Plot a table with box size changing - r

Does anyone have an idea how is this kind of chart plotted? It seems like heat map. However, instead of using color, size of each cell is used to indicate the magnitude. I want to plot a figure like this but I don't know how to realize it. Can this be done in R or Matlab?

Try scatter:
scatter(x,y,sz,c,'s','filled');
where x and y are the positions of each square, sz is the size (must be a vector of the same length as x and y), and c is a 3xlength(x) matrix with the color value for each entry. The labels for the plot can be input with set(gcf,properties) or xticklabels:
X=30;
Y=10;
[x,y]=meshgrid(1:X,1:Y);
x=reshape(x,[size(x,1)*size(x,2) 1]);
y=reshape(y,[size(y,1)*size(y,2) 1]);
sz=50;
sz=sz*(1+rand(size(x)));
c=[1*ones(length(x),1) repmat(rand(size(x)),[1 2])];
scatter(x,y,sz,c,'s','filled');
xlab={'ACC';'BLCA';etc}
xticks(1:X)
xticklabels(xlab)
set(get(gca,'XLabel'),'Rotation',90);
ylab={'RAPGEB6';etc}
yticks(1:Y)
yticklabels(ylab)
EDIT: yticks & co are only available for >R2016b, if you don't have a newer version you should use set instead:
set(gca,'XTick',1:X,'XTickLabel',xlab,'XTickLabelRotation',90) %rotation only available for >R2014b
set(gca,'YTick',1:Y,'YTickLabel',ylab)

in R, you should use ggplot2 that allows you to map your values (gene expression in your case?) onto the size variable. Here, I did a simulation that resembles your data structure:
my_data <- matrix(rnorm(8*26,mean=0,sd=1), nrow=8, ncol=26,
dimnames = list(paste0("gene",1:8), LETTERS))
Then, you can process the data frame to be ready for ggplot2 data visualization:
library(reshape)
dat_m <- melt(my_data, varnames = c("gene", "cancer"))
Now, use ggplot2::geom_tile() to map the values onto the size variable. You may update additional features of the plot.
library(ggplot2)
ggplot(data=dat_m, aes(cancer, gene)) +
geom_tile(aes(size=value, fill="red"), color="white") +
scale_fill_discrete(guide=FALSE) + ##hide scale
scale_size_continuous(guide=FALSE) ##hide another scale

In R, corrplotpackage can be used. Specifically, you have to use method = 'square' when creating the plot.
Try this as an example:
library(corrplot)
corrplot(cor(mtcars), method = 'square', col = 'red')

Related

Run points() after plot() on a dataframe

I'm new to R and want to plot specific points over an existing plot. I'm using the swiss data frame, which I visualize through the plot(swiss) function.
After this, want to add outliers given by the Mahalanobis distance:
mu_hat <- apply(swiss, 2, mean); sigma_hat <- cov(swiss)
mahalanobis_distance <- mahalanobis(swiss, mu_hat, sigma_hat)
outliers <- swiss[names(mahalanobis_distance[mahalanobis_distance > 10]),]
points(outliers, pch = 'x', col = 'red')
but this last line has no effect, as the outlier points aren't added to the previous plot. I see that if repeat this procedure on a pair of variables, say
plot(swiss[2:3])
points(outliers[2:3], pch = 'x', col = 'red')
the red points are added to the plot.
Ask: is there any restriction to how the points() function can be used for a multivariate data frame?
Here's a solution using GGally::ggpairs. It's a little ugly as we need to modify the ggally_points function to specify the desired color scheme.
I've assumed that mu_hat = colMeans(swiss) and sigma_hat = cov(swiss).
library(dplyr)
library(GGally)
swiss %>%
bind_cols(distance = mahalanobis(swiss, colMeans(swiss), cov(swiss))) %>%
mutate(is_outlier = ifelse(distance > 10, "yes", "no")) %>%
ggpairs(columns = 1:6,
mapping = aes(color = is_outlier),
upper = list(continuous = function(data, mapping, ...) {
ggally_points(data = data, mapping = mapping) +
scale_colour_manual(values = c("black", "red"))
}),
lower = list(continuous = function(data, mapping, ...) {
ggally_points(data = data, mapping = mapping) +
scale_colour_manual(values = c("black", "red"))
}),
axisLabels = "internal")
Unfortunately this isn't possible the way you're currently doing things. When plotting a data frame R produces many plots and aligns them. What you're actually seeing there is 6 by 6 = 36 individual plots which have all been aligned to look nice.
When you use the dots command, it tells it to place the dots on the current plot. Which doesn't really make sense when you have 36 plots, at least not the way you want it to.
ggplot is a really powerful tool in R, it provides far greater combustibility. For example you could set up the dataframe to include your outliers, but have them labelled as "outlier" and place it in each plot that you have set up as facets. The more you explore it you might find there are better plots which suit your needs as well.
Plotting a dataframe in base R is a good exploratory tool. You could set up those outliers as a separate dataframe and plot it, so you can see each of the 6 by 6 plots side by side and compare. It all depends on your goal. If you're goal is to produce exactly as you've described, the ggplot2 package will help you create something more professional. As #Gregor suggested in the comments, looking up the function ggpairs from the GGally package would be a good place to start.
A quick google image search shows some funky plots akin to what you're after and then some!
Find it here

Setting equal xlim and ylim in plot function

Is there a way to get the plot function to generate equal xlimand ylimautomatically?
I do not want to define a fix range beforehand, but I want the plot function to decide about the range itself. However, I expect it to pick the same range for x and y.
A possible solution is to define a wrapper to the plot function:
plot.Custom <- function(x, y, ...) {
.limits <- range(x, y)
plot(x, y, xlim = .limits, ylim = .limits, ...)
}
One way is to manipulate interactively and then choose the right one. A slider will appear once you run the following code.
library(manipulate)
manipulate(
plot(cars, xlim=c(x.min,x.max)),
x.min=slider(0,15),
x.max=slider(15,30))
I'm not aware of anyway to do this using plot(doesn't mean there isn't one). ggplot might be the way to go; it lends itself more to be being retroactively changed since it is designed around a layer system.
library(ggplot2)
#Creating our ggplot object
loop_plot <- ggplot(cars, aes(x = speed, y = dist)) +
geom_point()
#pulling out the 'auto' x & y axis limits
rangepull <- t(cbind(
ggplot_build(loop_plot)$panel$ranges[[1]]$x.range,
ggplot_build(loop_plot)$panel$ranges[[1]]$y.range))
#taking the max and min(so we don't cut out data points)
newrange <- list(cor.min = min(rangepull[,1]), cor.max = max(rangepull[,2]))
#changing our plot size to be nice and symmetric
loop_plot <- loop_plot +
xlim(newrange$cor.min, newrange$cor.max) +
ylim(newrange$cor.min, newrange$cor.max)
Note that the loop_plot object is of ggplot class, and wont actually print until its called.
I used the cars dataset in the code above to show whats going on, but just sub in your data set[s] and then do whatever postmortem your end goal is.
You'll also be able to add in titles and the like based off of the dataset name et cetera which will likely end up producing a clearer visualization out of your loop.
Hopefully this works for your needs.

contour plot of a custom function in R

I'm working with some custom functions and I need to draw contours for them based on multiple values for the parameters.
Here is an example function:
I need to draw such a contour plot:
Any idea?
Thanks.
First you construct a function, fourvar that takes those four parameters as arguments. In this case you could have done it with 3 variables one of which was lambda_2 over lambda_1. Alpha1 is fixed at 2 so alpha_1/alpha_2 will vary over 0-10.
fourvar <- function(a1,a2,l1,l2){
a1* integrate( function(x) {(1-x)^(a1-1)*(1-x^(l2/l1) )^a2} , 0 , 1)$value }
The trick is to realize that the integrate function returns a list and you only want the 'value' part of that list so it can be Vectorize()-ed.
Second you construct a matrix using that function:
mat <- outer( seq(.01, 10, length=100),
seq(.01, 10, length=100),
Vectorize( function(x,y) fourvar(a1=2, x/2, l1=2, l2=y/2) ) )
Then the task of creating the plot with labels in those positions can only be done easily with lattice::contourplot. After doing a reasonable amount of searching it does appear that the solution to geom_contour labeling is still a work in progress in ggplot2. The only labeling strategy I found is in an external package. However, the 'directlabels' package's function directlabel does not seem to have sufficient control to spread the labels out correctly in this case. In other examples that I have seen, it does spread the labels around the plot area. I suppose I could look at the code, but since it depends on the 'proto'-package, it will probably be weirdly encapsulated so I haven't looked.
require(reshape2)
mmat <- melt(mat)
str(mmat) # to see the names in the melted matrix
g <- ggplot(mmat, aes(x=Var1, y=Var2, z=value) )
g <- g+stat_contour(aes(col = ..level..), breaks=seq(.1, .9, .1) )
g <- g + scale_colour_continuous(low = "#000000", high = "#000000") # make black
install.packages("directlabels", repos="http://r-forge.r-project.org", type="source")
require(directlabels)
direct.label(g)
Note that these are the index positions from the matrix rather than the ratios of parameters, but that should be pretty easy to fix.
This, on the other hand, is how easilyy one can construct it in lattice (and I think it looks "cleaner":
require(lattice)
contourplot(mat, at=seq(.1,.9,.1))
As I think the question is still relevant, there have been some developments in the contour plot labeling in the metR package. Adding to the previous example will give you nice contour labeling also with ggplot2
require(metR)
g + geom_text_contour(rotate = TRUE, nudge_x = 3, nudge_y = 5)

How can I overlay two dense scatter plots so that I can see the outlines of each in R or Matlab?

See this example
This was created in matlab by making two scatter plots independently, creating images of each, then using the imagesc to draw them into the same figure and then finally setting the alpha of the top image to 0.5.
I would like to do this in R or matlab without using images, since creating an image does not preserve the axis scale information, nor can I overlay a grid (e.g. using 'grid on' in matlab). Ideally I wold like to do this properly in matlab, but would also be happy with a solution in R. It seems like it should be possible but I can't for the life of me figure it out.
So generally, I would like to be able to set the alpha of an entire plotted object (i.e. of a matlab plot handle in matlab parlance...)
Thanks,
Ben.
EDIT: The data in the above example is actually 2D. The plotted points are from a computer simulation. Each point represents 'amplitude' (y-axis) (an emergent property specific to the simulation I'm running), plotted against 'performance' (x-axis).
EDIT 2: There are 1796400 points in each data set.
Using ggplot2 you can add together two geom_point's and make them transparent using the alpha parameter. ggplot2 als adds up transparency, and I think this is what you want. This should work, although I haven't run this.
dat = data.frame(x = runif(1000), y = runif(1000), cat = rep(c("A","B"), each = 500))
ggplot(aes(x = x, y = y, color = cat), data = dat) + geom_point(alpha = 0.3)
ggplot2 is awesome!
This is an example of calculating and drawing a convex hull:
library(automap)
library(ggplot2)
library(plyr)
loadMeuse()
theme_set(theme_bw())
meuse = as.data.frame(meuse)
chull_per_soil = ddply(meuse, .(soil),
function(sub) sub[chull(sub$x, sub$y),c("x","y")])
ggplot(aes(x = x, y = y), data = meuse) +
geom_point(aes(size = log(zinc), color = ffreq)) +
geom_polygon(aes(color = soil), data = chull_per_soil, fill = NA) +
coord_equal()
which leads to the following illustration:
You could first export the two data sets as bitmap images, re-import them, add transparency:
library(grid)
N <- 1e7 # Warning: slow
d <- data.frame(x1=rnorm(N),
x2=rnorm(N, 0.8, 0.9),
y=rnorm(N, 0.8, 0.2),
z=rnorm(N, 0.2, 0.4))
v <- with(d, dataViewport(c(x1,x2),c(y, z)))
png("layer1.png", bg="transparent")
with(d, grid.points(x1,y, vp=v,default="native",pch=".",gp=gpar(col="blue")))
dev.off()
png("layer2.png", bg="transparent")
with(d, grid.points(x2,z, vp=v,default="native",pch=".",gp=gpar(col="red")))
dev.off()
library(png)
i1 <- readPNG("layer1.png", native=FALSE)
i2 <- readPNG("layer2.png", native=FALSE)
ghostize <- function(r, alpha=0.5)
matrix(adjustcolor(rgb(r[,,1],r[,,2],r[,,3],r[,,4]), alpha.f=alpha), nrow=dim(r)[1])
grid.newpage()
grid.rect(gp=gpar(fill="white"))
grid.raster(ghostize(i1))
grid.raster(ghostize(i2))
you can add these as layers in, say, ggplot2.
Use the transparency capability of color descriptions. You can define a color as a sequence of four 2-byte words: muddy <- "#888888FF" . The first three pairs set the RGB colors (00 to FF); the final pair sets the transparency level.
AFAIK, your best option with Matlab is to just make your own plot function. The scatter plot points unfortunately do not yet have a transparency attribute so you cannot affect it. However, if you create, say, most crudely, a bunch of loops which draw many tiny circles, you can then easily give them an alpha value and obtain a transparent set of data points.

How to plot a violin scatter boxplot (in R)?

I just came by the following plot:
And wondered how can it be done in R? (or other softwares)
Update 10.03.11: Thank you everyone who participated in answering this question - you gave wonderful solutions! I've compiled all the solution presented here (as well as some others I've came by online) in a post on my blog.
Make.Funny.Plot does more or less what I think it should do. To be adapted according to your own needs, and might be optimized a bit, but this should be a nice start.
Make.Funny.Plot <- function(x){
unique.vals <- length(unique(x))
N <- length(x)
N.val <- min(N/20,unique.vals)
if(unique.vals>N.val){
x <- ave(x,cut(x,N.val),FUN=min)
x <- signif(x,4)
}
# construct the outline of the plot
outline <- as.vector(table(x))
outline <- outline/max(outline)
# determine some correction to make the V shape,
# based on the range
y.corr <- diff(range(x))*0.05
# Get the unique values
yval <- sort(unique(x))
plot(c(-1,1),c(min(yval),max(yval)),
type="n",xaxt="n",xlab="")
for(i in 1:length(yval)){
n <- sum(x==yval[i])
x.plot <- seq(-outline[i],outline[i],length=n)
y.plot <- yval[i]+abs(x.plot)*y.corr
points(x.plot,y.plot,pch=19,cex=0.5)
}
}
N <- 500
x <- rpois(N,4)+abs(rnorm(N))
Make.Funny.Plot(x)
EDIT : corrected so it always works.
I recently came upon the beeswarm package, that bears some similarity.
The bee swarm plot is a
one-dimensional scatter plot like
"stripchart", but with closely-packed,
non-overlapping points.
Here's an example:
library(beeswarm)
beeswarm(time_survival ~ event_survival, data = breast,
method = 'smile',
pch = 16, pwcol = as.numeric(ER),
xlab = '', ylab = 'Follow-up time (months)',
labels = c('Censored', 'Metastasis'))
legend('topright', legend = levels(breast$ER),
title = 'ER', pch = 16, col = 1:2)
(source: eklund at www.cbs.dtu.dk)
I have come up with the code similar to Joris, still I think this is more than a stem plot; here I mean that they y value in each series is a absolute value of a distance to the in-bin mean, and x value is more about whether the value is lower or higher than mean.
Example code (sometimes throws warnings but works):
px<-function(x,N=40,...){
x<-sort(x);
#Cutting in bins
cut(x,N)->p;
#Calculate the means over bins
sapply(levels(p),function(i) mean(x[p==i]))->meansl;
means<-meansl[p];
#Calculate the mins over bins
sapply(levels(p),function(i) min(x[p==i]))->minl;
mins<-minl[p];
#Each dot is one value.
#X is an order of a value inside bin, moved so that the values lower than bin mean go below 0
X<-rep(0,length(x));
for(e in levels(p)) X[p==e]<-(1:sum(p==e))-1-sum((x-means)[p==e]<0);
#Y is a bin minum + absolute value of a difference between value and its bin mean
plot(X,mins+abs(x-means),pch=19,cex=0.5,...);
}
Try the vioplot package:
library(vioplot)
vioplot(rnorm(100))
(with awful default color ;-)
There is also wvioplot() in the wvioplot package, for weighted violin plot, and beanplot, which combines violin and rug plots. They are also available through the lattice package, see ?panel.violin.
Since this hasn't been mentioned yet, there is also ggbeeswarm as a relatively new R package based on ggplot2.
Which adds another geom to ggplot to be used instead of geom_jitter or the like.
In particular geom_quasirandom (see second example below) produces really good results and I have in fact adapted it as default plot.
Noteworthy is also the package vipor (VIolin POints in R) which produces plots using the standard R graphics and is in fact also used by ggbeeswarm behind the scenes.
set.seed(12345)
install.packages('ggbeeswarm')
library(ggplot2)
library(ggbeeswarm)
ggplot(iris,aes(Species, Sepal.Length)) + geom_beeswarm()
ggplot(iris,aes(Species, Sepal.Length)) + geom_quasirandom()
#compare to jitter
ggplot(iris,aes(Species, Sepal.Length)) + geom_jitter()

Resources