Related
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
The community reviewed whether to reopen this question 10 days ago and left it closed:
Original close reason(s) were not resolved
Improve this question
I've read the Wikipedia articles for both procedural programming and functional programming, but I'm still slightly confused. Could someone boil it down to the core?
A functional language (ideally) allows you to write a mathematical function, i.e. a function that takes n arguments and returns a value. If the program is executed, this function is logically evaluated as needed.1
A procedural language, on the other hand, performs a series of sequential steps. (There's a way of transforming sequential logic into functional logic called continuation passing style.)
As a consequence, a purely functional program always yields the same value for an input, and the order of evaluation is not well-defined; which means that uncertain values like user input or random values are hard to model in purely functional languages.
1 As everything else in this answer, that’s a generalisation. This property, evaluating a computation when its result is needed rather than sequentially where it’s called, is known as “laziness”. Not all functional languages are actually universally lazy, nor is laziness restricted to functional programming. Rather, the description given here provides a “mental framework” to think about different programming styles that are not distinct and opposite categories but rather fluid ideas.
Basically the two styles, are like Yin and Yang. One is organized, while the other chaotic. There are situations when Functional programming is the obvious choice, and other situations were Procedural programming is the better choice. This is why there are at least two languages that have recently come out with a new version, that embraces both programming styles. ( Perl 6 and D 2 )
#Procedural:#
The output of a routine does not always have a direct correlation with the input.
Everything is done in a specific order.
Execution of a routine may have side effects.
Tends to emphasize implementing solutions in a linear fashion.
##Perl 6 ##
sub factorial ( UInt:D $n is copy ) returns UInt {
# modify "outside" state
state $call-count++;
# in this case it is rather pointless as
# it can't even be accessed from outside
my $result = 1;
loop ( ; $n > 0 ; $n-- ){
$result *= $n;
}
return $result;
}
##D 2##
int factorial( int n ){
int result = 1;
for( ; n > 0 ; n-- ){
result *= n;
}
return result;
}
#Functional:#
Often recursive.
Always returns the same output for a given input.
Order of evaluation is usually undefined.
Must be stateless. i.e. No operation can have side effects.
Good fit for parallel execution
Tends to emphasize a divide and conquer approach.
May have the feature of Lazy Evaluation.
##Haskell##
( copied from Wikipedia );
fac :: Integer -> Integer
fac 0 = 1
fac n | n > 0 = n * fac (n-1)
or in one line:
fac n = if n > 0 then n * fac (n-1) else 1
##Perl 6 ##
proto sub factorial ( UInt:D $n ) returns UInt {*}
multi sub factorial ( 0 ) { 1 }
multi sub factorial ( $n ) { $n * samewith $n-1 } # { $n * factorial $n-1 }
##D 2##
pure int factorial( invariant int n ){
if( n <= 1 ){
return 1;
}else{
return n * factorial( n-1 );
}
}
#Side note:#
Factorial is actually a common example to show how easy it is to create new operators in Perl 6 the same way you would create a subroutine. This feature is so ingrained into Perl 6 that most operators in the Rakudo implementation are defined this way. It also allows you to add your own multi candidates to existing operators.
sub postfix:< ! > ( UInt:D $n --> UInt )
is tighter(&infix:<*>)
{ [*] 2 .. $n }
say 5!; # 120
This example also shows range creation (2..$n) and the list reduction meta-operator ([ OPERATOR ] LIST) combined with the numeric infix multiplication operator. (*)
It also shows that you can put --> UInt in the signature instead of returns UInt after it.
( You can get away with starting the range with 2 as the multiply "operator" will return 1 when called without any arguments )
I've never seen this definition given elsewhere, but I think this sums up the differences given here fairly well:
Functional programming focuses on expressions
Procedural programming focuses on statements
Expressions have values. A functional program is an expression who's value is a sequence of instructions for the computer to carry out.
Statements don't have values and instead modify the state of some conceptual machine.
In a purely functional language there would be no statements, in the sense that there's no way to manipulate state (they might still have a syntactic construct named "statement", but unless it manipulates state I wouldn't call it a statement in this sense). In a purely procedural language there would be no expressions, everything would be an instruction which manipulates the state of the machine.
Haskell would be an example of a purely functional language because there is no way to manipulate state. Machine code would be an example of a purely procedural language because everything in a program is a statement which manipulates the state of the registers and memory of the machine.
The confusing part is that the vast majority of programming languages contain both expressions and statements, allowing you to mix paradigms. Languages can be classified as more functional or more procedural based on how much they encourage the use of statements vs expressions.
For example, C would be more functional than COBOL because a function call is an expression, whereas calling a sub program in COBOL is a statement (that manipulates the state of shared variables and doesn't return a value). Python would be more functional than C because it allows you to express conditional logic as an expression using short circuit evaluation (test && path1 || path2 as opposed to if statements). Scheme would be more functional than Python because everything in scheme is an expression.
You can still write in a functional style in a language which encourages the procedural paradigm and vice versa. It's just harder and/or more awkward to write in a paradigm which isn't encouraged by the language.
Funtional Programming
num = 1
def function_to_add_one(num):
num += 1
return num
function_to_add_one(num)
function_to_add_one(num)
function_to_add_one(num)
function_to_add_one(num)
function_to_add_one(num)
#Final Output: 2
Procedural Programming
num = 1
def procedure_to_add_one():
global num
num += 1
return num
procedure_to_add_one()
procedure_to_add_one()
procedure_to_add_one()
procedure_to_add_one()
procedure_to_add_one()
#Final Output: 6
function_to_add_one is a function
procedure_to_add_one is a procedure
Even if you run the function five times, every time it will return 2
If you run the procedure five times, at the end of fifth run it will give you 6.
DISCLAIMER: Obviously this is a hyper-simplified view of reality. This answer just gives a taste of "functions" as opposed to "procedures". Nothing more. Once you have tasted this superficial yet deeply penetrative intuition, start exploring the two paradigms, and you will start to see the difference quite clearly.
Helps my students, hope it helps you too.
In computer science, functional programming is a programming paradigm that treats computation as the evaluation of mathematical functions and avoids state and mutable data. It emphasizes the application of functions, in contrast with the procedural programming style that emphasizes changes in state.
I believe that procedural/functional/objective programming are about how to approach a problem.
The first style would plan everything in to steps, and solves the problem by implementing one step (a procedure) at a time. On the other hand, functional programming would emphasize the divide-and-conquer approach, where the problem is divided into sub-problem, then each sub-problem is solved (creating a function to solve that sub problem) and the results are combined to create the answer for the whole problem. Lastly, Objective programming would mimic the real world by create a mini-world inside the computer with many objects, each of which has a (somewhat) unique characteristics, and interacts with others. From those interactions the result would emerge.
Each style of programming has its own advantages and weaknesses. Hence, doing something such as "pure programming" (i.e. purely procedural - no one does this, by the way, which is kind of weird - or purely functional or purely objective) is very difficult, if not impossible, except some elementary problems specially designed to demonstrate the advantage of a programming style (hence, we call those who like pureness "weenie" :D).
Then, from those styles, we have programming languages that is designed to optimized for some each style. For example, Assembly is all about procedural. Okay, most early languages are procedural, not only Asm, like C, Pascal, (and Fortran, I heard). Then, we have all famous Java in objective school (Actually, Java and C# is also in a class called "money-oriented," but that is subject for another discussion). Also objective is Smalltalk. In functional school, we would have "nearly functional" (some considered them to be impure) Lisp family and ML family and many "purely functional" Haskell, Erlang, etc. By the way, there are many general languages such as Perl, Python, Ruby.
To expand on Konrad's comment:
As a consequence, a purely functional program always yields the same value for an input, and the order of evaluation is not well-defined;
Because of this, functional code is generally easier to parallelize. Since there are (generally) no side effects of the functions, and they (generally) just act on their arguments, a lot of concurrency issues go away.
Functional programming is also used when you need to be capable of proving your code is correct. This is much harder to do with procedural programming (not easy with functional, but still easier).
Disclaimer: I haven't used functional programming in years, and only recently started looking at it again, so I might not be completely correct here. :)
One thing I hadn't seen really emphasized here is that modern functional languages such as Haskell really more on first class functions for flow control than explicit recursion. You don't need to define factorial recursively in Haskell, as was done above. I think something like
fac n = foldr (*) 1 [1..n]
is a perfectly idiomatic construction, and much closer in spirit to using a loop than to using explicit recursion.
A functional programming is identical to procedural programming in which global variables are not being used.
Procedural languages tend to keep track of state (using variables) and tend to execute as a sequence of steps. Purely functional languages don't keep track of state, use immutable values, and tend to execute as a series of dependencies. In many cases the status of the call stack will hold the information that would be equivalent to that which would be stored in state variables in procedural code.
Recursion is a classic example of functional style programming.
Konrad said:
As a consequence, a purely functional program always yields the same value for an input,
and the order of evaluation is not well-defined; which means that uncertain values like
user input or random values are hard to model in purely functional languages.
The order of evaluation in a purely functional program may be hard(er) to reason about (especially with laziness) or even unimportant but I think that saying it is not well defined makes it sound like you can't tell if your program is going to work at all!
Perhaps a better explanation would be that control flow in functional programs is based on when the value of a function's arguments are needed. The Good Thing about this that in well written programs, state becomes explicit: each function lists its inputs as parameters instead of arbitrarily munging global state. So on some level, it is easier to reason about order of evaluation with respect to one function at a time. Each function can ignore the rest of the universe and focus on what it needs to do. When combined, functions are guaranteed to work the same[1] as they would in isolation.
... uncertain values like user input or random values are hard to model in purely
functional languages.
The solution to the input problem in purely functional programs is to embed an imperative language as a DSL using a sufficiently powerful abstraction. In imperative (or non-pure functional) languages this is not needed because you can "cheat" and pass state implicitly and order of evaluation is explicit (whether you like it or not). Because of this "cheating" and forced evaluation of all parameters to every function, in imperative languages 1) you lose the ability to create your own control flow mechanisms (without macros), 2) code isn't inherently thread safe and/or parallelizable by default, 3) and implementing something like undo (time travel) takes careful work (imperative programmer must store a recipe for getting the old value(s) back!), whereas pure functional programming buys you all these things—and a few more I may have forgotten—"for free".
I hope this doesn't sound like zealotry, I just wanted to add some perspective. Imperative programming and especially mixed paradigm programming in powerful languages like C# 3.0 are still totally effective ways to get things done and there is no silver bullet.
[1] ... except possibly with respect memory usage (cf. foldl and foldl' in Haskell).
To expand on Konrad's comment:
and the order of evaluation is not
well-defined
Some functional languages have what is called Lazy Evaluation. Which means a function is not executed until the value is needed. Until that time the function itself is what is passed around.
Procedural languages are step 1 step 2 step 3... if in step 2 you say add 2 + 2, it does it right then. In lazy evaluation you would say add 2 + 2, but if the result is never used, it never does the addition.
If you have a chance, I would recommand getting a copy of Lisp/Scheme, and doing some projects in it. Most of the ideas that have lately become bandwagons were expressed in Lisp decades ago: functional programming, continuations (as closures), garbage collection, even XML.
So that would be a good way to get a head start on all these current ideas, and a few more besides, like symbolic computation.
You should know what functional programming is good for, and what it isn't good for. It isn't good for everything. Some problems are best expressed in terms of side-effects, where the same question gives differet answers depending on when it is asked.
#Creighton:
In Haskell there is a library function called product:
prouduct list = foldr 1 (*) list
or simply:
product = foldr 1 (*)
so the "idiomatic" factorial
fac n = foldr 1 (*) [1..n]
would simply be
fac n = product [1..n]
Procedural programming divides sequences of statements and conditional constructs into separate blocks called procedures that are parameterized over arguments that are (non-functional) values.
Functional programming is the same except that functions are first-class values, so they can be passed as arguments to other functions and returned as results from function calls.
Note that functional programming is a generalization of procedural programming in this interpretation. However, a minority interpret "functional programming" to mean side-effect-free which is quite different but irrelevant for all major functional languages except Haskell.
None of the answers here show idiomatic functional programming. The recursive factorial answer is great for representing recursion in FP, but the majority of code is not recursive so I don't think that answer is fully representative.
Say you have an arrays of strings, and each string represents an integer like "5" or "-200". You want to check this input array of strings against your internal test case (Using integer comparison). Both solutions are shown below
Procedural
arr_equal(a : [Int], b : [Str]) -> Bool {
if(a.len != b.len) {
return false;
}
bool ret = true;
for( int i = 0; i < a.len /* Optimized with && ret*/; i++ ) {
int a_int = a[i];
int b_int = parseInt(b[i]);
ret &= a_int == b_int;
}
return ret;
}
Functional
eq = i, j => i == j # This is usually a built-in
toInt = i => parseInt(i) # Of course, parseInt === toInt here, but this is for visualization
arr_equal(a : [Int], b : [Str]) -> Bool =
zip(a, b.map(toInt)) # Combines into [Int, Int]
.map(eq)
.reduce(true, (i, j) => i && j) # Start with true, and continuously && it with each value
While pure functional languages are generally research languages (As the real-world likes free side-effects), real-world procedural languages will use the much simpler functional syntax when appropriate.
This is usually implemented with an external library like Lodash, or available built-in with newer languages like Rust. The heavy lifting of functional programming is done with functions/concepts like map, filter, reduce, currying, partial, the last three of which you can look up for further understanding.
Addendum
In order to be used in the wild, the compiler will normally have to work out how to convert the functional version into the procedural version internally, as function call overhead is too high. Recursive cases such as the factorial shown will use tricks such as tail call to remove O(n) memory usage. The fact that there are no side effects allows functional compilers to implement the && ret optimization even when the .reduce is done last. Using Lodash in JS, obviously does not allow for any optimization, so it is a hit to performance (Which isn't usually a concern with web development). Languages like Rust will optimize internally (And have functions such as try_fold to assist && ret optimization).
To Understand the difference, one needs to to understand that "the godfather" paradigm of both procedural and functional programming is the imperative programming.
Basically procedural programming is merely a way of structuring imperative programs in which the primary method of abstraction is the "procedure." (or "function" in some programming languages). Even Object Oriented Programming is just another way of structuring an imperative program, where the state is encapsulated in objects, becoming an object with a "current state," plus this object has a set of functions, methods, and other stuff that let you the programmer manipulate or update the state.
Now, in regards to functional programming, the gist in its approach is that it identifies what values to take and how these values should be transferred. (so there is no state, and no mutable data as it takes functions as first class values and pass them as parameters to other functions).
PS: understanding every programming paradigm is used for should clarify the differences between all of them.
PSS: In the end of the day, programming paradigms are just different approaches to solving problems.
PSS: this quora answer has a great explanation.
I'm referring to this article https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f69aa109569. I've been confused with how functional programming differs from procedural programming for a while and want to understand it.
function getOdds2(arr){
return arr.filter(num => num % 2 !== 0)
}
"we simply define the outcome we want to see by using a method called filter, and allow the machine to take care of all the steps in between. This is a more declarative approach."
They say they define the outcome we want to see. How is that any different from procedural programming where you call a function (a sub routine) and get the output you want to see. How is this "declarative approach" any different than just calling a function. The only difference I see between functional and procedural programming is the style.
Procedural programming uses procedures (i.e. calls functions, aka subroutines) and potentially (refers to, and/or changes in place aka "mutates") lots of global variables and/or data structures, i.e. "state".
Functional programming seeks to have all the relevant state in the function's arguments and return values, to minimize if not outright forbid the state external to the functions used (called) in a program.
So, it seeks to have few (or none at all) global variables and data structures, just have functions (subroutines) passing data along until the final one produces the result.
Both are calling functions / subroutines, yes. That's just structured programming, though.
"Pure" functional programming doesn't want its functions to have (and maintain) any internal state (between the calls) either. That way the programming functions / subroutines / procedures become much like mathematical functions, always producing the same output for the same input(s). The operations of such functions become reliable, allowing for the more declarative style of programming. (when it might do something different each time it's called, there's no name we can give it, no concept to call it for).
With functional programming, everything revolves around functions. In the example you gave above, you are defining and executing a function without even knowing it.
You're passing a lambda (anonymous function) to the filter function. With functional programming, that's really the point - defining everything in terms of functions, passing functions as arguments to functions, etc.
So yes, it is about style. It's about ease of expressing your ideas in code and being additionally terse.
Take this for example:
function getOdds(array) {
odds = [];
for(var i = 0; i < array.length; i++) {
if(isOdd(array[i]) array.push(i);
}
}
function isOdd(n) {
return n % 2 != 0;
}
it gets the job done but it's really verbose. Now compare it to:
function getOdds(array) {
array.filter(n => n % 2 != 0)
}
Here you're defining the isOdd function anonymously as a lambda and passing it directly to the filter function. Saves a lot of keystrokes.
I've been reading about functional programming and its concepts. It's clear to me that when working in big projects you always need to mix (at some adequate level) multiple paradigms such as OO and functional. In theory, concepts such as function purity are too strict such as
The function always evaluates the same result value given the same argument value(s). The function result value cannot depend on any hidden information or state that may change while program execution proceeds or between different executions of the program, nor can it depend on any external input from I/O devices. (https://en.wikipedia.org/wiki/Pure_function)
That said, is this (or can be considered) code a pure function?
const externalVar = 10;
function timesTen(value) {
return externalVar * value;
}
I'm asking this because, in this case, the timesTen function will always return the same value for an input, and anyone can change the value of externalVar as this is a constant. However, this code breaks the rule of accessing external function's scope.
Yes. It is guaranteed to be pure.
The reason is that it only depends on bound and immutable free variables.
However, this code breaks the rule of accessing external function's
scope.
There is nothing in your quote that says you cannot access free variables. It says external input as reading from a file, network, etc not a free variable from a previous scope.
Even Haskell use global function names like foldr and it is a free variable in every function it is used and of course the result is pure.
Remember that functions by name is just variables. parseInt is a variable that points to a function so it would have been hard to make anything at all if every function you should use in another function be passed as parameter.
If you redefine parseInt to something that is not pure or during the duration of your program so that it works differently then no function calling it would be pure.
Function composition and partial evaluation work because they supply free variables. Its an essential method of abstraction in functional programming. eg.
function compose(f2, f1) {
return (...args) => f2(f1(...args));
}
function makeAdder(initialValue) {
return v => v + initialValue;
}
const add11 = compose(makeAdder(10), makeAdder(1));
add11(5); // ==> 16
This is pure. The closure variable / free variable f1, f2, initialValue never changes for the created functions. add11 is a pure function.
Now look at compose again. It looks pure but it can be tainted. If not both functions passed to it were pure the result isn't either.
OO can be purely functional too!
They can easily be combined by not mutating the objects you create.
class FunctionalNumber {
constructor(value) {
this.value = value;
}
add(fn) {
return new FunctionalNumber(this.value + fn.value);
}
sub(fn) {
return new FunctionalNumber(this.value - fn.value);
}
}
This class is purely functional.
In fact you can think of a method call like obj.someMethod(arg1, arg2) as a function call with obj as first argument someFunction(obj, arg1, arg2). It's only syntactic differences and if someFunction mutated obj you would have said it was not pure. This is how it is with someMethod and obj too.
You can make classes that work on large data structures that are functional, which means you never have to copy it before changing when doing a backtracking puzzle solver. A simple example is the pair in Haskell and Lisp. Here is one way to make it in JavaScript:
class Cons {
constructor(car, cdr) {
this.car = car;
this.cdr = cdr;
}
}
const lst = new Cons(1, new Cons(2, new Cons(3, null)));
const lst0 = new Cons(0, lst);
lst0 is lst but with a new element in front. lst0 reuses everything in lst. Everything from lists to binary trees can be made with this and you can make many sequential data structures with immutable binary trees. It's been around since the 50s.
I understand your opinion and totally agree with #Sylwester, but there's a point that is worth mention: with reflection external constant values can be modified and break the pureness of your function. We know that everything in IT can be hacked and we should not considere this over the concepts, but in practice we should have this clear in mind, that in this way functional pureness is unsound.
Closures are poor man's objects and vice versa.
I have seen this statement at many places on the web (including SO) but I don't quite understand what it means. Could someone please explain what it exactly means?
If possible, please include examples in your answer.
Objects are poor man's closures.
Consider Java. Java is an object-oriented programming language with no language level support for real lexical closures. As a work-around Java programmers use anonymous inner classes that can close over the variables available in lexical scope (provided they're final). In this sense, objects are poor man's closures.
Closures are poor man's objects.
Consider Haskell. Haskell is a functional language with no language level support for real objects. However they can be modeled using closures, as described in this excellent paper by Oleg Kiselyov and Ralf Lammel. In this sense, closures are poor man's objects.
If you come from an OO background, you'll probably find thinking in terms of objects more natural, and may therefore think of them as a more fundamental concept than closures. If you come from a FP background, you might find thinking in terms of closures more natural, and may therefore think of them as a more fundamental concept than objects.
Moral of the story is that closures and objects are ideas that are expressible in terms of each other, and none is more fundamental than the other. That's all there is to the statement under consideration.
In philosophy, this is referred to as model dependent realism.
The point is that closures and objects accomplish the same goal: encapsulation of data and/or functionality in a single, logical unit.
For example, you might make a Python class that represents a dog like this:
class Dog(object):
def __init__(self):
self.breed = "Beagle"
self.height = 12
self.weight = 15
self.age = 1
def feed(self, amount):
self.weight += amount / 5.0
def grow(self):
self.weight += 2
self.height += .25
def bark(self):
print "Bark!"
And then I instantiate the class as an object
>>> Shaggy = Dog()
The Shaggy object has data and functionality built in. When I call Shaggy.feed(5), he gains a pound. That pound is stored in variable that's stored as an attribute of the object, which more or less means that it's in the objects internal scope.
If I was coding some Javascript, I'd do something similar:
var Shaggy = function() {
var breed = "Beagle";
var height = 12;
var weight = 15;
var age = 1;
return {
feed : function(){
weight += amount / 5.0;
},
grow : function(){
weight += 2;
height += .25;
},
bark : function(){
window.alert("Bark!");
},
stats : function(){
window.alert(breed "," height "," weight "," age);
}
}
}();
Here, instead of creating a scope within an object, I've created a scope within a function and then called that function. The function returns a JavaScript object composed of some functions. Because those functions access data that was allocated in the local scope, the memory isn't reclaimed, allowing you to continue to use them through the interface provided by the closure.
An object, at its simplest, is just a collection of state and functions that operate on that state. A closure is also a collection of state and a function that operates on that state.
Let's say I call a function that takes a callback. In this callback, I need to operate on some state known before the function call. I can create an object that embodies this state ("fields") and contains a member function ("method") that performs as the callback. Or, I could take the quick and easy ("poor man's") route and create a closure.
As an object:
class CallbackState{
object state;
public CallbackState(object state){this.state = state;}
public void Callback(){
// do something with state
}
}
void Foo(){
object state = GenerateState();
CallbackState callback = new CallbackState(state);
PerformOperation(callback.Callback);
}
This is pseudo-C#, but is similar in concept to other OO languages. As you can see, there's a fair amount of boilerplate involved with the callback class to manage the state. This would be much simpler using a closure:
void Foo(){
object state = GenerateState();
PerformOperation(()=>{/*do something with state*/});
}
This is a lambda (again, in C# syntax, but the concept is similar in other languages that support closures) that gives us all the capabilities of the class, without having to write, use, and maintain a separate class.
You'll also hear the corollary: "objects are a poor man's closure". If I can't or won't take advantage of closures, then I am forced to do their work using objects, as in my first example. Although objects provide more functionality, closures are often a better choice where a closure will work, for the reasons already stated.
Hence, a poor man without objects can often get the job done with closures, and a poor man without closures can get the job done using objects. A rich man has both and uses the right one for each job.
EDITED: The title of the question does not include "vice versa" so I'll try not to assume the asker's intent.
The two common camps are functional vs imperative languages. Both are tools that can accomplish similar tasks in different ways with different sets of concerns.
Closures are poor man's objects.
Objects are poor man's closures.
Individually, each statement usually means the author has a some bias, one way or another, usually rooted in their comfort with one language or class of language vs discomfort with another. If not bias, they may be constrained with one environment or the other. The authors I read that say this sort of thing are usually the zealot, purist or language religious types. I avoid the language religious types if possible.
Closures are poor man's objects. Objects are poor man's closures.
The author of that is a "pragmatist" and also pretty clever. It means the author appreciates both points of view and appreciates they are conceptually one and the same. This is my sort of fellow.
Just so much sugar, as closures hide anonymous objects under their skirts.
"Objects are a poor man's closures" isn't just a statement of some theoretical equivalence — it's a common Java idiom. It's very common to use anonymous classes to wrap up a function that captures the current state. Here's how it's used:
public void foo() {
final String message = "Hey ma, I'm closed over!";
SwingUtilities.invokeLater(new Runnable() {
public void run() {
System.out.println(message);
}
});
}
This even looks a lot like the equivalent code using a closure in another language. For example, using Objective-C blocks (since Objective-C is reasonably similar to Java):
void foo() {
NSString *message = #"Hey ma, I'm closed over!";
[[NSOperationQueue currentQueue] addOperationWithBlock:^{
printf("%s\n", [message UTF8String]);
}];
}
The only real difference is that the functionality is wrapped in the new Runnable() anonymous class instance in the Java version.
That objects can be used as a replacement for closures is quite easy to understand, you just place the captured state in the object and the calling as a method. Indeed for example C++ lambda closures are implemented as objects (things are sort of tricky for C++ because the language doesn't provide garbage collection and true closures with mutable shared state are therefore hard to implement correctly because of the lifetime of captured context).
The opposite (closures can be used as objects) is less observed but it's IMO a very powerful technique... consider for example (Python)
def P2d(x, y):
def f(cmd, *args):
nonlocal x, y
if cmd == "x": return x
if cmd == "y": return y
if cmd == "set-x": x = args[0]
if cmd == "set-y": y = args[0]
return f
The function P2d returns a closure that captured the two values of x and y. The closure then provide access for reading and writing to them using a command. For example
p = P2d(10, 20)
p("x") # --> 10
p("set-x", 99)
p("x") # --> 99
so the closure is behaving like an object; moreover as any access is going through the command interface it's very easy to implement delegation, inheritance, computed attributes etc.
The nice book "Let Over Lambda" builds over this idea using Lisp as a language, but any language that supports closures can use this technique (in Lisp the advantage is that you can also bend the syntax using macros and read macros to improve usability and automatically generate all boilerplate code). The title of the book is exactly about this... a let wrapping a lambda:
(defun p2d (x y)
(let ((x x) (y y))
(lambda (cmd &rest args)
(cond
((eq cmd 'x) x)
((eq cmd 'y) y)
((eq cmd 'set-x) (setq x (first args)))
((eq cmd 'set-y) (setq y (first args)))))))
Actually I'm not sure I agree with the "poor" adjective in this approach.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
The community reviewed whether to reopen this question 17 days ago and left it closed:
Original close reason(s) were not resolved
Improve this question
I've read the Wikipedia articles for both procedural programming and functional programming, but I'm still slightly confused. Could someone boil it down to the core?
A functional language (ideally) allows you to write a mathematical function, i.e. a function that takes n arguments and returns a value. If the program is executed, this function is logically evaluated as needed.1
A procedural language, on the other hand, performs a series of sequential steps. (There's a way of transforming sequential logic into functional logic called continuation passing style.)
As a consequence, a purely functional program always yields the same value for an input, and the order of evaluation is not well-defined; which means that uncertain values like user input or random values are hard to model in purely functional languages.
1 As everything else in this answer, that’s a generalisation. This property, evaluating a computation when its result is needed rather than sequentially where it’s called, is known as “laziness”. Not all functional languages are actually universally lazy, nor is laziness restricted to functional programming. Rather, the description given here provides a “mental framework” to think about different programming styles that are not distinct and opposite categories but rather fluid ideas.
Basically the two styles, are like Yin and Yang. One is organized, while the other chaotic. There are situations when Functional programming is the obvious choice, and other situations were Procedural programming is the better choice. This is why there are at least two languages that have recently come out with a new version, that embraces both programming styles. ( Perl 6 and D 2 )
#Procedural:#
The output of a routine does not always have a direct correlation with the input.
Everything is done in a specific order.
Execution of a routine may have side effects.
Tends to emphasize implementing solutions in a linear fashion.
##Perl 6 ##
sub factorial ( UInt:D $n is copy ) returns UInt {
# modify "outside" state
state $call-count++;
# in this case it is rather pointless as
# it can't even be accessed from outside
my $result = 1;
loop ( ; $n > 0 ; $n-- ){
$result *= $n;
}
return $result;
}
##D 2##
int factorial( int n ){
int result = 1;
for( ; n > 0 ; n-- ){
result *= n;
}
return result;
}
#Functional:#
Often recursive.
Always returns the same output for a given input.
Order of evaluation is usually undefined.
Must be stateless. i.e. No operation can have side effects.
Good fit for parallel execution
Tends to emphasize a divide and conquer approach.
May have the feature of Lazy Evaluation.
##Haskell##
( copied from Wikipedia );
fac :: Integer -> Integer
fac 0 = 1
fac n | n > 0 = n * fac (n-1)
or in one line:
fac n = if n > 0 then n * fac (n-1) else 1
##Perl 6 ##
proto sub factorial ( UInt:D $n ) returns UInt {*}
multi sub factorial ( 0 ) { 1 }
multi sub factorial ( $n ) { $n * samewith $n-1 } # { $n * factorial $n-1 }
##D 2##
pure int factorial( invariant int n ){
if( n <= 1 ){
return 1;
}else{
return n * factorial( n-1 );
}
}
#Side note:#
Factorial is actually a common example to show how easy it is to create new operators in Perl 6 the same way you would create a subroutine. This feature is so ingrained into Perl 6 that most operators in the Rakudo implementation are defined this way. It also allows you to add your own multi candidates to existing operators.
sub postfix:< ! > ( UInt:D $n --> UInt )
is tighter(&infix:<*>)
{ [*] 2 .. $n }
say 5!; # 120
This example also shows range creation (2..$n) and the list reduction meta-operator ([ OPERATOR ] LIST) combined with the numeric infix multiplication operator. (*)
It also shows that you can put --> UInt in the signature instead of returns UInt after it.
( You can get away with starting the range with 2 as the multiply "operator" will return 1 when called without any arguments )
I've never seen this definition given elsewhere, but I think this sums up the differences given here fairly well:
Functional programming focuses on expressions
Procedural programming focuses on statements
Expressions have values. A functional program is an expression who's value is a sequence of instructions for the computer to carry out.
Statements don't have values and instead modify the state of some conceptual machine.
In a purely functional language there would be no statements, in the sense that there's no way to manipulate state (they might still have a syntactic construct named "statement", but unless it manipulates state I wouldn't call it a statement in this sense). In a purely procedural language there would be no expressions, everything would be an instruction which manipulates the state of the machine.
Haskell would be an example of a purely functional language because there is no way to manipulate state. Machine code would be an example of a purely procedural language because everything in a program is a statement which manipulates the state of the registers and memory of the machine.
The confusing part is that the vast majority of programming languages contain both expressions and statements, allowing you to mix paradigms. Languages can be classified as more functional or more procedural based on how much they encourage the use of statements vs expressions.
For example, C would be more functional than COBOL because a function call is an expression, whereas calling a sub program in COBOL is a statement (that manipulates the state of shared variables and doesn't return a value). Python would be more functional than C because it allows you to express conditional logic as an expression using short circuit evaluation (test && path1 || path2 as opposed to if statements). Scheme would be more functional than Python because everything in scheme is an expression.
You can still write in a functional style in a language which encourages the procedural paradigm and vice versa. It's just harder and/or more awkward to write in a paradigm which isn't encouraged by the language.
Funtional Programming
num = 1
def function_to_add_one(num):
num += 1
return num
function_to_add_one(num)
function_to_add_one(num)
function_to_add_one(num)
function_to_add_one(num)
function_to_add_one(num)
#Final Output: 2
Procedural Programming
num = 1
def procedure_to_add_one():
global num
num += 1
return num
procedure_to_add_one()
procedure_to_add_one()
procedure_to_add_one()
procedure_to_add_one()
procedure_to_add_one()
#Final Output: 6
function_to_add_one is a function
procedure_to_add_one is a procedure
Even if you run the function five times, every time it will return 2
If you run the procedure five times, at the end of fifth run it will give you 6.
DISCLAIMER: Obviously this is a hyper-simplified view of reality. This answer just gives a taste of "functions" as opposed to "procedures". Nothing more. Once you have tasted this superficial yet deeply penetrative intuition, start exploring the two paradigms, and you will start to see the difference quite clearly.
Helps my students, hope it helps you too.
In computer science, functional programming is a programming paradigm that treats computation as the evaluation of mathematical functions and avoids state and mutable data. It emphasizes the application of functions, in contrast with the procedural programming style that emphasizes changes in state.
I believe that procedural/functional/objective programming are about how to approach a problem.
The first style would plan everything in to steps, and solves the problem by implementing one step (a procedure) at a time. On the other hand, functional programming would emphasize the divide-and-conquer approach, where the problem is divided into sub-problem, then each sub-problem is solved (creating a function to solve that sub problem) and the results are combined to create the answer for the whole problem. Lastly, Objective programming would mimic the real world by create a mini-world inside the computer with many objects, each of which has a (somewhat) unique characteristics, and interacts with others. From those interactions the result would emerge.
Each style of programming has its own advantages and weaknesses. Hence, doing something such as "pure programming" (i.e. purely procedural - no one does this, by the way, which is kind of weird - or purely functional or purely objective) is very difficult, if not impossible, except some elementary problems specially designed to demonstrate the advantage of a programming style (hence, we call those who like pureness "weenie" :D).
Then, from those styles, we have programming languages that is designed to optimized for some each style. For example, Assembly is all about procedural. Okay, most early languages are procedural, not only Asm, like C, Pascal, (and Fortran, I heard). Then, we have all famous Java in objective school (Actually, Java and C# is also in a class called "money-oriented," but that is subject for another discussion). Also objective is Smalltalk. In functional school, we would have "nearly functional" (some considered them to be impure) Lisp family and ML family and many "purely functional" Haskell, Erlang, etc. By the way, there are many general languages such as Perl, Python, Ruby.
To expand on Konrad's comment:
As a consequence, a purely functional program always yields the same value for an input, and the order of evaluation is not well-defined;
Because of this, functional code is generally easier to parallelize. Since there are (generally) no side effects of the functions, and they (generally) just act on their arguments, a lot of concurrency issues go away.
Functional programming is also used when you need to be capable of proving your code is correct. This is much harder to do with procedural programming (not easy with functional, but still easier).
Disclaimer: I haven't used functional programming in years, and only recently started looking at it again, so I might not be completely correct here. :)
One thing I hadn't seen really emphasized here is that modern functional languages such as Haskell really more on first class functions for flow control than explicit recursion. You don't need to define factorial recursively in Haskell, as was done above. I think something like
fac n = foldr (*) 1 [1..n]
is a perfectly idiomatic construction, and much closer in spirit to using a loop than to using explicit recursion.
A functional programming is identical to procedural programming in which global variables are not being used.
Procedural languages tend to keep track of state (using variables) and tend to execute as a sequence of steps. Purely functional languages don't keep track of state, use immutable values, and tend to execute as a series of dependencies. In many cases the status of the call stack will hold the information that would be equivalent to that which would be stored in state variables in procedural code.
Recursion is a classic example of functional style programming.
Konrad said:
As a consequence, a purely functional program always yields the same value for an input,
and the order of evaluation is not well-defined; which means that uncertain values like
user input or random values are hard to model in purely functional languages.
The order of evaluation in a purely functional program may be hard(er) to reason about (especially with laziness) or even unimportant but I think that saying it is not well defined makes it sound like you can't tell if your program is going to work at all!
Perhaps a better explanation would be that control flow in functional programs is based on when the value of a function's arguments are needed. The Good Thing about this that in well written programs, state becomes explicit: each function lists its inputs as parameters instead of arbitrarily munging global state. So on some level, it is easier to reason about order of evaluation with respect to one function at a time. Each function can ignore the rest of the universe and focus on what it needs to do. When combined, functions are guaranteed to work the same[1] as they would in isolation.
... uncertain values like user input or random values are hard to model in purely
functional languages.
The solution to the input problem in purely functional programs is to embed an imperative language as a DSL using a sufficiently powerful abstraction. In imperative (or non-pure functional) languages this is not needed because you can "cheat" and pass state implicitly and order of evaluation is explicit (whether you like it or not). Because of this "cheating" and forced evaluation of all parameters to every function, in imperative languages 1) you lose the ability to create your own control flow mechanisms (without macros), 2) code isn't inherently thread safe and/or parallelizable by default, 3) and implementing something like undo (time travel) takes careful work (imperative programmer must store a recipe for getting the old value(s) back!), whereas pure functional programming buys you all these things—and a few more I may have forgotten—"for free".
I hope this doesn't sound like zealotry, I just wanted to add some perspective. Imperative programming and especially mixed paradigm programming in powerful languages like C# 3.0 are still totally effective ways to get things done and there is no silver bullet.
[1] ... except possibly with respect memory usage (cf. foldl and foldl' in Haskell).
To expand on Konrad's comment:
and the order of evaluation is not
well-defined
Some functional languages have what is called Lazy Evaluation. Which means a function is not executed until the value is needed. Until that time the function itself is what is passed around.
Procedural languages are step 1 step 2 step 3... if in step 2 you say add 2 + 2, it does it right then. In lazy evaluation you would say add 2 + 2, but if the result is never used, it never does the addition.
If you have a chance, I would recommand getting a copy of Lisp/Scheme, and doing some projects in it. Most of the ideas that have lately become bandwagons were expressed in Lisp decades ago: functional programming, continuations (as closures), garbage collection, even XML.
So that would be a good way to get a head start on all these current ideas, and a few more besides, like symbolic computation.
You should know what functional programming is good for, and what it isn't good for. It isn't good for everything. Some problems are best expressed in terms of side-effects, where the same question gives differet answers depending on when it is asked.
#Creighton:
In Haskell there is a library function called product:
prouduct list = foldr 1 (*) list
or simply:
product = foldr 1 (*)
so the "idiomatic" factorial
fac n = foldr 1 (*) [1..n]
would simply be
fac n = product [1..n]
Procedural programming divides sequences of statements and conditional constructs into separate blocks called procedures that are parameterized over arguments that are (non-functional) values.
Functional programming is the same except that functions are first-class values, so they can be passed as arguments to other functions and returned as results from function calls.
Note that functional programming is a generalization of procedural programming in this interpretation. However, a minority interpret "functional programming" to mean side-effect-free which is quite different but irrelevant for all major functional languages except Haskell.
None of the answers here show idiomatic functional programming. The recursive factorial answer is great for representing recursion in FP, but the majority of code is not recursive so I don't think that answer is fully representative.
Say you have an arrays of strings, and each string represents an integer like "5" or "-200". You want to check this input array of strings against your internal test case (Using integer comparison). Both solutions are shown below
Procedural
arr_equal(a : [Int], b : [Str]) -> Bool {
if(a.len != b.len) {
return false;
}
bool ret = true;
for( int i = 0; i < a.len /* Optimized with && ret*/; i++ ) {
int a_int = a[i];
int b_int = parseInt(b[i]);
ret &= a_int == b_int;
}
return ret;
}
Functional
eq = i, j => i == j # This is usually a built-in
toInt = i => parseInt(i) # Of course, parseInt === toInt here, but this is for visualization
arr_equal(a : [Int], b : [Str]) -> Bool =
zip(a, b.map(toInt)) # Combines into [Int, Int]
.map(eq)
.reduce(true, (i, j) => i && j) # Start with true, and continuously && it with each value
While pure functional languages are generally research languages (As the real-world likes free side-effects), real-world procedural languages will use the much simpler functional syntax when appropriate.
This is usually implemented with an external library like Lodash, or available built-in with newer languages like Rust. The heavy lifting of functional programming is done with functions/concepts like map, filter, reduce, currying, partial, the last three of which you can look up for further understanding.
Addendum
In order to be used in the wild, the compiler will normally have to work out how to convert the functional version into the procedural version internally, as function call overhead is too high. Recursive cases such as the factorial shown will use tricks such as tail call to remove O(n) memory usage. The fact that there are no side effects allows functional compilers to implement the && ret optimization even when the .reduce is done last. Using Lodash in JS, obviously does not allow for any optimization, so it is a hit to performance (Which isn't usually a concern with web development). Languages like Rust will optimize internally (And have functions such as try_fold to assist && ret optimization).
To Understand the difference, one needs to to understand that "the godfather" paradigm of both procedural and functional programming is the imperative programming.
Basically procedural programming is merely a way of structuring imperative programs in which the primary method of abstraction is the "procedure." (or "function" in some programming languages). Even Object Oriented Programming is just another way of structuring an imperative program, where the state is encapsulated in objects, becoming an object with a "current state," plus this object has a set of functions, methods, and other stuff that let you the programmer manipulate or update the state.
Now, in regards to functional programming, the gist in its approach is that it identifies what values to take and how these values should be transferred. (so there is no state, and no mutable data as it takes functions as first class values and pass them as parameters to other functions).
PS: understanding every programming paradigm is used for should clarify the differences between all of them.
PSS: In the end of the day, programming paradigms are just different approaches to solving problems.
PSS: this quora answer has a great explanation.