Named("dtot") = dtot);
}
Notes:
I am returning a List instead of a DataFrame since dtot is a scalar value.
The above code is meant to illustrate the idea. Most likely it will not work without adjustments!
I have to convert individual elements of Rcpp::IntegerVector into their string form so I can add another string to them. My code looks like this:
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
Rcpp::String int_to_char_single_fun(int x){
// Obtain environment containing function
Rcpp::Environment base("package:base");
// Make function callable from C++
Rcpp::Function int_to_string = base["as.character"];
// Call the function and receive its list output
Rcpp::String res = int_to_string(Rcpp::_["x"] = x); // example of original param
// Return test object in list structure
return (res);
}
//[[Rcpp::export]]
Rcpp::CharacterVector add_chars_to_int(Rcpp::IntegerVector x){
int n = x.size();
Rcpp::CharacterVector BASEL_SEG(n);
for(int i = 0; i < n; i++){
BASEL_SEG[i] = "B0" + int_to_char_single_fun(x[i]);
}
return BASEL_SEG;
}
/*** R
int_vec <- as.integer(c(1,2,3,4,5))
BASEL_SEG_char <- add_chars_to_int(int_vec)
*/
I get the following error:
no match for 'operator+'(operand types are 'const char[3]' and 'Rcpp::String')
I cannot import any C++ libraries like Boost to do this and can only use Rcpp functionality to do this. How do I add string to integer here in Rcpp?
We basically covered this over at the Rcpp Gallery when we covered Boost in an example for lexical_cast (though that one went the other way). So rewriting it quickly yields this:
Code
// We can now use the BH package
// [[Rcpp::depends(BH)]]
#include <Rcpp.h>
#include <boost/lexical_cast.hpp>
using namespace Rcpp;
using boost::lexical_cast;
using boost::bad_lexical_cast;
// [[Rcpp::export]]
std::vector<std::string> lexicalCast(std::vector<int> v) {
std::vector<std::string> res(v.size());
for (unsigned int i=0; i<v.size(); i++) {
try {
res[i] = lexical_cast<std::string>(v[i]);
} catch(bad_lexical_cast &) {
res[i] = "(failed)";
}
}
return res;
}
/*** R
lexicalCast(c(42L, 101L))
*/
Output
R> Rcpp::sourceCpp("/tmp/lexcast.cpp")
R> lexicalCast(c(42L, 101L))
[1] "42" "101"
R>
Alternatives
Because converting numbers to strings is as old as computing itself you could also use:
itoa()
snprintf()
streams
and probably a few more I keep forgetting.
As others have pointed out, there are several ways to do this. Here are two very straightforward approaches.
1. std::to_string
Rcpp::CharacterVector add_chars_to_int1(Rcpp::IntegerVector x){
int n = x.size();
Rcpp::CharacterVector BASEL_SEG(n);
for(int i = 0; i < n; i++){
BASEL_SEG[i] = "B0" + std::to_string(x[i]);
}
return BASEL_SEG;
}
2. Creating a new Rcpp::CharacterVector
Rcpp::CharacterVector add_chars_to_int2(Rcpp::IntegerVector x){
int n = x.size();
Rcpp::CharacterVector BASEL_SEG(n);
Rcpp::CharacterVector myIntToStr(x.begin(), x.end());
for(int i = 0; i < n; i++){
BASEL_SEG[i] = "B0" + myIntToStr[i];
}
return BASEL_SEG;
}
Calling them:
add_chars_to_int1(int_vec) ## using std::to_string
[1] "B01" "B02" "B03" "B04" "B05"
add_chars_to_int2(int_vec) ## converting to CharacterVector
[1] "B01" "B02" "B03" "B04" "B05"
I was trying to use rcpp/armadillo with openmp to speed up a loop in R. The loop takes a matrix with each row containing indices of a location vector(or matrix if it's 2D locations) as input(and other matrix/vec to be used). Inside the loop, I extracted each row of input indices matrix and find the corresponding locations, calculate distance matrix, and covariance matrix, do cholesky and backsolve, save the backsolve results to a new matrix. Here is the rcpp code:
`#include <iostream>
#include <RcppArmadillo.h>
#include <omp.h>
#include <Rcpp.h>
// [[Rcpp::plugins(openmp)]]
using namespace Rcpp;
using namespace arma;
using namespace std;
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]
mat NZentries_new2 (int m, int nnp, const mat& locs, const umat& revNNarray, const mat& revCondOnLatent, const vec& nuggets, const vec covparms){
// initialized the output matrix
mat Lentries=zeros(nnp,m+1);
// initialized objects in parallel part
int n0; //number of !is_na elements
uvec inds;//
vec revCon_row;//
uvec inds00;//
vec nug;//
mat covmat;//
vec onevec;//
vec M;//
mat dist;//
int k;//
omp_set_num_threads(2);// selects the number of cores to use.
#pragma omp parallel for shared(locs,revNNarray,revCondOnLatent,nuggets,nnp,m,Lentries) private(k,M,dist,onevec,covmat,nug,n0,inds,revCon_row,inds00) default(none) schedule(static)
for (k = 0; k < nnp; k++) {
// extract a row to work with
inds=revNNarray.row(k).t();
revCon_row=revCondOnLatent.row(k).t();
if (k < m){
n0=k+1;
} else {
n0=m+1;
}
// extract locations
inds00=inds(span(m+1-n0,m))-ones<uvec>(n0);
nug=nuggets.elem(inds00) % (ones(n0)-revCon_row(span(m+1-n0,m))); // vec is vec, cannot convert to mat
dist=calcPWD2(locs.rows(inds00));
#pragma omp critical
{
//calculate covariance matrix
covmat= MaternFun(dist,covparms) + diagmat(nug) ; // summation from arma
}
// get last row of inverse Cholesky
onevec = zeros(n0);
onevec[n0-1] = 1;
M=solve(chol(covmat,"upper"),onevec);
// save the entries to matrix
Lentries(k,span(0,n0-1)) = M.t();
}
return Lentries;
}`
The current version works fine but speed is slow(almost the same as no parallel version), if I take the line in omp critical bracket out, it cause segment fault and R will be crashed. This MaterFun is a function I defined as below with several other small functions. So my question is that why MaternFun has to stay in the critical part.
// [[Rcpp::export]]
mat MaternFun( mat distmat, vec covparms ){
int d1 = distmat.n_rows;
int d2 = distmat.n_cols;
int j1;
int j2;
mat covmat(d1,d2);
double scaledist;
double normcon = covparms(0)/(pow(2.0,covparms(2)-1)*Rf_gammafn(covparms(2)));
for (j1 = 0; j1 < d1; j1++){
for (j2 = 0; j2 < d2; j2++){
if ( distmat(j1,j2) == 0 ){
covmat(j1,j2) = covparms(0);
} else {
scaledist = distmat(j1,j2)/covparms(1);
covmat(j1,j2) = normcon*pow( scaledist, covparms(2) )*
Rf_bessel_k(scaledist,covparms(2),1.0);
}
}
}
return covmat;
}
// [[Rcpp::export]]
double dist2(double lat1,double long1,double lat2,double long2) {
double dist = sqrt(pow(lat1 - lat2, 2) + pow(long1 - long2, 2)) ;
return (dist) ;
}
// [[Rcpp::export]]
mat calcPWD2( mat x) {//Rcpp::NumericMatrix
int outrows = x.n_rows ;
int outcols = x.n_rows ;
mat out(outrows, outcols) ;
for (int arow = 0 ; arow < outrows ; arow++) {
for (int acol = 0 ; acol < outcols ; acol++) {
out(arow, acol) = dist2(x(arow, 0),x(arow, 1),
x(acol, 0),x(acol, 1)) ; //extract element from mat
}
}
return (out) ;
}
Here is some sample inputs for testing the MaterFun in R:
library(fields)
distmat=rdist(1:5) # distance matrix
covparms=c(1,0.2,1.5)
The issue is there are two calls to R math functions (Rf_bessel_k and Rf_gammafn) that require the access to be single threaded instead of parallel.
To get around this, let's add a dependency on boost via BH to obtain the cyl_bessel_k and tgamma functions. Alternatively, there is always the option of reimplementing R's besselK and gamma in C++ so it doesn't use the single-threaded R variant.
This gives:
#include <Rcpp.h>
#include <boost/math/special_functions/bessel.hpp>
#include <boost/math/special_functions/gamma.hpp>
// [[Rcpp::depends(BH)]]
// [[Rcpp::export]]
double besselK_boost(double x, double v) {
return boost::math::cyl_bessel_k(v, x);
}
// [[Rcpp::export]]
double gamma_fn_boost(double x) {
return boost::math::tgamma(x);
}
Test Code
x0 = 9.536743e-07
nu = -10
all.equal(besselK(x0, nu), besselK_boost(x0, nu))
# [1] TRUE
x = 2
all.equal(gamma(x), gamma_fn_boost(x))
# [1] TRUE
Note: The order of parameters for boost's variant differs from R's:
cyl_bessel_k(v, x)
Rf_bessel_k(x, v, expon.scaled = FALSE)
From here, we can modify the MaternFun. Unfortunately, because calcPWD2 is missing, the furthest we can go is switching to use boost and incorporating in OpenMP protections.
#include <RcppArmadillo.h>
#include <boost/math/special_functions/bessel.hpp>
#include <boost/math/special_functions/gamma.hpp>
#ifdef _OPENMP
#include <omp.h>
#endif
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::depends(BH)]]
// [[Rcpp::plugins(openmp)]]
// [[Rcpp::export]]
arma::mat MaternFun(arma::mat distmat, arma::vec covparms) {
int d1 = distmat.n_rows;
int d2 = distmat.n_cols;
int j1;
int j2;
arma::mat covmat(d1,d2);
double scaledist;
double normcon = covparms(0) /
(pow(2.0, covparms(2) - 1) * boost::math::tgamma(covparms(2)));
for (j1 = 0; j1 < d1; ++j1){
for (j2 = 0; j2 < d2; ++j2){
if ( distmat(j1, j2) == 0 ){
covmat(j1, j2) = covparms(0);
} else {
scaledist = distmat(j1, j2)/covparms(1);
covmat(j1, j2) = normcon * pow( scaledist, covparms(2) ) *
boost::math::cyl_bessel_k(covparms(2), scaledist);
}
}
}
return covmat;
}
Deep inside an MCMC algorithm I need to multiply a user-provided list of matrices with a vector, i.e., the following piece of Rcpp and RcppArmadillo code is called multiple times per MCMC iteration:
List mat_vec1 (const List& Mats, const vec& y) {
int n_list = Mats.size();
Rcpp::List out(n_list);
for (int i = 0; i < n_list; ++i) {
out[i] = as<mat>(Mats[i]) * y;
}
return(out);
}
The user-provided list Mats remains fixed during the MCMC, vector y changes in each iteration. Efficiency is paramount and I'm trying to see if I can speed up the code by not having to convert the elements of Mats to arma::mat that many times (it needs to be done only once). I tried the following approach
List arma_Mats (const List& Mats) {
int n_list = Mats.size();
Rcpp::List res(n_list);
for (int i = 0; i < n_list; ++i) {
res[i] = as<mat>(Mats[i]);
}
return(res);
}
and then
List mat_vec2 (const List& Mats, const vec& y) {
int n_list = Mats.size();
Rcpp::List aMats = arma_Mats(Mats);
Rcpp::List out(n_list);
for (int i = 0; i < n_list; ++i) {
out[i] = aMats[i] * y;
}
return(out);
}
but this does not seem to work. Any pointers of alternative/better solutions are much welcome.
Ok, I basically wrote the answer in the comment but it then occurred to me that we already provide a working example in the stub created by RcppArmadillo.package.skeleton():
// [[Rcpp::export]]
Rcpp::List rcpparma_bothproducts(const arma::colvec & x) {
arma::mat op = x * x.t();
double ip = arma::as_scalar(x.t() * x);
return Rcpp::List::create(Rcpp::Named("outer")=op,
Rcpp::Named("inner")=ip);
}
This returns a list the outer product (a matrix) and the inner product (a scalar) of the given vector.
As for what is fast and what is not: I recommend to not conjecture but rather profile and measure as much as you can. My inclination would be to do more (standalone) C++ code in Armadillo and only return at the very end minimizing conversions.