How do I create hard-stop backgrounds in SASS/SCSS? - css
I've created a gradient that has 11 hard stops, creating the illusion of 11 separate boxes.
As it stands now, there's a % of the width hard-coded into the linear gradient. I can't help but think there's a much more efficient way (via SCSS?) rather than coding this out as such:
.color-bar {
background: linear-gradient( to left,
rgba(0, 0, 0, 0) 0%,
rgba(0, 0, 0, 0) 9.09%,
rgba(0, 0, 0, .1) 9.09%,
rgba(0, 0, 0, .1) 18.18%,
rgba(0, 0, 0, .2) 18.18%,
rgba(0, 0, 0, .2) 27.27%,
rgba(0, 0, 0, .3) 27.27%,
rgba(0, 0, 0, .3) 36.36%,
rgba(0, 0, 0, .4) 36.36%,
rgba(0, 0, 0, .4) 45.45%,
rgba(0, 0, 0, .5) 45.45%,
rgba(0, 0, 0, .5) 54.54%,
rgba(0, 0, 0, .6) 54.54%,
rgba(0, 0, 0, .6) 63.63%,
rgba(0, 0, 0, .7) 63.63%,
rgba(0, 0, 0, .7) 72.72%,
rgba(0, 0, 0, .8) 72.72%,
rgba(0, 0, 0, .8) 81.81%,
rgba(0, 0, 0, .9) 81.81%,
rgba(0, 0, 0, 1) 90.09%,
rgba(0, 0, 0, 1) 100%);
height: 50px;
width: 550px;
}
<div class="color-bar"></div>
Here's a rough Codepen in action.
Thanks for any input you can provide.
Took me a bit of fiddling, but here it is:
#function hard-stops($direction, $from, $to, $steps) {
$output: unquote("linear-gradient(") + $direction;
#for $i from 0 through $steps {
$output: $output + ', '
+ mix($from, $to, $i*100/$steps) + ' '
+ percentage($i/($steps+1)) + ', '
+ mix($from, $to, $i*100/$steps) + ' '
+ percentage(($i+1)/($steps+1));
}
$output: $output + ')';
#return $output;
}
.color-bar {
height: 50px;
width: 550px;
background: hard-stops(to left, rgba(0,0,0,1), rgba(0,0,0,0), 10);
}
jsFiddle.
The limitation is: one needs to pass mix-able colors (black, for example, is not, no idea why - I'm not much of an expert in sass).
Related
For loop to get rowmeans of each 8 columns in a large dataframe
I have a large data.frame with 8 columns per sample with 200 samples. I need to get row-means of each 8. rowMeans(mat[j,1:8]), rowMeans(mat[j,9:16]), rowMeans(mat[j,17:24])... rownames are gene names. I used the following: for(j in 1:nrow(mat)){ for (i in 1:ncol(mat)/8) { row_m[j, i]<- rowMeans(mat[j,c(i:i+7)]) } } Dataframe sample data, here I have shown 9 columns, should get the mean from first 8 (AM) and then repeat for other samples.... dput(head(deconv3[1:9], 20)) structure(list(AM.amplifying.intestine = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), AM43.5.epithelial.of.mammary = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.76506, 0, 0, 1406.48, 0, 196.401, 0, 1996.5, 0), AM.epithelium.of.bronchus = c(549.649, 1647.63, 0, 0, 0, 0, 0, 0, 699.868, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), AM.epithelium.of.intestine = c(0, 0, 0, 0, 0, 0, 572.85, 59.2414, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), AM.epithelium.of.trachea = c(0, 0, 0, 0, 199.549, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), AM.kidney.epithelial.cell = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.32926, 0, 0, 333.592, 0), AM.medullary.thymic.epithelial.cell = c(126.847, 0, 0, 0, 0, 0, 0, 0, 0, 63.1822, 0, 0, 0, 0, 0, 0, 0, 26.0598, 0, 11.117), AM.myoepithelial.cell = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), AK.amplifying.intestine = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)), row.names = c("A1BG", "A2M", "NAT2", "SERPINA3", "AANAT", "ABAT", "ABCA2", "ABCA3", "ABCB7", "ABCA4", "ABO", "ACACA", "ACADL", "ACADS", "ACADSB", "ACAT1", "ACLY", "ACR", "ACP1", "ACRV1"), class = "data.frame") But it does not work. I am wondering if you could help me with this. Thanks in advance!
sample_length <- 8 row_m <- matrix(nrow=dim(mat)[1], ncol = ncol(mat)/sample_length) for (j in 1:nrow(mat)) { for (i in seq(from = 1, to = ncol(mat), by = sample_length)) { row_m[j, (sample_length - 1 + i)/sample_length] <- mean(as.numeric(mat[j, i:(i + (sample_length-1))])) } }
Try: row_m <- do.call(cbind, lapply(1:(NCOL(mat) %/% 8 + 1), function(i){ rowMeans(d[, ((1:NCOL(mat) - 1) %/% 8 + 1) == i, drop=F])}))
How to map a two-dimensional density plot onto a photograph [duplicate]
This question already has an answer here: R: add alpha-value to png-image (1 answer) Closed 2 years ago. I have a two-dimensional density plot which I need to overlay onto a photograph. I can read-in the picture with the package rtiff: install.packages("rtiff") library(rtiff) x <- readTiff('F01_screenshot.tiff') plot(x) The data for the density plot is a very large dataframe called eet2 (see reproducible data below); the code for the density plot is this: library(ggplot2) ggplot(eet2, aes(x=X, y= Y)) + geom_point() + stat_density2d() I can easily produce both plots separately but don't know how to overlay the density plot onto the photograph in such a way that the density plot is scaled down proportionately to fit the picture. Any help is much appreciated! Reproducible data: eet2 <- dput(eet1[1:1000, 2:3]) structure(list(X = c(0, 177.378, 27.289, 0, 852.719, 0, 852.813, 71.068, 0, 144.875, 0, 140.385, 21.598, 0, 170.325, 0, 136.746, 21.038, 0, 146.279, 0, 141.86, 11.822, 0, 146.078, 0, 137.681, 21.182, 0, 148.867, 0, 132.886, 20.444, 0, 146.129, 0, 80.251, 6.688, 0, 141.08, 0, 149.789, 23.044, 0, 74.097, 0, 141.182, 21.72, 0, 83.075, 0, 81.192, 6.766, 0, 849.784, 0, 153.96, 23.686, 0, 78.374, 0, 142.782, 21.967, 0, 72.929, 0, 142.922, 11.91, 0, 83.639, 0, 143.912, 22.14, 0, 134.809, 0, 142.826, 21.973, 0, 132.7, 0, 85.876, 7.156, 0, 138.935, 0, 80.951, 12.454, 0, 144.385, 0, 141.716, 21.802, 0, 76.768, 0, 74.406, 6.2, 0, 134.444, 0, 155.341, 23.899, 0, 189.336, 0, 224.517, 34.541, 0, 207.46, 0, 216.122, 18.01, 0, 204.552, 0, 208.524, 32.081, 0, 207.513, 0, 203.162, 31.256, 0, 197.578, 0, 204.362, 17.03, 0, 195.223, 0, 956.396, 147.138, 0, 201.969, 0, 224.989, 34.614, 0, 214.064, 0, 140.374, 11.698, 0, 140.235, 0, 958.501, 147.462, 0, 141.898, 0, 143.337, 22.052, 0, 955.901, 0, 954.965, 79.58, 0, 131.323, 0, 223.214, 34.341, 0, 952.203, 0, 143.102, 22.016, 0, 935.525, 0, 918.238, 76.52, 0, 123.337, 0, 127.93, 19.682, 0, 915.755, 0, 128.336, 19.744, 0, 913.158, 0, 120.076, 10.006, 0, 911.196, 0, 124.387, 19.136, 0, 911.631, 0, 911.389, 140.214, 0, 910.433, 0, 119.375, 9.948, 0, 115.898, 0, 910.073, 140.011, 0, 915.461, 0, 965.025, 148.465, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1125.565, 0, 1074.389, 165.291, 0, 1061.611, 0, 1051.23, 161.728, 0, 1044.3, 0, 269.733, 22.478, 0, 245.869, 0, 206.934, 234.525, 245.609, 250.874, 251.576, 260.164, 262.974, 263.161, 269.25, 262.693, 261.818, 265.634, 266.479, 266.592, 266.39, 262.751, 262.508, 265.093, 262.666, 262.343, 1059.856, 1075.848, 1077.98, 1068.255, 1065.442, 1065.255, 1071.821, 1072.292, 1072.355, 1073.788, 1072.572, 1072.41, 1074.295, 1074.487, 1074.499, 1078.434, 1080.074, 1080.293, 1081.104, 1080.014, 1079.869, 1080.261, 1080.181, 1080.175, 1078.568, 1079.422, 1079.536, 1078.84, 1077.459, 1077.275, 1077.805, 1076.787, 1076.719, 1077.199, 1076.045, 1075.891, 1077.362, 1076.663, 1076.569, 1077.942, 1078.842, 1078.902, 1078.713, 1080.023, 1080.198, 1080.764, 1081.553, 1081.659, 1081.946, 1082.445, 1082.479, 1083.987, 1084.113, 1084.13, 1084.741, 1085.809, 1085.952, 1085.031, 1084.708, 1084.686, 1085.901, 1085.266, 1085.181, 1085.513, 1085.159, 1085.112, 1088.024, 1088.29, 1088.308, 1088.889, 1088.327, 1088.252, 1069.543, 1065.069, 1064.472, 1067.409, 1068.075, 1068.119, 1068.377, 1070.019, 1070.238, 1072.384, 1071.454, 1071.33, 1072.31, 1069.704, 1069.53, 1068.856, 1073.986, 1074.67, 1075.824, 1077.42, 1077.633, 1080.095, 1082.62, 1082.788, 1087.112, 1090.026, 1090.414, 1094.654, 1098.678, 1099.215, 1103.801, 1097.674, 1097.266, 1110.129, 1105.4, 1104.769, 1115.638, 1115.922, 1115.96, 1115.612, 1115.278, 1115.256, 1114.682, 1112.96, 1112.73, 1063.573, 948.249, 932.873, 844.512, 834.23, 833.545, 865.203, 867.402, 867.695, 838.499, 864.3, 867.74, 837.215, 864.187, 865.985, 0, 760.653, 862.073, 861.199, 860.757, 860.699, 0, 861.681, 71.807, 0, 851.287, 855.415, 855.965, 859.554, 864.523, 865.185, 868.109, 873.22, 873.561, 845.881, 882.877, 887.81, 893.391, 899.782, 900.634, 908.492, 56.781, 0, 0, 0, 0, 0, 0, 0, 319.09, 0, 0, 0, 0, 0, 0, 0, 0, 0, 696.905, 0, 704.008, 58.667, 0, 0, 0, 0, 677.276, 673.676, 673.195, 673.45, 671.209, 671.06, 672.474, 674.07, 674.283, 674.896, 656.33, 653.855, 678.654, 681.884, 682.099, 684.933, 715.507, 719.584, 735.659, 1290.244, 1364.188, 1362.632, 1366.322, 1366.568, 1371.973, 1364.1, 1363.051, 1361.383, 812.325, 739.117, 734.716, 1322.199, 1361.365, 730.422, 731.132, 731.227, 729.084, 724.164, 723.507, 726.199, 725.939, 725.922, 725.437, 1278.917, 1352.714, 726.791, 1281.431, 1355.383, 1366.558, 764.435, 724.294, 725.46, 724.544, 724.422, 724.178, 1288.932, 1364.232, 723.902, 680.495, 677.601, 724.172, 722.856, 722.681, 735.236, 743.706, 744.835, 554.779, 735.387, 747.427, 724.914, 720.25, 719.628, 721.122, 742.971, 745.884, 742.171, 737.947, 737.665, 729.207, 808.032, 818.542, 905.216, 106.496, 0, 1169.534, 0, 1195.852, 99.654, 0, 1236.396, 0, 0, 0, 0, 1190.473, 183.15, 0, 1143.686, 1132.754, 1132.025, 1123.856, 1103.6, 1100.9, 1083.716, 1079.191, 1078.588, 1083.785, 1070.395, 1069.503, 1066.885, 1065.121, 1064.885, 1064.401, 1065.285, 1065.403, 1075.009, 1076.036, 1076.105, 1086.308, 1075.821, 1074.423, 1073.282, 126.268, 0, 1092.281, 0, 1019.684, 1087.663, 286.389, 33.693, 0, 1117.064, 0, 1114.254, 171.424, 0, 1111.518, 0, 1110.347, 92.529, 0, 1077.293, 0, 1107.754, 170.424, 0, 1107.136, 0, 1076.571, 165.626, 0, 1067.475, 0, 1110.71, 92.559, 0, 274.852, 0, 280.654, 43.177, 0, 280.278, 271.773, 270.639, 0, 1060.434, 88.369, 0, 1054.964, 1047.876, 1046.931, 1052.977, 1064.93, 1066.524, 1061.181, 1069.339, 1069.883, 275.888, 970.662, 1063.299, 268.308, 974.232, 1068.355, 1044.757, 1065.286, 1066.655, 1076.68, 1085.54, 1086.721, 1088.216, 1083.409, 1082.768, 1087.272, 1087.283, 1087.283, 1086.689, 1087.19, 1087.257, 1089.988, 1087.837, 1087.55, 272.953, 1040.007, 1091.144, 1076.712, 1089.387, 1091.077, 1103.104, -360.56, -555.715, 1072.081, 1073.131, 1073.201, 1073.04, 1089.257, 1091.419, 1072.888, 1073.111, 1073.141, 1104.182, 1075.399, 1073.48, 1103.711, 1076.133, 1072.456, 1104.247, 1105.181, 1105.305, 1072.744, 1104.02, 1106.105, 1074.673, 1102.759, 1106.503, 1076.082, 1104.401, 1108.177, 1078.025, 1109.772, 1111.888, 288.949, 292.278, 292.722, 1112.981, 1123.139, 1124.493, 1127.996, 1134.943, 1135.406, 1136.071, 1141.749, 1142.506, 1148.754, 1150.764, 1151.032, 1156.093, 1154.597, 1154.497, 1150.481, 1124.218, 1120.716, 1108.646, 1095.181, 1093.385, 1113.175, 1089.783, 1088.224, 1719.795, -286.164, -553.625, 1112.49, 1099.064, 1097.274, 1106.601, 1105.705, 1105.645, 1100.75, 1110.143, 1111.395, 1114.044, 1108.662, 1107.944, 1115.615, 1114.492, 1114.417, 296.606, 1011.559, 1106.886, 213.15, 735.037, 804.622, 643.816, 590.868, 587.338, 588.443, 591.022, 591.366, 595.437, 598.575, 598.994, -70.23, 562.977, 605.191, 608.988, 14.755, -64.476, -86.326, 490.189, 567.057, 573.015, 572.841, 572.83, 576.607, 578.243, 578.461, 579.714, 1343.595, 1445.446, 585.277, 588.153, 588.345, 588.809, 588.843, 588.848, 592.898, 591.447, 591.254, 592.538, 589.623, 589.429, 590.233, 587.901, 587.59, 589.276, 603.526, 605.426, 691.889, 810.649, 818.566, 889.948, 866.466, 863.335, 164.367, 164.895, 164.966, 158.056, 851.73, 897.975, 164.51, 806.786, 892.423, 894.069, 892.465, 892.251, 153.408, 842.909, 888.876, 151.935, 802.889, 889.683, 154.817, 146.446, 145.329, 888.428, 193.529, 147.202, 885.088, 224.817, 136.78, 147.255, 802.581, 889.958, 888.64, 889.975, 890.064, 1575.971, 968.922, 887.982, 889.232, 860.991, 857.226, 872.007, 893.987, 895.452, 859.373, 892.292, 896.681, 859.84, 859.942, 859.955, 898.274, 860.41, 857.885, 879.17, 862.76, 860.572, 856.434, 854.683, 854.45, 851.949, 174.027, 128.832, 848.35, 847.791, 847.716, 847.847, 849.008, 849.163, 133.198, 806.744, 851.647, 146.291, 773.622, 857.267, 860.622, 834.937, 831.512, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 623.517, 0, 631.712, 97.187, 0, 631.526, 0, 641.912, 98.756, 0, 648.161, 0, 654.673, 54.556, 0, 659.733, 0, 603.775, 684.278, 696.548, 689.181, 688.198, 687.25, 682.216, 681.881, 711.089, 713.482, 713.802, 713.969, 715.124, 715.278, 711.369, 709.299, 709.162, 679.428, 675.016, 674.428, 675.948, 673.724, 673.427, 675.195, 678.8, 679.041, 681.486, 686.341, 686.988, 696.445, 694.867, 694.657, 703.31, 705.003, 705.116, 0, 711.882, 109.52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1269.549, 1438.822, 0, 720.784, 60.065, 0, 721.678, 0, 713.535, 109.775, 0, 709.244, 0, 681.534, 104.851, 0, 693.092, 0, 681.394, 56.783, 0, 679.538, 0, 680.866, 104.749, 0, 675.661, 0, 668.345, 102.822, 0, 0, 0, 0, 0, -69.364, -10.671, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 677.983, 0), Y = c(0, -560.914, -86.294, 0, 12.57, 0, 10.336, 0.861, 0, -569.851, 0, -582.641, -89.637, 0, -513.461, 0, -582.556, -89.624, 0, -567.846, 0, -574.869, -47.906, 0, -567.25, 0, -571.902, -87.985, 0, -554.095, 0, -574.651, -88.408, 0, -557.127, 0, -365.662, -30.472, 0, -565.123, 0, -564.378, -86.827, 0, -380.282, 0, -587.338, -90.36, 0, -373.494, 0, -394.186, -32.849, 0, -15.305, 0, -586.833, -90.282, 0, -391.571, 0, -603.611, -92.863, 0, -392.659, 0, -595.738, -49.645, 0, -369.805, 0, -585.56, -90.086, 0, -607.653, 0, -598.77, -92.118, 0, -603.821, 0, -362.726, -30.227, 0, -590.569, 0, -365.806, -56.278, 0, -584.274, 0, -594.203, -91.416, 0, -378.246, 0, -385.426, -32.119, 0, -585.678, 0, -569.332, -87.589, 0, -572.327, 0, -566.971, -87.226, 0, -586.06, 0, -584.482, -48.707, 0, -593.944, 0, -583.298, -89.738, 0, -580.776, 0, -590.48, -90.843, 0, -600.616, 0, -598.535, -49.878, 0, -602.826, 0, -29.44, -4.529, 0, -618.062, 0, -592.995, -91.23, 0, -609.041, 0, -411.878, -34.323, 0, -413.262, 0, -52.608, -8.094, 0, -411.569, 0, -415.928, -63.989, 0, -48.63, 0, -47.12, -3.927, 0, -415.299, 0, -599.916, -92.295, 0, -44.314, 0, -411.139, -63.252, 0, -46.124, 0, -48.509, -4.042, 0, -407.485, 0, -413.499, -63.615, 0, -55.391, 0, -415.922, -63.988, 0, -57.45, 0, -422.827, -35.236, 0, -54.607, 0, -414.86, -63.825, 0, -51.45, 0, -48.986, -7.536, 0, -45.942, 0, -413.839, -34.487, 0, -411.075, 0, -38.956, -5.993, 0, -14.525, 0, 35.454, 5.455, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 279.172, 0, 315.145, 48.484, 0, 313.523, 0, 314.854, 48.439, 0, 314.166, 0, -89.369, -7.447, 0, -125.57, 0, -138.883, -157.401, -162.487, -158.14, -157.561, -171.662, -160.906, -160.189, -166.883, -171.154, -171.724, -187.379, -175.901, -174.37, -188.734, -185.215, -184.98, -189.818, -189.088, -188.991, 283.22, 302.83, 305.444, 270.066, 289.663, 290.969, 275.119, 276.953, 277.198, 260.347, 261.677, 261.855, 246.632, 250.916, 251.202, 238.808, 246.008, 246.968, 240.285, 253.356, 255.099, 251.122, 262.086, 262.817, 258.677, 268.433, 269.734, 264.812, 273.771, 274.966, 268.696, 276.112, 276.606, 268.26, 275.135, 276.051, 265.545, 272.265, 273.161, 264.077, 268.116, 268.385, 261.015, 266.217, 266.911, 259.724, 265.892, 266.714, 259.602, 265.93, 266.352, 258.209, 265.537, 266.514, 259.411, 265.687, 266.523, 259.761, 266.978, 267.459, 260.97, 268.01, 268.949, 262.4, 271.867, 273.13, 264.803, 273.569, 274.153, 266.979, 275.25, 276.353, 268.073, 274.926, 275.84, 269.625, 279.424, 280.077, 271.785, 281.741, 283.068, 276.083, 284.162, 285.239, 279.865, 291.741, 292.533, 291.52, 302.124, 303.538, 300.685, 313.141, 314.802, 313.594, 327.048, 327.945, 325.593, 339.796, 341.69, 341.58, 355.702, 357.585, 356.602, 381.738, 383.413, 370.869, 394.752, 397.936, 391.659, 409.376, 411.739, 415.584, 433.281, 434.461, 437.478, 454.368, 456.62, 445.173, 427.865, 425.558, 383.004, 370.373, 369.531, 382.343, 399.016, 401.239, 413.831, 422.157, 423.267, 432.015, 448.845, 449.967, 0, 425.956, 482.75, 487.1, 501.178, 503.055, 0, 508.065, 42.339, 0, 492.242, 494.125, 494.376, 484.667, 484.368, 484.328, 467.742, 464.267, 464.035, 468.697, 433.854, 429.208, 400.85, 393.727, 392.777, 376.735, 23.546, 0, 0, 0, 0, 0, 0, 0, 885.955, 0, 0, 0, 0, 0, 0, 0, 0, 0, 500.323, 0, 481.941, 40.162, 0, 0, 0, 0, 530.014, 516.432, 514.621, 494.618, 478.341, 477.256, 456.114, 458.922, 459.297, 456.514, 425.5, 421.365, 462.707, 472.408, 473.055, 467.768, 454.51, 452.742, 441.741, 201.307, 169.249, 167.631, 163.795, 163.539, 160.509, 161.775, 161.943, 161.298, 397.997, 429.557, 419.546, 177.979, 161.875, 418.022, 423.34, 424.049, 413.55, 419.645, 420.457, 407.472, 415.496, 416.031, 407.006, 148.509, 114.042, 409.442, 164.128, 131.419, 109.849, 407.293, 427.122, 418.844, 426.465, 427.481, 417.779, 161.317, 127.123, 409.12, 367.918, 365.171, 395.673, 396.298, 396.381, 388.306, 392.859, 393.466, 473.545, 400.213, 395.325, 366.771, 370.934, 371.489, 339.469, 387.501, 393.905, 386.022, 390.883, 391.207, 378.721, 394.352, 396.436, 384.581, 45.245, 0, 380.042, 0, 375.485, 31.29, 0, 335.187, 0, 0, 0, 0, 323.048, 49.7, 0, 359.169, 361.068, 361.195, 348.111, 362.176, 364.051, 383.932, 392.518, 393.663, 349.699, 392.668, 395.532, 391.36, 396.741, 397.458, 387.906, 391.383, 391.846, 371.849, 378.048, 378.461, 318.908, 357.694, 362.865, 342.973, 40.35, 0, 288.149, 0, 259.291, 276.577, -102.466, -12.055, 0, 241.977, 0, 234.288, 36.044, 0, 247.849, 0, 244.967, 20.414, 0, 290.17, 0, 258.996, 39.846, 0, 269.854, 0, 259.002, 39.847, 0, 297.18, 0, 266.569, 22.214, 0, -87.029, 0, -89.617, -13.787, 0, -95.348, -79.043, -76.869, 0, 246.968, 20.581, 0, 272.257, 289.812, 292.152, 271.933, 287.652, 289.748, 276.443, 284.481, 285.017, -116.323, 230.711, 276.983, -141.084, 229.411, 278.81, 314.961, 280.304, 277.994, 277.686, 282.62, 283.278, 287.306, 282.107, 281.414, 290.288, 291.936, 292.045, 288.296, 302.772, 304.702, 292.15, 302.242, 303.588, -136.669, 270.271, 297.4, 274.154, 301.517, 305.165, 290.369, -426.184, -521.724, 321.366, 329.046, 329.558, 321.7, 306.849, 304.869, 321.009, 327.981, 328.91, 290.339, 328.378, 330.914, 289.022, 325.172, 329.992, 288.447, 295.19, 296.089, 322.57, 298.091, 296.459, 321.394, 300.861, 298.123, 320.881, 300.679, 297.985, 319.966, 296.464, 294.897, -164.893, -160.079, -159.437, 278.924, 281.357, 281.682, 269.259, 274.752, 275.118, 267.165, 265.143, 264.873, 258.509, 264.614, 265.429, 256.744, 266.259, 266.893, 263.361, 301.473, 306.555, 262.416, 313.245, 320.022, 281.712, 320.535, 323.123, -194.846, -521.034, -564.526, 274.367, 278.267, 278.787, 264.133, 268.555, 268.85, 256.818, 266.194, 267.444, 260.084, 265.714, 266.464, 262.669, 272.063, 272.689, -175.62, 225.568, 279.06, -159.431, 216.327, 266.428, 245.597, 254.043, 254.606, 244.851, 255.798, 257.258, 248.152, 256.508, 257.622, -319.948, 219.787, 255.769, 243.947, -235.689, -299.64, -334.288, 164.071, 230.518, 224.188, 233.409, 234.024, 228.544, 236.363, 237.405, 235.462, -116.121, -162.999, 240.889, 251.796, 252.524, 246.8, 258.72, 260.309, 257.726, 267.828, 269.175, 265.087, 277.995, 278.856, 273.876, 287.09, 288.852, 280.858, 292.608, 294.174, 246.387, 213.675, 211.494, 201.469, 209.375, 210.429, -217.38, -218.456, -218.6, -232.09, 196.612, 225.193, -248.699, 166.3, 221.633, 213.54, 219.095, 219.836, -261.438, 192.469, 222.729, -265.48, 164.234, 221.529, -254.99, -254.199, -254.094, 209.197, -218.172, -246.663, 207.52, -196.823, -250.735, -261.477, 163.4, 220.05, 210.838, 222.305, 223.069, -196.463, 176.753, 226.515, 217.024, 249.012, 253.277, 203.798, 226.753, 228.283, 241.225, 228.683, 227.011, 235.665, 243.606, 244.664, 212.621, 240.812, 242.692, 207.285, 207.473, 207.498, 194.745, 202.346, 203.359, 191.408, -221.759, -249.304, 186.022, 192.304, 193.141, 182.101, 191.751, 193.037, -260.225, 162.901, 191.109, -252.884, 141.317, 193.877, 186.754, 220.72, 225.249, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 304.742, 0, 316.744, 48.73, 0, 334.833, 0, 352.419, 54.218, 0, 368.749, 0, 378.178, 31.515, 0, 378.548, 0, 339.912, 385.233, 406.951, 373.432, 368.963, 411.64, 362.786, 359.529, 358.897, 353.738, 353.051, 336.054, 340.344, 340.915, 335.944, 355.461, 356.762, 345.061, 372.321, 375.955, 376.513, 404.13, 407.812, 416.338, 426.28, 426.943, 432.67, 429.483, 429.058, 426.368, 425.226, 425.074, 416.298, 411.677, 411.369, 0, 345.327, 53.127, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 183.69, 208.182, 0, 261.561, 21.797, 0, 298.1, 0, 281.941, 43.375, 0, 314.226, 0, 304.413, 46.833, 0, 374.171, 0, 368.525, 30.71, 0, 359.118, 0, 367.905, 56.601, 0, 287.494, 0, 285.213, 43.879, 0, 0, 0, 0, 0, 735.244, 113.115, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 304.619, 0)), row.names = 31537:32536, class = "data.frame")
This should give you a way to get the image you want. However, I don't have your original TIFF, and therefore the alignment won't be correct here since I had to use a cut-and-pasted version of the png in your question. Anyway, the method I would use is: Convert the image to a raster Convert the raster to a grid::rasterGrob Plot the rasterGrob as your first layer in ggplot using annotation_custom Plot your other layers as normal. Here's an example: library(ggplot2) library(rtiff) library(grid) x <- readTiff('F01_screenshot.tiff') pic <- as.raster(array(c(x#red, x#green, x#blue), c(x#size, 3))) picgrob <- rasterGrob(pic) ggplot(eet2, aes(x=X, y= Y)) + annotation_custom(picgrob) + geom_point() + stat_density2d() + coord_equal() You may need to scale your Y axis data to make it match the aspect ratio of the picture. As an example, if we assume max(eet2$Y) is the top edge of the image, and min(eet2$Y) the bottom edge, and also assume that min(eet2$X) is the left edge and max(eet2$X) the right edge (as you have suggested is the case in your comments), we can marry the picture to the data like this: pic_ratio <- dim(pic)[2]/dim(pic)[1] data_ratio <- diff(range(eet2$X)) / diff(range(eet2$Y)) eet2$Y <- eet2$Y * data_ratio / pic_ratio ggplot(eet2, aes(x=X, y= Y)) + annotation_custom(picgrob) + geom_point() + stat_density2d() + coord_equal(xlim = range(eet2$X), ylim = range(eet2$Y)) If this alignment is not correct, then we need extra calibration information not present in the data (i.e. what value of eet2$Y should represent the top and bottom of the image, and what value of eet2$X represents the left and right edges.
How do I style a different border?
how can I style a border differently then solid/dotted etc.? I do have a zigzag-line as a border-top and of course I can display it as a graphic-file within the background, but is there a different (more modern) way to achieve that? I am asking this specifically for a zigzag-line for one border (border-top) AND for any other scenario, where a different looking border shall be used (rotated solid borders....) How would I do something like this? ::before css-shapes still with graphic-files It should work down to IE9 Thanks
try this codePen example: http://codepen.io/pouretrebelle/pen/hypGk .bordered { background-color: #efe6ef; position: relative; margin: 100px auto; height: 5em; width: 25em; } .bordered:before, .bordered:after { content: ''; position: absolute; background-repeat: repeat; z-index: -1; } .bordered:before { background: url(''), url(''), url(''), url(''); background: -moz-linear-gradient(315deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), -moz-linear-gradient(225deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), -moz-linear-gradient(45deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), -moz-linear-gradient(135deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb); background: -webkit-linear-gradient(315deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), -webkit-linear-gradient(225deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), -webkit-linear-gradient(45deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), -webkit-linear-gradient(135deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb); background: linear-gradient(135deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), linear-gradient(225deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), linear-gradient(45deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), linear-gradient(315deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb); background-position: 0.5em 0.5em, 0.5em 0.5em, 0 0.5em, 0 0.5em; background-size: 1em 1em; left: 0; top: -1em; height: 7em; width: 100%; } .bordered:after { background: url(''), url(''), url(''), url(''); background: -moz-linear-gradient(315deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), -moz-linear-gradient(135deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), -moz-linear-gradient(225deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), -moz-linear-gradient(45deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb); background: -webkit-linear-gradient(315deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), -webkit-linear-gradient(135deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), -webkit-linear-gradient(225deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), -webkit-linear-gradient(45deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb); background: linear-gradient(135deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), linear-gradient(315deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), linear-gradient(225deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb), linear-gradient(45deg, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0) 75%, #b6b5eb 75%, #b6b5eb); background-position: 0.5em 0.5em, 0.5em 0em, 0.5em 0, 0.5em 0.5em; background-size: 1em 1em; left: -1em; top: 0; height: 100%; width: 27em; } h1 { text-align: center; line-height: 2.5em; font-size: 2em; font-family: Quando, serif; font-weight: normal; position: relative; } <div class="bordered"> <h1>CSS Zigzag Border</h1> </div>
Error: term has fewer unique covariate combinations than specified maximum degrees of freedom
I'm trying to smooth this mortality data, but I get this error when I try to call smooth.demogdata(...). I don't have a lot of years to work with (just 2004-2014), and only ages 1-11. I need to have smoothed mortality data to be able to run the Lee-Carter models. > US.demog.age = demogdata(US_rates.age, US_counts.age, ages = 1:11, years = 2004:2014, type="mortality", name="Total", label="US") > smooth.age = smooth.demogdata(US.demog.age) Error in smooth.construct.tp.smooth.spec(object, dk$data, dk$knots) : A term has fewer unique covariate combinations than specified maximum degrees of freedom The matrix data I have for the demography data call are as follows: > US_counts.age 135618, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 150988, 125213, 0, 0, 0, 0, 0, 0, 0, 0, 0 144797, 144686, 117643, 0, 0, 0, 0, 0, 0, 0, 0 145921, 138953, 136791, 110374, 0, 0, 0, 0, 0, 0, 0 146350, 139452, 131145, 128469, 103897, 0, 0, 0, 0, 0, 0 159301, 139080, 130705, 122500, 120655, 97922, 0, 0, 0, 0, 0 169750, 151355, 130195, 121681, 114789, 113711, 92623, 0, 0, 0, 0 166925, 158914, 142749, 122450, 114941, 108932, 108085, 88116, 0, 0, 0 174177, 158635, 150225, 134504, 116111, 109365, 103898, 103520, 84283, 0, 0 174938, 165078, 149825, 141967, 127656, 110712, 104557, 99706, 99568, 80944, 0 169517, 165777, 155530, 141601, 134922, 121745, 105924, 100205, 95836, 95749, 77716 > US_rates.age 0.0034287484, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0.0031989297, 0.0036178352, 0, 0, 0, 0, 0, 0, 0, 0, 0 0.0029213312, 0.0032415023, 0.0036636264, 0, 0, 0, 0, 0, 0, 0, 0 0.0022957628, 0.0028930646, 0.0031873442, 0.0035334408, 0, 0, 0, 0, 0, 0, 0 0.0017902289, 0.0023162092, 0.0027298029, 0.0030513198, 0.0033013465, 0, 0, 0, 0, 0, 0 0.0015254142, 0.0017328156, 0.0022187369, 0.0025224490, 0.0028925449, 0.0029717530, 0, 0, 0, 0, 0 0.0011310751, 0.0014733573, 0.0016052844, 0.0020052432, 0.0023434301, 0.0025855018, 0.0027207065, 0, 0, 0, 0 0.0008926164, 0.0011389808, 0.0013730394, 0.0014373214, 0.0018531246, 0.0021389491, 0.0022297266, 0.0024286168, 0, 0, 0 0.0004994919, 0.0008068837, 0.0009452488, 0.0011300779, 0.0012057428, 0.0015818589, 0.0017805925, 0.0019513138, 0.0020882028, 0, 0 0.0003029645, 0.0004422152, 0.0006407475, 0.0007466524, 0.0007676882, 0.0008761471, 0.0012815976, 0.0014442461, 0.0014362044, 0.0016184028, 0 0.0001415787, 0.0002050948, 0.0002829036, 0.0003954774, 0.0003705845, 0.0004517639, 0.0004342736, 0.0006885884, 0.0008138904, 0.0008772938, 0.0009264502 The data is tracking cohorts over time, which is why there are zeroes in the upper right half of both matrices, since no previous information on the cohorts is available, so those are listed as 0s, but it is those 0s and the actual available data that need to be smoothed. Is there any way I can get the smooth.demogdata function to work? I know I saw something about changing the default knot values from 10 to something lower, but I wasn't able to find that again.
writing LESS mixin for box-shadow: none
I have a problem with writing the box-shadow mixin using LESS css. The following is the Mixin for box-shadow .boxShadow (#x, #y, #blur, #spread: 0, #alpha) { -webkit-box-shadow: #x #y #blur #spread rgba(0, 0, 0, #alpha); -moz-box-shadow: #x #y #blur #spread rgba(0, 0, 0, #alpha); box-shadow: #x #y #blur #spread rgba(0, 0, 0, #alpha); } but i can able pass parameters with no issues, .boxShadow(0, 0, 5px, 2px, 0.2); but how to call the same mixin for box-shadow: none
There is a way to access all the mixin arguments in one variable. You could write your LESS mixin in this way: .box-shadow(...) { -webkit-box-shadow: #arguments; -moz-box-shadow: #arguments; box-shadow: #arguments; } And use it later: .box-shadow(0 0 5px 2px rgba(0, 0, 0, 0.2)); or .box-shadow(none);
.boxShadow(#x, #y, #blur, #spread: 0, #alpha) { -webkit-box-shadow: #x #y #blur #spread rgba(0, 0, 0, #alpha); -moz-box-shadow: #x #y #blur #spread rgba(0, 0, 0, #alpha); box-shadow: #x #y #blur #spread rgba(0, 0, 0, #alpha); } .boxShadow(none) { -webkit-box-shadow: none; -moz-box-shadow: none; box-shadow: none; } The point is that you can define mixins with the same name but different parameters in Less. Just "override" your mixin and Less will find one with the same parameter pattern.
.drop-shadow (#x: 0, #y: 1px, #blur: 2px, #spread: 0, #alpha: 0.25) { -webkit-box-shadow: #x #y #blur #spread rgba(0, 0, 0, #alpha); -moz-box-shadow: #x #y #blur #spread rgba(0, 0, 0, #alpha); box-shadow: #x #y #blur #spread rgba(0, 0, 0, #alpha); } .inner-shadow (#x: 0, #y: 1px, #blur: 2px, #spread: 0, #alpha: 0.25) { -webkit-box-shadow: inset #x #y #blur #spread rgba(0, 0, 0, #alpha); -moz-box-shadow: inset #x #y #blur #spread rgba(0, 0, 0, #alpha); box-shadow: inset #x #y #blur #spread rgba(0, 0, 0, #alpha); }