I have two data frames, one larger (10 people) and one smaller (two people). I have generated a gantt chart for each data frame. How do I get it so the distance between lines is the same for each plot (i.e. not scaled based on number of entries).
# Generate vectors:
name <- paste("person", seq(10), sep = '_')
start <- sample(seq(5), size = 10, replace = T)
end <- sample(seq(6,10), size = 10, replace = T)
# Generate data frames:
big_chart <- data.frame(name = c(name,name), value = c(start,end))
small_chart <- big_chart[c(1:2,11:12),]
# big plot
library(ggplot)
ggplot(big_chart, aes(value, name)) +
geom_line()
# small plot
ggplot(small_chart, aes(value, name)) +
geom_line()
Below is my solution for you, hopefully it is what you were looking for. I made use of the coord_fixed function to control the overall scaling. In addition, I also fixed your x-axis range using the xlim function.
library(ggplot2)
ggplot(big_chart, aes(value, name)) +
geom_line() +
xlim(0, 10) + #optional
coord_fixed(ratio = 0.5)
ggplot(small_chart, aes(value, name)) +
geom_line() +
xlim(0, 10) + #optional
coord_fixed(ratio = 0.5)
Related
I am trying to create a density plot for particle size data. My data has multiple density and size readings for each genotype set. Is there a way to specify multiple columns into x and y using ggplot? I tried coding for this but am only getting a blank plot as of now. This is the link to the csv file I used: https://drive.google.com/file/d/11djXTmZliPCGLCZavukjb0TT28HsKMRQ/view?usp=sharing
Thanks!
crop.data6 <- read.csv("barleygt25.csv", header = TRUE)
crop.data6
library(ggplot2)
plot1 = ggplot(data=crop.data6, aes(x=, xend=bq, y=a, yend=bq, color=genotype))
plot1
Your data is in a strange format that doesn't lend itself well to plotting. Effectively, it needs to be transposed then pivoted into long format to make it suitable for plotting:
df <- data.frame(xvals = c(t(crop.data6[1:9, -c(1:2)])),
yvals = c(t(crop.data6[10:18, -c(1:2)])),
genotype = rep(crop.data6$genotype[1:9], each = 68))
ggplot(df, aes(xvals, yvals, color = genotype)) +
geom_line(size = 1) +
scale_color_brewer(palette = "Set1") +
theme_bw(base_size = 16) +
labs(x = "value", y = "density")
I am wondering how to add data labels to a ggplot showing the true value of the data points when the x-axis is in log scale.
I have this data:
date <- c("4/3/2021", "4/7/2021","4/10/2021","4/12/2021","4/13/2021","4/13/2021")
amount <- c(105.00, 96.32, 89.00, 80.84, 121.82, 159.38)
address <- c("A","B","C","D","E","F")
df <- data.frame(date, amount, address)
And I plot it in ggplot2:
plot <- ggplot(df, aes(x = log(amount))) +
geom_histogram(binwidth = 1)
plot + theme_minimal() + geom_text(label = amount)
... but I get the error
"Error: geom_text requires the following missing aesthetics: y"
I have 2 questions as a result:
Why am I getting this error with geom_histogram? Shouldn't it assume to use count as the y value?
Will this successfully show the true values of the data points from the 'amount' column despite the plot's log scale x-axis?
Perhaps like this?
ggplot(df, aes(x = log(amount), y = ..count.., label = ..count..)) +
geom_histogram(binwidth = 1) +
stat_bin(geom = "text", binwidth = 1, vjust = -0.5) +
theme_minimal()
ggplot2 layers do not (at least in any situations I can think of) take the summary calculations of other layers, so I think the simplest thing would be to replicate the calculation using stat_bin(geom = "text"...
Or perhaps simpler, you could pre-calculate the numbers:
library(dplyr)
df %>%
count(log_amt = round(log(amount))) %>%
ggplot(aes(log_amt, n, label = n)) +
geom_col(width = 1) +
geom_text(vjust = -0.5)
EDIT -- to show buckets without the log transform we could use:
df %>%
count(log_amt = round(log(amount))) %>%
ggplot(aes(log_amt, n, label = n)) +
geom_col(width = 0.5) +
geom_text(vjust = -0.5) +
scale_x_continuous(labels = ~scales::comma(10^.),
minor_breaks = NULL)
I am learning R with the Australian athletes data set.
By using ggplot, I can plot a histogram like this.
library(DAAG)
ggplot(ais, aes(wt, fill = sex)) +
geom_histogram(binwidth = 5)
By using summary(ais$wt), the 3rd Quartile is 84.12. Now I want to split the data by the wt 84.12. and plot 2 similar histograms accordingly (side by side)
The split is:
ais1 = ais$wt[which(ais$wt>=0 & ais$wt<=84.12)]
ais2 = ais$wt[which(ais$wt>84.12)]
But I don’t know how to fit them in the plotting. I tried but it doesn't work:
ggplot(ais1, aes(wt, fill = sex)) +...
How can I plot the histograms (2 similar histograms accordingly, side by side)?
Add the split as a column to your data
ais$wt_3q = ifelse(ais$wt < 84.12, "Quartiles 1-3", "Quartile 4")
Then use facets:
ggplot(ais, aes(wt, fill = sex)) +
geom_histogram(binwidth = 5) +
facet_wrap(~ wt_3q)
The created variable is a factor, if you specify the order of the levels you can order the facets differently (lots of questions on here showing that if you search for them - same as reordering bars for a ggplot barplot). You can also let the scales vary - look at ?facet_wrap for more details.
Generally, you shouldn't create more data frames. Creating ais1 and ais2 is usually avoidable, and your life will be simpler if you use a single data frame for a single data set. Adding a new column for grouping makes it easy to keep things organized.
We can do this with ggarrange to arrange the plot objects for each subset
library(DAAG)
library(ggplot2)
library(ggpubr)
p2 <- ais %>%
filter(wt>=0, wt<=84.12) %>%
ggplot(., aes(wt, fill = sex)) +
geom_histogram(binwidth = 5) +
coord_cartesian(ylim = c(0, 30))
p1 <- ais %>%
filter(wt>84.12) %>%
ggplot(., aes(wt, fill = sex)) +
geom_histogram(binwidth = 5) +
coord_cartesian(ylim = c(0, 30))
ggarrange(p1, p2, ncol =2, nrow = 1, labels = c("p1", "p2"))
-output
Inspired by the Q Finding the elbow/knee in a curve I started to play around with smooth.spline().
In particular, I want to visualize how the parameter df (degree of freedom) influences the approximation and the first and second derivative. Note that this Q is not about approximation but about a specific problem (or edge case) in visualisation with ggplot2.
First attempt: simple facet_grid()
library(ggplot2)
ggplot(ap, aes(x, y)) +
geom_point(data = dp, alpha = 0.2) +
geom_line() +
facet_grid(deriv ~ df, scales = "free_y", labeller = label_both) +
theme_bw()
dp is a data.table containing the data points for which an approximation is sought and ap is a data.table with the approximated data plus the derivatives (data are given below).
For each row, facet_grid() with scales = "free_y" has choosen a scale which displays all data. Unfortunately, one panel has kind of "outliers" which make it difficult to see details in the other panels. So, I want to "zoom in".
"Zoom in" using coord_cartesian()
ggplot(ap, aes(x, y)) +
geom_point(data = dp, alpha = 0.2) +
geom_line() +
facet_grid(deriv ~ df, scales = "free_y", labeller = label_both) +
theme_bw() +
coord_cartesian(ylim = c(-200, 50))
With the manually selected range, more details in the panels of row 3 have been made visible. But, the limit has been applied to all panels of the grid. So, in row 1 details hardly can been distinguished.
What I'm looking for is a way to apply coord_cartesian() with specific parameters separately to each individual panel (or group of panels, e.g., rowwise) of the grid. For instance, is it possible to manipulate the ggplot object afterwards?
Workaround: Combine individual plots with cowplot
As a workaround, we can create three separate plots and combine them afterwards using the cowplot package:
g0 <- ggplot(ap[deriv == 0], aes(x, y)) +
geom_point(data = dp, alpha = 0.2) +
geom_line() +
facet_grid(deriv ~ df, scales = "free_y", labeller = label_both) +
theme_bw()
g1 <- ggplot(ap[deriv == 1], aes(x, y)) +
geom_line() +
facet_grid(deriv ~ df, scales = "free_y", labeller = label_both) +
theme_bw() +
coord_cartesian(ylim = c(-50, 50))
g2 <- ggplot(ap[deriv == 2], aes(x, y)) +
geom_line() +
facet_grid(deriv ~ df, scales = "free_y", labeller = label_both) +
theme_bw() +
coord_cartesian(ylim = c(-200, 100))
cowplot::plot_grid(g0, g1, g2, ncol = 1, align = "v")
Unfortunately, this solution
requires to write code to create three separate plots,
duplicates strips and axes and adds whitespace which isn't available for display of the data.
Is facet_wrap() an alternative?
We can use facet_wrap() instead of facet_grid():
ggplot(ap, aes(x, y)) +
# geom_point(data = dp, alpha = 0.2) + # this line causes error message
geom_line() +
facet_wrap(~ deriv + df, scales = "free_y", labeller = label_both, nrow = 3) +
theme_bw()
Now, the y-axes of every panel are scaled individually exhibiting details of some of the panels. Unfortunately, we still can't "zoom in" into the bottom right panel because using coord_cartesian() would affect all panels.
In addition, the line
geom_point(data = dp, alpha = 0.2)
strangely causes
Error in gList(list(x = 0.5, y = 0.5, width = 1, height = 1, just = "centre", :
only 'grobs' allowed in "gList"
I had to comment this line out, so the the data points which are to be approximated are not displayed.
Data
library(data.table)
# data points
dp <- data.table(
x = c(6.6260, 6.6234, 6.6206, 6.6008, 6.5568, 6.4953, 6.4441, 6.2186,
6.0942, 5.8833, 5.7020, 5.4361, 5.0501, 4.7440, 4.1598, 3.9318,
3.4479, 3.3462, 3.1080, 2.8468, 2.3365, 2.1574, 1.8990, 1.5644,
1.3072, 1.1579, 0.95783, 0.82376, 0.67734, 0.34578, 0.27116, 0.058285),
y = 1:32,
deriv = 0)
# approximated data points and derivatives
ap <- rbindlist(
lapply(seq(2, length(dp$x), length.out = 4),
function(df) {
rbindlist(
lapply(0:2,
function(deriv) {
result <- as.data.table(
predict(smooth.spline(dp$x, dp$y, df = df), deriv = deriv))
result[, c("df", "deriv") := list(df, deriv)]
})
)
})
)
Late answer, but the following hack just occurred to me. Would it work for your use case?
Step 1. Create an alternative version of the intended plot, limiting the range of y values such that scales = "free_y" gives a desired scale range for each facet row. Also create the intended facet plot with the full data range:
library(ggplot2)
library(dplyr)
# alternate plot version with truncated data range
p.alt <- ap %>%
group_by(deriv) %>%
mutate(upper = quantile(y, 0.75),
lower = quantile(y, 0.25),
IQR.multiplier = (upper - lower) * 10) %>%
ungroup() %>%
mutate(is.outlier = y < lower - IQR.multiplier | y > upper + IQR.multiplier) %>%
mutate(y = ifelse(is.outlier, NA, y)) %>%
ggplot(aes(x, y)) +
geom_point(data = dp, alpha = 0.2) +
geom_line() +
facet_grid(deriv ~ df, scales = "free_y", labeller = label_both) +
theme_bw()
# intended plot version with full data range
p <- p.alt %+% ap
Step 2. Use ggplot_build() to generate plot data for both ggplot objects. Apply the panel parameters of the alt version onto the intended version:
p <- ggplot_build(p)
p.alt <- ggplot_build(p.alt)
p$layout$panel_params <- p.alt$layout$panel_params
rm(p.alt)
Step 3. Build the intended plot from the modified plot data, & plot the result:
p <- ggplot_gtable(p)
grid::grid.draw(p)
Note: in this example, I truncated the data range by setting all values more than 10*IQR away from the upper / lower quartile in each facet row as NA. This can be replaced by any other logic for defining outliers.
I asked a question yesterday about annotating the x-axis with N in a faceted plot using a minimal example that turns out to be too simple, relative to my real problem. The answer given there works in the case of complete data, but if you have missing facets you would like to preserve, the combination of facet_wrap options drop=FALSE and scales="free_x" triggers an error: "Error in if (zero_range(from) || zero_range(to)) { : missing value where TRUE/FALSE needed"
Here is a new, less-minimal example. The goal here is to produce a large graph with two panels using grid.arrange; the first showing absolute values over time by treatment group; the second showing the change from baseline over time by treatment group. In the second panel, we need a blank facet when vis=1.
# setup
library(ggplot2)
library(plyr)
library(gridExtra)
trt <- factor(rep(LETTERS[1:2],150),ordered=TRUE)
vis <- factor(c(rep(1,150),rep(2,100),rep(3,50)),ordered=TRUE)
id <- c(c(1:150),c(1:100),c(1:50))
val <- rnorm(300)
data <- data.frame(id,trt,vis,val)
base <- with(subset(data,vis==1),data.frame(id,trt,baseval=val))
data <- merge(data,base,by="id")
data <- transform(data,chg=ifelse(vis==1,NA,val-baseval))
data.sum <- ddply(data, .(vis, trt), summarise, N=length(na.omit(val)))
data <- merge(data,data.sum)
data <- transform(data, trtN=paste(trt,N,sep="\n"))
mytheme <- theme_bw() + theme(panel.margin = unit(0, "lines"), strip.background = element_blank())
# no missing facets
plot.a <- ggplot(data) + geom_boxplot(aes(x=trtN,y=val,group=trt,colour=trt), show.legend=FALSE) +
facet_wrap(~ vis, drop=FALSE, switch="x", nrow=1, scales="free_x") +
labs(x="Visit") + mytheme
# first facet should be blank
plot.b <- ggplot(data) + geom_boxplot(aes(x=trtN,y=chg,group=trt,colour=trt), show.legend=FALSE) +
facet_wrap(~ vis, drop=FALSE, switch="x", nrow=1, scales="free_x") +
labs(x="Visit") + mytheme
grid.arrange(plot.a,plot.b,nrow=2)
You can add a blank layer to draw all the facets in your second plot. The key is that you need a variable that exists for every level of vis to use as your y variable. In your case you can simply use the variable you used in your first plot.
ggplot(data) +
geom_boxplot(aes(x = trtN, y = chg, group = trt, colour = trt), show.legend = FALSE) +
geom_blank(aes(x = trtN, y = val)) +
facet_wrap(~ vis, switch = "x", nrow = 1, scales = "free_x") +
labs(x="Visit") + mytheme
If your variables have different ranges, you can set the y limits using the overall min and max of your boxplot y variable.
+ scale_y_continuous(limits = c(min(data$chg, na.rm = TRUE), max(data$chg, na.rm = TRUE)))