Creating Bin Lengths in R - r

I have a database with surf clam lengths that I want to create bin lengths for. These clam lengths range from 20 cm all the way to 180 cm. I want to bin these lengths together in 3 cm increments. For example, lengths of 1, 2 or 3 will have a bin length of 3, lengths 4, 5 and 6 will be a bin length of 6, and 7, 8, 9 will all be bin length of 9 and so on.
The bin categories I want are 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180.
I also need to add the FREQ together with the lengths that are being binned together. For example, if I have lengths of 58 cm (FREQ = 2), 59 cm (FREQ = 1), and 60 cm (FREQ = 5), the end result should be 60 cm with a frequency of 8.
STA DATE SPP LENG FREQ
5002 06/12/85 403 82 1
5002 06/12/85 403 90 1
5002 06/12/85 403 94 2
5002 06/12/85 403 98 1
5002 06/12/85 403 99 1
5002 06/12/85 403 102 1
5002 06/12/85 403 105 1
5002 06/12/85 403 106 1
5002 06/12/85 403 107 1
5002 06/12/85 403 111 1
5003 06/12/85 403 75 1
5003 06/12/85 403 76 1
5003 06/12/85 403 92 1
5003 06/12/85 403 93 1
5003 06/12/85 403 95 1
5003 06/12/85 403 151 1
5004 06/12/85 403 130 1
5004 06/12/85 403 140 1
5004 06/12/85 403 143 1
5004 06/12/85 403 144 1
5004 06/12/85 406 145 1
5004 06/12/85 403 146 1
5004 06/12/85 406 147 1
5004 06/12/85 403 153 1
I'm fairly new to R so I'm not sure how to go about doing this. Please help!

I believe this answers your question --
dat$bins<-ceiling(dat$LENG/3)*3
ndat<-aggregate(dat[,c('FREQ')],by=list(dat$STA,dat$DATE,dat$SPP,dat$bins),FUN=sum)

The cut() function turns numerics into binned factors.
cutoff_lengths <- seq(0, 180, by = 3)
df$BIN <- cut(df$LENG, cutoff_lengths, labels = cutoff_lengths[-1])
table(df$BIN)
cutoff_lengths[-1] means the labels are all but the first value of cutoff_lengths. Because each bin is between two of the cut points, there's one less bin than there are cut points. And you want to round up, so the lowest cut point isn't used as a label.

Related

Working on vectors and finding their square

I am getting my self familiar with R, working on it using some mathematical work. I am working on indexing and seq function and getting help from here
I am first creating a vector x with all the integer from 1 to 200, I am performing this task using the code below
t <- 1:200
now I want to display the every 5th number using from above vector, I am doing it with below method
u <- seq (1,200, by=5)
First question: though the every 5th number is 5, 10 , 15 but its showing me 1, 6 , 11 etc
Now I want to take the square of any random numbers from vector t for that I am doing it in below way:\
square <- t[c(4, 6, 7, 9, 16, 24, 26, 29,30)]^2
Second question This is displaying me the square of these numbers but without using loops how I can display the numbers like 1,2,3,16,5,36 etc
I am using the below web pages for practice and understanding
https://rspatial.org/intr/4-indexing.html
https://www.r-exercises.com/start-here-to-learn-r/
Another option is replace
t <- 1:200
v <- c(4, 6, 7, 9, 16, 24, 26, 29, 30)
replace(t, v, t[v]^2)
We can use an ifelse
ifelse(seq_along(t) %in% c(4, 6, 7, 9, 16, 24, 26, 29,30), t^2, t)
-output
[1] 1 2 3 16 5 36 49 8 81 10 11 12 13 14 15 256 17 18 19 20 21 22 23 576 25 676 27 28 841 900 31 32 33 34 35
[36] 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
[71] 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
[106] 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
[141] 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
[176] 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

Split a data.frame into n random groups with x rows each

Assume a data.frame as follows:
df <- data.frame(name = paste0("Person",rep(1:30)),
number = sample(1:100, 30, replace=TRUE),
focus = sample(1:500, 30, replace=TRUE))
I want to split the above data.frame into 9 groups, each with 9 observations. Each person can be assigned to multiple groups (replacement), so that all 9 groups have all 10 observations (since 9 groups x 9 observations require 81 rows while the df has only 30).
The output will ideally be a large list of 1000 data.frames.
Are there any efficient ways of doing this? This is just a sample data.frame. The actual df has ~10k rows and will require 1000 groups each with 30 rows.
Many thanks.
Is this what you are looking for?
res <- replicate(1000, df[sample.int(nrow(df), 30, TRUE), ], FALSE)
df I used
df <- data.frame(name = paste0("Person",rep(1:1e4)),
number = sample(1:100, 1e4, replace=TRUE),
focus = sample(1:500, 1e4, replace=TRUE))
Output
> res[1:3]
[[1]]
name number focus
529 Person529 5 351
9327 Person9327 4 320
1289 Person1289 78 164
8157 Person8157 46 183
6939 Person6939 38 61
4066 Person4066 26 103
132 Person132 34 39
6576 Person6576 36 397
5376 Person5376 47 456
6123 Person6123 10 18
5318 Person5318 39 42
6355 Person6355 62 212
340 Person340 90 256
7050 Person7050 19 198
1500 Person1500 42 208
175 Person175 34 30
3751 Person3751 99 441
3813 Person3813 93 492
7428 Person7428 72 142
6840 Person6840 58 45
6501 Person6501 95 499
5124 Person5124 16 159
3373 Person3373 38 36
5622 Person5622 40 203
8761 Person8761 9 225
6252 Person6252 75 444
4502 Person4502 58 337
5344 Person5344 24 233
4036 Person4036 59 265
8764 Person8764 45 1
[[2]]
name number focus
8568 Person8568 87 360
3968 Person3968 67 468
4481 Person4481 46 140
8055 Person8055 73 286
7794 Person7794 92 336
1110 Person1110 6 434
6736 Person6736 4 58
9758 Person9758 60 49
9356 Person9356 89 300
9719 Person9719 100 366
4183 Person4183 5 124
1394 Person1394 87 346
2642 Person2642 81 449
3592 Person3592 65 358
579 Person579 21 395
9551 Person9551 39 495
4946 Person4946 73 32
4081 Person4081 98 270
4062 Person4062 27 150
7698 Person7698 52 436
5388 Person5388 89 177
9598 Person9598 91 474
8624 Person8624 3 464
392 Person392 82 483
5710 Person5710 43 293
4942 Person4942 99 350
3333 Person3333 89 91
6789 Person6789 99 259
7115 Person7115 100 320
1431 Person1431 77 263
[[3]]
name number focus
201 Person201 100 272
4674 Person4674 27 410
9728 Person9728 18 275
9422 Person9422 2 396
9783 Person9783 45 37
5552 Person5552 76 109
3871 Person3871 49 277
3411 Person3411 64 24
5799 Person5799 29 131
626 Person626 31 122
3103 Person3103 2 76
8043 Person8043 90 384
3157 Person3157 90 392
7093 Person7093 11 169
2779 Person2779 83 2
2601 Person2601 77 122
9003 Person9003 50 163
9653 Person9653 4 235
9361 Person9361 100 391
4273 Person4273 83 383
4725 Person4725 35 436
2157 Person2157 71 486
3995 Person3995 25 258
3735 Person3735 24 221
303 Person303 81 407
4838 Person4838 64 198
6926 Person6926 90 417
6267 Person6267 82 284
8570 Person8570 67 317
2670 Person2670 21 342

GAMs in R: Fewer unique covariate combinations than df

I tried fitting gams to some dataframes I have. All minus one work. It fails with the error:
Error in smooth.construct.tp.smooth.spec(object, dk$data, dk$knots) : A term has fewer unique covariate combinations than specified maximum degrees of freedom
I looked a bit on the internet but couldn't really figure out what's really going wrong. All my 7 over dataframes run without a problem.
I then ran epiR::epi.cp(srtm[-c(1,7,8)]) and it gave me this output:
$cov.pattern
id n curv_plan curv_prof dem slope ca
1 1 1 1.113192e-02 3.991046e-03 3909 43.601479 5.225853
2 2 1 -2.686749e-03 3.474989e-03 3312 35.022511 4.418310
3 3 1 -1.033450e-02 -4.626922e-03 3326 36.678623 4.421465
4 4 1 -5.439283e-03 2.066148e-03 4069 31.501045 3.887526
5 5 1 -2.602015e-03 -1.249511e-04 3021 37.199219 5.010560
6 6 1 1.068216e-03 1.216902e-03 2844 44.694374 4.852220
7 7 1 -1.855443e-02 -5.965539e-03 2841 42.753750 5.088554
8 8 1 2.363193e-03 2.353357e-03 2833 33.160995 4.652209
9 9 1 2.169674e-02 1.049735e-02 2964 32.311535 4.671970
10 10 1 2.850910e-02 9.416230e-03 2956 50.791847 3.496096
11 11 1 -1.932028e-02 4.949751e-04 2794 38.714302 4.217102
12 12 1 -1.372750e-03 -4.437230e-03 3799 48.356312 4.597039
13 13 1 1.154181e-04 -4.114155e-03 3808 54.669777 3.518823
14 14 1 2.743768e-02 7.829833e-03 3580 23.674162 3.268744
15 15 1 7.216539e-03 9.818082e-04 3969 29.421440 4.354250
16 16 1 2.385139e-03 6.333927e-04 3635 10.555381 4.905733
17 17 1 -1.129411e-02 2.719948e-03 2805 29.195084 4.807369
18 18 1 4.584329e-04 -1.497223e-03 3676 32.754879 3.729304
19 19 1 1.883965e-03 4.189690e-03 3165 30.973505 4.833158
20 20 1 -5.350136e-03 -2.615470e-03 2745 32.534698 4.420852
21 21 1 1.484253e-02 -1.245213e-03 3872 26.113234 4.045357
22 22 1 -2.449377e-02 -5.045668e-04 2931 31.060991 5.170872
23 23 1 -2.962795e-02 -9.271557e-03 2917 21.680889 4.547461
24 24 1 -2.487545e-02 -7.834328e-03 2736 41.775677 4.543325
25 25 1 2.890568e-03 -2.040353e-03 2577 47.003765 3.739546
26 26 1 -5.119631e-03 8.869720e-03 3401 38.519680 5.428564
27 27 1 6.171266e-03 -6.515175e-04 2687 36.678623 4.152842
28 28 1 -8.297552e-03 -7.053435e-03 3678 39.532673 4.081311
29 29 1 8.652663e-03 2.394378e-03 3515 33.895370 4.220177
30 30 1 -2.528805e-03 -1.293259e-03 3404 42.548138 4.266330
31 31 1 1.899994e-02 6.367806e-03 3191 41.696201 3.300749
32 32 1 -2.243623e-02 -1.866033e-04 2433 34.162479 5.364681
33 33 1 -6.934012e-03 9.280805e-03 2309 32.667160 5.650699
34 34 1 -1.121149e-02 6.376335e-05 2188 31.119059 4.706416
35 35 1 -1.429000e-02 5.299596e-04 2511 34.543365 4.538456
36 36 1 -7.168889e-03 1.301791e-03 2625 30.826660 4.059711
37 37 1 -4.226461e-03 7.440552e-03 2830 33.398251 4.941027
38 38 1 -2.635832e-03 8.748529e-03 3378 45.972672 4.861779
39 39 1 -2.007920e-02 -8.081778e-03 3281 31.735376 5.173269
40 40 1 -3.453595e-02 -6.867430e-03 2690 47.515182 4.935358
41 41 1 1.698363e-03 -8.296107e-03 2529 42.224693 4.386349
42 42 1 5.257193e-03 1.021242e-02 2571 43.070564 4.194372
43 43 1 6.968817e-03 5.538784e-03 2581 36.055031 4.209373
44 44 1 -7.632907e-04 2.803704e-04 2582 28.257311 4.230427
45 45 1 -3.468894e-03 -9.099842e-04 2409 29.421440 4.190946
46 46 1 1.879089e-02 6.532978e-03 3733 41.535984 4.032614
47 47 1 -1.076225e-03 -1.138945e-03 2712 39.260731 4.580621
48 48 1 -5.306205e-03 2.667941e-03 3446 34.250553 4.925404
49 49 1 -5.380515e-03 -2.595619e-03 3785 50.561493 4.642792
50 50 1 -2.571232e-03 -2.063937e-03 3768 46.160892 4.728879
51 51 1 -7.638110e-03 -2.432463e-03 3413 32.401161 5.058373
52 52 1 -2.950254e-03 -2.034031e-04 3852 32.543564 4.443869
53 53 1 -2.702386e-03 -1.776183e-03 2483 31.002720 3.879390
54 54 1 -3.892425e-02 -2.266178e-03 2225 26.126318 5.750985
55 55 1 -2.644659e-03 3.034660e-03 2192 32.103516 4.949506
56 56 1 -2.862503e-02 3.673996e-04 2361 23.930893 5.181818
57 57 1 6.263880e-03 -7.725377e-04 3780 17.752790 4.890797
58 58 1 1.054093e-03 -1.563014e-03 3089 36.422310 4.520845
59 59 1 9.474340e-04 -3.901043e-03 3155 42.552841 4.265886
60 60 1 5.569567e-03 -1.770366e-04 3516 13.166321 4.772187
61 61 1 -8.342760e-03 -9.908290e-03 3097 36.815479 5.346615
62 62 1 -1.422498e-03 -1.645628e-03 2865 29.802414 4.131463
63 63 1 4.523963e-02 1.067406e-02 2163 36.154739 3.369432
64 64 1 -1.164162e-02 6.808200e-04 2316 19.610609 4.634536
65 65 1 -8.043590e-03 9.395104e-03 2614 44.298817 3.983136
66 66 1 -1.925332e-02 -4.521391e-03 2035 31.205780 4.134195
67 67 1 -1.429050e-02 5.435983e-03 2799 38.876656 4.180761
68 68 1 6.935605e-04 3.015038e-03 2679 37.863647 4.213497
69 69 1 -5.062089e-03 5.961242e-04 2831 32.401161 3.729215
70 70 1 -3.617065e-04 -2.874465e-03 3152 45.871994 4.703659
71 71 1 -4.216370e-02 -4.917050e-03 3726 25.376934 4.614913
72 72 1 -2.184333e-02 -2.840071e-03 3610 43.138550 4.237120
73 73 1 -1.735273e-02 -2.199261e-03 3339 33.984894 4.811754
74 74 1 1.929157e-02 5.358084e-03 3447 32.356407 3.355368
75 75 1 -4.118797e-02 -2.408211e-03 3251 22.373844 5.160147
76 76 1 -1.393304e-02 7.900328e-05 3297 22.090260 4.724728
77 77 1 -3.078095e-02 -5.535597e-03 3143 37.298687 4.625203
78 78 1 1.717030e-02 -1.120720e-03 3617 37.965389 4.627342
79 79 1 -5.965119e-04 -5.377157e-04 3689 28.360373 4.767213
80 80 1 7.843294e-03 -9.579902e-04 3676 48.356312 3.907819
81 81 1 5.994634e-03 2.034169e-03 2759 25.142431 3.980591
82 82 1 -1.323012e-02 2.393529e-03 3972 26.880308 5.107575
83 83 1 6.312347e-03 2.877600e-04 3323 32.167103 3.496723
84 84 1 -1.180464e-02 4.438243e-03 3790 40.369972 4.081389
85 85 1 -8.333334e-03 4.009274e-03 3248 14.931417 4.881107
86 86 1 2.016023e-03 -5.707344e-04 3994 18.305449 4.278613
87 87 1 -5.515654e-03 -8.373593e-04 3368 40.703190 4.229169
88 88 1 8.931696e-03 1.677515e-03 4651 30.133842 4.327270
89 89 1 1.962347e-04 -7.458636e-04 5075 57.352509 3.263017
90 90 1 -2.880805e-02 -5.200595e-04 2645 11.976726 5.634262
91 91 1 -2.101875e-02 -5.110677e-03 3109 34.218582 4.925558
92 92 1 -8.390786e-03 -1.188547e-02 3667 39.895481 4.249029
93 93 1 -1.366958e-02 9.873455e-04 2827 22.636129 5.269634
94 94 1 1.004551e-02 5.205147e-04 3667 44.028976 3.993555
95 95 1 5.892557e-03 -5.482296e-04 2416 5.385977 4.614692
96 96 1 -1.662132e-02 -9.946494e-04 3806 42.599808 3.951163
97 97 1 -7.977792e-03 5.937776e-03 3470 28.888371 3.120762
98 98 1 -2.408042e-02 -2.647421e-03 2975 16.228737 4.227977
99 99 1 -1.191509e-02 -2.014583e-03 2461 30.051607 4.361413
100 100 1 1.110316e-02 2.506189e-04 3362 29.517509 4.591039
101 101 1 2.010373e-03 4.185408e-04 5104 17.387333 3.642855
102 102 1 -3.218945e-03 1.004196e-02 4113 44.448421 3.282414
103 103 1 2.438254e-03 2.551999e-03 3234 31.205780 3.844411
104 104 1 -1.178511e-02 2.775465e-04 1864 1.350224 3.875072
105 105 1 -9.511201e-04 -1.446065e-03 2351 22.406872 4.392300
106 106 1 -4.563018e-03 -5.890041e-03 3141 24.862123 3.998985
107 107 1 -1.471223e-02 5.965497e-03 3765 25.363234 3.661456
108 108 1 -5.857890e-03 -9.363544e-03 2272 22.878105 5.105480
109 109 1 1.369277e-02 1.019289e-02 4016 44.848000 4.092690
110 110 1 -8.784844e-03 3.358194e-03 3293 32.543564 4.115062
111 111 1 -5.148044e-03 5.372697e-03 3038 31.772562 3.626687
112 112 1 -1.556184e+35 5.799786e+34 4961 29.421440 3.020591
113 113 1 3.831991e-03 1.570888e-03 2069 28.821898 3.790284
114 114 1 8.289138e-04 6.439757e-04 2154 21.045721 3.959267
115 115 1 -4.800863e-03 3.194520e-03 5294 45.660866 3.701611
116 116 1 2.974254e-02 1.197812e-02 4380 31.670097 3.877057
117 117 1 1.137725e-02 -1.082659e-02 5172 18.774675 3.572600
118 118 1 -4.678526e-03 7.448288e-03 2257 39.260731 4.227000
119 119 1 -4.655881e-03 -1.119303e-03 3233 30.205467 5.613868
120 120 1 -4.827522e-03 -4.766134e-03 3414 42.974857 3.831894
121 121 1 -8.568994e-04 1.053632e-03 1750 29.421440 4.132886
122 122 1 1.212121e-02 0.000000e+00 5018 20.136303 3.669850
123 123 1 -4.711660e-03 -2.261143e-03 3013 45.007954 3.622240
124 124 1 -1.226328e-02 4.688181e-04 3842 26.880308 3.098333
125 125 1 3.438910e-03 1.441129e-03 3470 11.386165 4.552782
126 126 1 1.192164e-02 -1.295839e-03 3473 22.684824 4.748498
127 127 1 -1.960781e-40 0.000000e+00 4155 90.000000 2.960569
128 128 1 2.124726e-04 1.945100e-03 2496 32.103516 5.242211
129 129 1 5.669804e-03 -4.589476e-03 2577 35.398876 4.271112
130 130 1 -8.838220e-03 -9.496282e-04 4921 14.506372 4.088247
131 131 1 1.009090e-02 -2.243944e-03 3385 38.372120 4.067030
132 132 1 5.630660e-03 -8.632211e-04 4003 33.322365 3.776054
133 133 1 -9.103803e-03 -6.322661e-03 2758 47.934212 3.739807
134 134 1 6.225513e-03 -1.824928e-03 3925 37.085732 3.389725
135 135 1 -1.303080e-03 3.580316e-03 2978 27.432941 4.345174
136 136 1 1.355920e-02 3.468190e-03 5058 57.797195 3.739124
137 137 1 2.092464e-02 -3.244962e-04 2400 3.931096 3.032193
138 138 1 5.691811e-02 -7.933985e-04 3885 15.069956 3.414036
139 139 1 8.052407e-05 -3.197287e-03 3493 33.993008 3.881695
140 140 1 -1.892967e-02 -5.049255e-03 2985 24.904482 4.417928
141 141 1 2.278842e-02 1.188287e-02 3666 31.670097 3.313449
142 142 1 1.496110e-02 2.181270e-03 3702 30.498932 3.171413
[ reached 'max' / getOption("max.print") -- omitted 18 rows ]
$id
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
[34] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
[67] 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
[100] 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
[133] 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
I tried to lower the number of knots in the gam-call but didn't suceed as well...
Anyone might have an idea?
I fit the gam using the following line:
mgcv::gam(slide ~ s(curv_plan) + s(curv_prof) + s(dem) + s(slope) + s(ca), data = dataframes_new[[7]], family = binomial)
I have experienced the same issue. The root cause was that some of my categorical variables had fewer levels than k in my formula specification. To give an example:
Suppose one of the terms in my formula specification was:
s(I(pmin(example_variable, 120)), k = 5)
and the data in my example_variable had 3 levels (say, "yes", "no", "maybe"). This would throw the above-mentioned error.
In my case, I solved it by creating additional levels in my data (I was creating test data for a unit test). In other cases it could be solved by ensuring k does not exceed the number of levels in your categorical variables.
If you're using categorical variables, check if the root cause might be the same for you.
I found the solution to my problem by reading these:
https://stat.ethz.ch/pipermail/r-sig-ecology/2011-May/002148.html
https://stat.ethz.ch/pipermail/r-help/2007-October/143569.html
The error means that you tried to create a thin plate spline basis expansion with more basis functions than the variable from which the expansion is to be made has unique values.
As you don't show the model fitting code, we can't say more than that one of the smooths in the model you tried to fit didn't have enough unique values for the value of k you specific or used (if you didn't set k a default value was used).

Creating a (half-) regular sequence - a regular rate of varying intervals

I want to create a kind of nested regular sequence in R. It follows a repeating pattern, but without consistent intervals between values. It is:
8, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, ....
So 6 numbers with an interval of 1, then an interval of 3, and then the same again. I'd like to have this all the way up to about 200, ideally being able to specify that end point.
I have tried using rep and seq, but do not know how to get the regularly varying interval length into either function.
I started plotting it and thinking about creating a step function based on the the length... it can't be that difficult - what's the trick/magic package I don't know of??
Without doing any math to figure out how many groups and such, we can just over-generate.
Defining terminology, I'll say you have a bunch of groups of sequences, with 6 elements per group. We'll start with 100 groups to make sure we definitely cross the 200 threshhold.
n_per_group = 6
n_groups = 100
# first generate a regular sequence, with no adjustments
x = seq(from = 8, length.out = n_per_group * n_groups)
# then calculate an adjustment to add
# as you say, the interval is 3 (well, 3 more than the usual 1)
adjustment = rep(0:(n_groups - 1), each = n_per_group) * 3
# if your prefer modular arithmetic, this is equivalent
# adjustment = (seq_along(x) %/% 6) * 3
# then we just add
x = x + adjustment
# and subset down to the desired result
x = x[x <= 200]
x
# [1] 8 9 10 11 12 13 17 18 19 20 21 22 26 27 28 29 30
# [18] 31 35 36 37 38 39 40 44 45 46 47 48 49 53 54 55 56
# [35] 57 58 62 63 64 65 66 67 71 72 73 74 75 76 80 81 82
# [52] 83 84 85 89 90 91 92 93 94 98 99 100 101 102 103 107 108
# [69] 109 110 111 112 116 117 118 119 120 121 125 126 127 128 129 130 134
# [86] 135 136 137 138 139 143 144 145 146 147 148 152 153 154 155 156 157
#[103] 161 162 163 164 165 166 170 171 172 173 174 175 179 180 181 182 183
#[120] 184 188 189 190 191 192 193 197 198 199 200
The differences between successive values in the sequence are as given by diffs so take the cumsum of those. To get it to go to about 200 use the indicated repitition value where 1+1+1+1+1+4 = 9.
diffs <- c(8, rep(c(1, 1, 1, 1, 1, 4), (200-8)/9))
cumsum(diffs)
giving:
[1] 8 9 10 11 12 13 17 18 19 20 21 22 26 27 28 29 30 31
[19] 35 36 37 38 39 40 44 45 46 47 48 49 53 54 55 56 57 58
[37] 62 63 64 65 66 67 71 72 73 74 75 76 80 81 82 83 84 85
[55] 89 90 91 92 93 94 98 99 100 101 102 103 107 108 109 110 111 112
[73] 116 117 118 119 120 121 125 126 127 128 129 130 134 135 136 137 138 139
[91] 143 144 145 146 147 148 152 153 154 155 156 157 161 162 163 164 165 166
[109] 170 171 172 173 174 175 179 180 181 182 183 184 188 189 190 191 192 193
[127] 197
My first attempt would be using for loops, but keep in mind that they are slow compared to build in functions. But as you only want to "count" to 200, it should be fast enough.
for(i=1:199) {
if( mod(i, 7) != 0) {
result[i+1] = result[i] + 1;
} else {
result[i+1] = result[i] + 3;
}
}
note: i do not have Matlab on my computer at the time of answering, thus the above code is untested, but I hope you get the idea.

Create a for loop which prints every number that is x%%3=0 between 1-200

Like the title says I need a for loop which will write every number from 1 to 200 that is evenly divided by 3.
Every other method posted so far generates the 1:200 vector then throws away two thirds of it. What a waste. In an attempt to be eco-conscious, this method does not waste any electrons:
seq(3,200,by=3)
You don't need a for loop, use match function instead, as in:
which(1:200 %% 3 == 0)
[1] 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81
[28] 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162
[55] 165 168 171 174 177 180 183 186 189 192 195 198
Two other alternatives:
c(1:200)[c(F, F, T)]
c(1:200)[1:200 %% 3 == 0]

Resources