How do I create an addition table in R? - r

This should be easy but I can't think of a more elegant way to create an addition table, such as:
x <- 1:3
cbind(x + x[1], x + x[2], x + x[3])
[,1] [,2] [,3]
[1,] 2 3 4
[2,] 3 4 5
[3,] 4 5 6
I tried various versions of lapply() to no avail.

You can either use outer or sapply or expand.grid (in combination with rowSums)
x = 1:3
outer(x, x, "+")
# [,1] [,2] [,3]
#[1,] 2 3 4
#[2,] 3 4 5
#[3,] 4 5 6
sapply(seq_along(x), function(i) sapply(seq_along(x), function(j) x[i]+x[j]))
# [,1] [,2] [,3]
#[1,] 2 3 4
#[2,] 3 4 5
#[3,] 4 5 6
matrix(rowSums(expand.grid(x, x)), ncol = length(x))
# [,1] [,2] [,3]
#[1,] 2 3 4
#[2,] 3 4 5
#[3,] 4 5 6

You could do this:
m <- diag(length(x))
m[] <- x[col(m)] + x[row(m)]
# [,1] [,2] [,3]
#[1,] 2 3 4
#[2,] 3 4 5
#[3,] 4 5 6
OR
matrix(x,length(x),length(x),byrow = TRUE) + x

Related

Creating a new dataframe with values calculated from another dataframe [duplicate]

I have a question about adding up the column of the matrix
for example:
I have a matrix
[,1] [,2] [,3]
[1,] 1 3 1
[2,] 2 4 2
I want it to be
[,1] [,2] [,3]
[1,] 1 4 5
[2,] 2 6 8
We can apply cumsum on each row by looping over the rows with apply and MARGIN specified as 1 and transpose the output
t(apply(m1, 1, cumsum))
# [,1] [,2] [,3]
#[1,] 1 4 5
#[2,] 2 6 8
Or with a for loop
for(i in seq_len(ncol(m1))[-1]) m1[,i] <- m1[, i] + m1[, i-1]
Or another option is to split it a list of vectors with asplit and then Reduce with + and accumulate = TRUE
do.call(cbind, Reduce(`+`, asplit(m1, 2), accumulate = TRUE))
# [,1] [,2] [,3]
#[1,] 1 4 5
#[2,] 2 6 8
or with a convenient function rowCumsums from matrixStats
library(matrixStats)
rowCumsums(m1)
# [,1] [,2] [,3]
#[1,] 1 4 5
#[2,] 2 6 8
data
m1 <- cbind(1:2, 3:4, 1:2)

how to add up the column (cumulative sum) of the matrix in R?

I have a question about adding up the column of the matrix
for example:
I have a matrix
[,1] [,2] [,3]
[1,] 1 3 1
[2,] 2 4 2
I want it to be
[,1] [,2] [,3]
[1,] 1 4 5
[2,] 2 6 8
We can apply cumsum on each row by looping over the rows with apply and MARGIN specified as 1 and transpose the output
t(apply(m1, 1, cumsum))
# [,1] [,2] [,3]
#[1,] 1 4 5
#[2,] 2 6 8
Or with a for loop
for(i in seq_len(ncol(m1))[-1]) m1[,i] <- m1[, i] + m1[, i-1]
Or another option is to split it a list of vectors with asplit and then Reduce with + and accumulate = TRUE
do.call(cbind, Reduce(`+`, asplit(m1, 2), accumulate = TRUE))
# [,1] [,2] [,3]
#[1,] 1 4 5
#[2,] 2 6 8
or with a convenient function rowCumsums from matrixStats
library(matrixStats)
rowCumsums(m1)
# [,1] [,2] [,3]
#[1,] 1 4 5
#[2,] 2 6 8
data
m1 <- cbind(1:2, 3:4, 1:2)

Data reshape (from vector to array) in R

I want you to help me about R code.
I have an object, M(list & array). Like this.
object1 <- array(0, c(2,2,2))
M <- list(object1, object1)
Then, I want to reshape m(vector) into M structure.
m <- c(1:16)
When M is list & matrix object, I can use 'relist' function. However, I can't use it to array object. How can I reshape m into M structure??
We can specify the dims in array and use relist
lapply(relist(m, skeleton = M), array, dim(object1))
#[[1]]
#, , 1
# [,1] [,2]
#[1,] 1 3
#[2,] 2 4
#, , 2
# [,1] [,2]
#[1,] 5 7
#[2,] 6 8
#[[2]]
#, , 1
# [,1] [,2]
#[1,] 9 11
#[2,] 10 12
#, , 2
# [,1] [,2]
#[1,] 13 15
#[2,] 14 16
Or another option is
lapply(setNames(split(m, (seq_along(m)-1) %/% lengths(M)[1]), NULL), array, dim(object1))
#[[1]]
#, , 1
# [,1] [,2]
#[1,] 1 3
#[2,] 2 4
#, , 2
# [,1] [,2]
#[1,] 5 7
#[2,] 6 8
#[[2]]
#, , 1
# [,1] [,2]
#[1,] 9 11
#[2,] 10 12
#, , 2
# [,1] [,2]
#[1,] 13 15
#[2,] 14 16
NOTE: Both the solutions are one-line solutions

In R, using `unique()` with extra conditions to extract submatrices: easy solution without plyr

In R, let M be the matrix
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 1 3 3
[3,] 2 4 5
[4,] 6 7 8
I would like to select the submatrix m
[,1] [,2] [,3]
[1,] 1 3 3
[2,] 2 4 5
[3,] 6 7 8
using unique on M[,1], specifying to keep the row with the maximal value in the second columnM.
At the end, the algorithm should keep row [2,] from the set \{[1,], [2,]\}. Unfortunately unique() returns me a vector with actual values, and not row numbers, after elimination of duplicates.
Is there a way to get the asnwer without the package plyr?
Thanks a lot,
Avitus
Here's how:
is.first.max <- function(x) seq_along(x) == which.max(x)
M[as.logical(ave(M[, 2], M[, 1], FUN = is.first.max)), ]
# [,1] [,2] [,3]
# [1,] 1 3 3
# [2,] 2 4 5
# [3,] 6 7 8
You're looking for duplicated.
m <- as.matrix(read.table(text="1 2 3
1 3 3
2 4 5
6 7 8"))
m <- m[order(m[,2], decreasing=TRUE), ]
m[!duplicated(m[,1]),]
# V1 V2 V3
# [1,] 6 7 8
# [2,] 2 4 5
# [3,] 1 3 3
Not the most efficient:
M <- matrix(c(1,1,2,6,2,3,4,7,3,3,5,8),4)
t(sapply(unique(M[,1]),function(i) {temp <- M[M[,1]==i,,drop=FALSE]
temp[which.max(temp[,2]),]
}))
# [,1] [,2] [,3]
#[1,] 1 3 3
#[2,] 2 4 5
#[3,] 6 7 8

Rotate a Matrix in R by 90 degrees clockwise

I have a matrix in R like this:
|1|2|3|
|1|2|3|
|1|2|3|
Is there an easy way to rotate the entire matrix by 90 degrees clockwise to get these results?
|1|1|1|
|2|2|2|
|3|3|3|
and again rotating 90 degrees:
|3|2|1|
|3|2|1|
|3|2|1|
?
t does not rotate the entries, it flips along the diagonal:
x <- matrix(1:9, 3)
x
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
t(x)
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6
## [3,] 7 8 9
90 degree clockwise rotation of R matrix:
You need to also reverse the columns prior to the transpose:
rotate <- function(x) t(apply(x, 2, rev))
rotate(x)
## [,1] [,2] [,3]
## [1,] 3 2 1
## [2,] 6 5 4
## [3,] 9 8 7
rotate(rotate(x))
## [,1] [,2] [,3]
## [1,] 9 6 3
## [2,] 8 5 2
## [3,] 7 4 1
rotate(rotate(rotate(x)))
## [,1] [,2] [,3]
## [1,] 7 8 9
## [2,] 4 5 6
## [3,] 1 2 3
rotate(rotate(rotate(rotate(x))))
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
90 degree counter clockwise rotation of R matrix:
Doing the transpose prior to the reverse is the same as rotate counter clockwise:
foo = matrix(1:9, 3)
foo
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
foo <- apply(t(foo),2,rev)
foo
## [,1] [,2] [,3]
## [1,] 7 8 9
## [2,] 4 5 6
## [3,] 1 2 3
m <- matrix(rep(1:3,each=3),3)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 1 2 3
[3,] 1 2 3
t(m[nrow(m):1,])
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3
m[nrow(m):1,ncol(m):1]
[,1] [,2] [,3]
[1,] 3 2 1
[2,] 3 2 1
[3,] 3 2 1
t(m)[ncol(m):1,]
[,1] [,2] [,3]
[1,] 3 3 3
[2,] 2 2 2
[3,] 1 1 1
An easy way to rotate a matrix by 180° is this:
m <- matrix(1:8,ncol=4)
# [,1] [,2] [,3] [,4]
# [1,] 1 3 5 7
# [2,] 2 4 6 8
rot <- function(x) "[<-"(x, , rev(x))
rot(m)
# [,1] [,2] [,3] [,4]
# [1,] 8 6 4 2
# [2,] 7 5 3 1
rot(rot(m))
# [,1] [,2] [,3] [,4]
# [1,] 1 3 5 7
# [2,] 2 4 6 8
R methods to rotate a matrix 90 degrees and -90 degrees
#first reverse, then transpose, it's the same as rotate 90 degrees
rotate_clockwise <- function(x) { t( apply(x, 2, rev))}
#first transpose, then reverse, it's the same as rotate -90 degrees:
rotate_counter_clockwise <- function(x) { apply( t(x),2, rev)}
#or if you want a library to help make things easier to read:
#install.packages("pracma")
library(pracma)
rotate_one_eighty <- function(x) { rot90(x, 2) }
rotate_two_seventy <- function(x) { rot90(x, -1) }
foo = matrix(1:9, 3)
foo
foo = rotate_clockwise(foo)
foo
foo = rotate_counter_clockwise(foo)
foo
foo = rotate_one_eighty(foo)
foo
Prints:
[,1] [,2] [,3]
[1,] 1 4 7 #original matrix
[2,] 2 5 8
[3,] 3 6 9
[,1] [,2] [,3]
[1,] 3 2 1
[2,] 6 5 4 #rotated 90 degrees
[3,] 9 8 7
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8 #rotated -90 degrees
[3,] 3 6 9
[,1] [,2] [,3]
[1,] 9 6 3
[2,] 8 5 2 #rotated 180 degrees
[3,] 7 4 1
Notice that rotating a matrix clockwise, then counterclockwise returns the numbers to their original position, then rotating by 180 is like rotating by 90 twice.
Or combined in a single function (based on Eric Leschinski):
rotate <- function(x, clockwise=T) {
if (clockwise) { t( apply(x, 2, rev))
} else {apply( t(x),2, rev)}
}

Resources