Optimize four nested for loops - r

I have four nested for loops. How can I optimize this ? I implement the following code but it takes too long.
p1=0.1
q1=0.3
p2=0.2
q2=0.4
n=10
r1=2
bincoeff=function(k,S1, R2, S2) {
return ( factorial(k+S1+R2+S2)/(factorial(k)*factorial(S1)*factorial(R2)*factorial(S2)) )
}
out=0
applyFormula= function(n, r1, p1, q1, p2, q2){
if (r1 < 0) {out <- 0}
else{
for (k in 0:r1) {
nmk= n-k
for (S1 in 0:nmk) {
for (R2 in 0:nmk) {
for (S2 in 0:nmk) {
if ( S1+R2+S2 == nmk ) {
out = out+ (bincoeff(k,S1,R2,S2)*(p1^k)*(q1^S1)*(p2^R2)*(q2^S2))
}
}
}
}
}
return (out)
}
}
I have after to apply this function to each row of my big data so it takes several minutes...
All the help you can offer me is appreciated. Thank you!

Related

R loop for calculating MLE is so slow

I am trying to run the following loop for calculating MLE as
l = matrix(0, tj, n)
For n or tj greater than 1000 this loop will be supper slow, is there anyway to improve this code in a more efficient way?
Thanks,
for (t in 1:tj) {
for (k in 1:n) {
if(S[t]==1) {
for(c in 1:C) {
l[t,k]=l[t,k]+(dt*(exp(alpha[c])*exp(-(X[k]-mx[c])^2/2/sx[c]^2))*mvnpdf(x=matrix(m[t,]),mean=mu[[c]],varcovM=sig[[c]], Log = FALSE))*exp(-LAN2[k]*dt)
}
} else {
l[t,k]=exp(-LAN2[k]*dt)
}
}
}

Need help recursion explanation Leetcode

How does this code work? (leetcode 95 question) I don't understand how the 2 recursions work inside the for loop. Does the 2nd inner for loop end when the recursive function returns NULL? Or would it continue executing the 3rd inner for loop?
class Solution {
public:
vector<TreeNode*> generateTrees(int n) {
if(n == 0) {
return {};
}
vector<TreeNode*> ans = generateT(1,n);
return ans;
}
vector<TreeNode*> generateT(int l, int r) {
if(l > r) return {nullptr};
vector<TreeNode*> ans;
for(int i=l; i <= r; ++i) {
for(TreeNode*left: generateT(l, i-1)) {
for(TreeNode* right:generateT(i+1, r)) {
ans.push_back(new TreeNode(i));
ans.back()->left = left;
ans.back()->right = right;
}
}
}
return ans;
}
};
Problem statement:
Given an integer n, return all the structurally unique BST's (binary search trees), which has exactly n nodes of unique values from 1 to n. Return the answer in any order.
Does the 2nd inner for loop end when the recursive function returns NULL?
No. The recursive function is not returing NULL, it is returning vector of nullptr.
Or would it continue executing the 3rd inner for loop?
Of course, it will.
How does this code work? I don't understand how the 2 recursions work inside the loop.
I suppose the following snippet is the cause of confusion, so commented the case when nullptr provided by outer loop.
vector<TreeNode*> generateT(int l, int r) {
if(l > r) return { nullptr };
vector<TreeNode*> ans;
for ( int i = l; i <= r; i++ ) {
// if l = 0, i = 0
for ( TreeNode* left :generateT(l, i-1) ) // if l = 0, i = -1, returns { nullptr } (vector of nullptr)
for (TreeNode* right :generateT(i+1, r)) { // now this snippet will execute
auto node = new TreeNode(i);
ans.push_back(node);
node->left = left; // the nullptr we have from the outer loop, will provide null value for this
node->right = right;
}
}
return ans;
}
Visually, for a combination of node where,
a
\
b
/ \
null c
/
null
the above pattern occurs the provided { nullptr } from outer loop will come in handy setting left node.

Autoconversion from number to NULL

I am trying to generate a vector of random numbers based on a finite random variable X
With probGen function I generate a variable X, l1 is the first line and l2 is the second one.
And at this point if(sum1 >= U) I recive this error Error in if (sum1 >= U) { : argument is of length zero
This is my code:
probGen=function(n)
{
v=vector()
k=sample(1:n,1)
v=rep(0,k)
for(i in 1:n)
{
aux=sample(1:k,1)
v[aux]=v[aux]+1
}
vfinal=vector()
klen=0
for(i in 1:k)
{
if(v[i]!=0) klen=klen+1
}
for(i in 1:k)
{
if(v[i]!=0)
vfinal=c(vfinal,rep(1/(klen*v[i]),v[i]))
}
vfinal=sample(vfinal)
return (vfinal)
}
n=22
l1=c(1:n)
l2=probGen(n)
l1
l2
simVar=function(l1,l2)
{
variante=vector()
U=runif(1,0,1)
for(i in 1:length(l1))
{
sum1=1-1
for(j in 1:i-1)
{
if(i-1>=1)
{
sum1=sum1+l2[j]
}
}
sum2=0.0
for(j in 1:i)
{
sum2=sum2+l2[j]
}
if(sum1 >= U)
{
if(U<sum2)
{
variante=c(variante,l1[i])
}
}
}
return (variante)
}
varR=simVar(l1,l2)
varR
Any idea?
Thanks!
The for(j in 1:i-1) near the top of the code for simVar is evaluating as (1:i)-1, resulting in a zero j which produces a NA value of sum1. Use for(j in 1:(i-1)) instead.

write a formula to find the inverse of a matrix

I need to find write a formula to breakdown a matrix using the blockwise inversion method.This what I have so far
func <- function(matrix=M) {
n = nrow(M)
if (n==1) M^-1
} else if (n==2) {
1/DetM*(M)
CMHope=matrix(c(M[2,2],-1*M[2,1]))
CMHope2=matrix(c(-1*M[1,2],M[1,1]))
Rbbin=cbind(CMHope,CMHope2)
1/det(M)*Rbbin
} else {
}
return(end matrix)
}

R: Optimise spike pruning function

Since I have not found an R package for analysis of electrophysiological data, I have used a function for spike pruning from my group:
prune.spikes <- function(spikes, min.isi) {
# copy spike matrix
prunedspikes <- spikes
# initialise index of last spike: infinitely before the first one.
for (i in 1:ncol(spikes)) {
last <- -Inf
for (j in 1:nrow(spikes)) {
if (spikes[j, i] == 1) {
if (j - last < min.isi) {
prunedspikes[j, i] <- 0; # remove the spike
}
else {
last <- j
}
}
}
}
return(prunedspikes)
}
The function takes a spike vector or matrix consisting of 0 and 1 values and removes any 1 if it occurred within a minimum interval.
Because of the two nested loops it takes ages to run. In order to optimise it I have come up with this solution (removes one loop):
prune.cols <- function(spikes, min.isi) {
prunedspikes <- apply(spikes, 2, FUN = prune.rows, min.isi = min.isi)
return(prunedspikes)
}
prune.rows <- function(spikes, min.isi) {
prunedspikes <- spikes
last <- -Inf
for (i in 1:length(spikes)) {
if (spikes[i] == 1) {
if (i - last < min.isi) {
prunedspikes[i] <- 0; # remove the spike
}
else {
last <- i
}
}
}
return(prunedspikes)
}
Calling prune.cols on a large data set is noticeable faster compared to the original version (~60 times). One loop remains, though. So far I could not come up with a nice and simple solution. How can the function be even further improved?
Like #Khashaa proposed, I implemented the function with the help of Rcpp:
NumericMatrix prunespikes(NumericMatrix spikes, double minisi) {
NumericMatrix prunedspikes = spikes;
int ncol = spikes.ncol();
int nrow = spikes.nrow();
for (int i = 0; i < ncol; i++) {
int last = 0;
while (spikes(last, i) == 0) {
last++;
}
for (int j = last + 1; j < nrow; j++) {
if (spikes(j, i) == 1) {
if (j - last < minisi) {
prunedspikes(j, i) = 0;
} else {
last = j;
}
}
}
}
return prunedspikes;
}
If the speed difference is not a problem yet, it may be better to keep the loop instead of using Rcpp.
According to Hadley Wickham's article Loops that should be left as is, it is not a bad idea to have this loop as it can be categorized into the Recursive relationship case.
Once the speed is the bottleneck, then resorting to Rcpp or this page (suggested by the article too) may be the solution.

Resources