Power analysis for multiple regression using pwr and R - r

I want to determine the sample size necessary to detect an effect of an interaction term of two continuous variables (scaled) in a multiple regression with other covariates.
We have found an effect where previous smaller studies have failed. These effects are small, but a reviewer is asking us say that previous studies were probably underpowered, and to provide some measure to support that.
I am using the pwr.f2.test() function in the pwr package, as follows:
pwr.f2.test(u = nominator, v = denominator, f2 = effect size, sig.level = 0.05, power = 0.8), and the denominator I set to NULL so I can get sample size.
Here is my model output from summary():
Estimate Std. Error t value Pr(>|t|)
(Intercept) -21.2333 20.8127 -1.02 0.30800
age 0.0740 0.0776 0.95 0.34094
wkdemand 1.6333 0.5903 2.77 0.00582 **
hoops 0.8662 0.6014 1.44 0.15028
wtlift 5.2417 1.3912 3.77 0.00018 ***
height05 0.2205 0.0467 4.72 2.9e-06 ***
amtRS 0.1041 0.2776 0.37 0.70779
allele1_numS -0.0731 0.2779 -0.26 0.79262
amtRS:allele1_numS 0.6267 0.2612 2.40 0.01670 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 7.17 on 666 degrees of freedom
Multiple R-squared: 0.0769, Adjusted R-squared: 0.0658
F-statistic: 6.94 on 8 and 666 DF, p-value: 8.44e-09
And the model effects sizes estimates from modelEffectSizes() function in lmSupport package:
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 53.5593 1 0.0016 NA
age 46.7344 1 0.0014 0.0013
wkdemand 393.9119 1 0.0114 0.0106
hoops 106.7318 1 0.0031 0.0029
wtlift 730.5385 1 0.0209 0.0197
height05 1145.0394 1 0.0323 0.0308
amtRS 7.2358 1 0.0002 0.0002
allele1_numS 3.5599 1 0.0001 0.0001
amtRS:allele1_numS 296.2219 1 0.0086 0.0080
Sum of squared errors (SSE): 34271.3
Sum of squared total (SST): 37127.3
The question:
What value do I put in the f2 slot of pwr.f2.test()? I take it the numerator is going to be 1, and I should use the pEta-sqr from modelEffectSizes(), so in this case 0.0086?
Also, the estimated sample sizes I get are often much larger than our sample size 675 - does this mean we were 'lucky' to have picked up a significant effects (we'll only detect them 50% of the time, given the effect size)? Note that I we have multiple measures of different things all pointing to the same finding, so I'm relatively satisfied there.

What value do I put in the f2 slot of pwr.f2.test()?
For each of pwr functions, you enter three of the four quantities (effect size, sample size, significance level, power) and the fourth will be calculated (1). In pwr.f2.test u and v are the numerator and denominator degrees of freedom. And f2 is used as the effect size measure. E.g. you will put there an effect size estimate.
Is pEta-sqr the correct 'effect size' to use?
Now, there are many different effect size measures. Pwr uses specifically Cohen´s F 2 and it is different from pEta-sqr, so I wouldn´t recommend it.
Which effect size measure I could use then?
As #42- mentioned, you could try to use delta-R2 effect, which in your output variables is labeled “dR-sqr”. You could do this with variation of Cohen’s f 2 measuring local effect size which was described by Selya et al. (2012). It uses the following equation:
In the equation, B is the variable of interest, A is the set of all other variables , R2AB is the proportion of variance accounted for by A and B together (relative to a model with no regressors), and R²A is the proportion of variance accounted for by A (relative to a model with no regressors). I would do as #42- suggested – e.g. build two models, one with the interaction and one without and use their delta-R2 effect size.
Importantly, as #42- correctly pointed out, if the reviewers ask you if prior studies were underpowered, you need to use the sample sizes of those studies to make any power calculation. If you are using parameters of your own study, first of all you already know the answer – that you did have sufficient power to detect a difference, and second, you are doing it post hoc which also doesn´t sound correct.
https://www.statmethods.net/stats/power.html
Selya et al., 2012: A Practical Guide to Calculating Cohen’s f2, a Measure of Local Effect Size, from PROC MIXED. Front Psychol. 2012;3:111.

Related

Wrong degree of freedom for between-subject factor in lmer

I'm testing how visual perspective(1, completely first person -> 11, completely third person) can vary as a function of Culture (AA, EA), Valence (Positive, Negative) and Event Type (Memory, Imagination) while control age (continuous), sex (M, F) and SES (continuous) and allowing individual differences.
This is an unbalanced design as participants can have as we give participants 10 prompts, but participants can choose to either recall or imagine a relevant event. Therefore, each participants may have as many memories (no greater than 10) and as many imaginations (no greater than 10) as they want. In total we have 363 participants.
My dataset looks like this:
The model I fit looks like
VP.full.lm <- lmer(Visual.Perspective ~ Culture * Event.Type * Valence +
Sex + Age + SES +
(1|Participant.Number),
data=VP_Long)
When I run anova() function to see the effects of all variables, here is the output:
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
Culture 30.73 30.73 1 859.1 4.9732 0.0260008 *
Valence 6.38 6.38 1 3360.3 1.0322 0.3097185
Event.Type 1088.61 1088.61 1 3385.9 176.1759 < 2.2e-16 ***
Sex 45.12 45.12 1 358.1 7.3014 0.0072181 **
Age 7.95 7.95 1 358.1 1.2869 0.2573719
SES 6.06 6.06 1 358.7 0.9807 0.3226824
Culture:Valence 6.39 6.39 1 3364.6 1.0348 0.3091004
Culture:Event.Type 71.53 71.53 1 3389.7 11.5766 0.0006756 ***
Valence:Event.Type 2.89 2.89 1 3385.4 0.4682 0.4938573
Culture:Valence:Event.Type 3.47 3.47 1 3390.6 0.5617 0.4536399
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
As you can see, the DF for effect of culture is off -- since culture is a between-subject factor, its DF cannot be larger than our sample size. I've tried to use ddf = Roger-Kenward and tested the effect of culture using emmeans::test(contrast(emmeans(VP.full.lm,c("Culture")), "trt.vs.ctrl"), joint = T), yet none of these methods solved the problems with the degree of freedom issue.
I also thought about that maybe those participants who did not provide both memories and imaginations are confusing the lmer model, so I subsetted my data to only include participants who provided both types of events. However, the degree of freedom problem persists. It's also worth mentioning that once I removed the interaction between Culture and Event.Type, the degree of freedom became plausible.
I wonder if anyone knows what is going on here, and how can we fix this issue? Or is there way we can explain away this weird issue...?
Thanks so much in advance!
This question might be more appropriate for CrossValidated ...
Not a complete solution, but some ideas:
from a practical point of view, the difference between 363 (or even 350) denominator df and 859 ddf is very small: the manual p-value calculation based on an F-statistic of 4.9732 gives pf(4.9732,1,350,lower.tail=FALSE)=0.0264, hardly different from your value of 0.260.
since you are fitting a simple model (LMM not GLMM, only a single simple random effect, etc.), you might be able to refit your model in lme (from the nlme package): it uses a simpler df computation that might give you the 'right' answer in this case. Alternatively, you can get code from here that implements a (slightly extended) version of the algorithm from lme.
since you're doing type-III Anova, you should be very careful with the parameterization/contrasts in your model: if you're not using centered (sum-to-zero) contrasts, your results may not mean what you think (the afex::mixed() function does some checks to make sure that this is true). It's conceivable (although I doubt it) that the contrasts are throwing of your ddf calculations as well.
it's not clear how you're measuring "visual perspective", but if it's a ratings scale you might be better off with an ordinal response model ...

Interpretation of .L, .Q., .C, .4… for logistic regression

I've done a good amount of googling and the explanations either don't make any sense or they say just use factors instead of ordinal data. I understand that the ``.Lis linear,.Q` is quadratic, ... etc. But I don't know how to actually say what it means. So for example let's say
Primary.L 7.73502 0.984
Primary.Q 6.81674 0.400
Primary.C -4.07055 0.450
Primary^4 1.48845 0.600
where the first column is the variable, second is the estimate, and the third is the p-value. What would I be saying about the variables as they increase in order? Is this basically saying what model I would use so this would be 7.73502x + 6.81674x^2 - 4.07055x^3 is how the model is? Or would it just include quadratic? All of this is so confusing. If anyone could shine a light into how to interpret these .L, .Q, .C, etc., that would be fantastic.
example
> summary(glm(DEPENDENT ~ Year, data = HAVE, family = "binomial"))
Call:
glm(formula = DEPENDENT ~ Year, family = "binomial", data = HAVE)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.3376 -0.2490 -0.2155 -0.1635 3.1802
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.572966 0.028179 -126.798 < 2e-16 ***
Year.L -2.212443 0.150295 -14.721 < 2e-16 ***
Year.Q -0.932844 0.162011 -5.758 8.52e-09 ***
Year.C 0.187344 0.156462 1.197 0.2312
Year^4 -0.595352 0.147113 -4.047 5.19e-05 ***
Year^5 -0.027306 0.135214 -0.202 0.8400
Year^6 -0.023756 0.120969 -0.196 0.8443
Year^7 0.079723 0.111786 0.713 0.4757
Year^8 -0.080749 0.103615 -0.779 0.4358
Year^9 -0.117472 0.098423 -1.194 0.2327
Year^10 -0.134956 0.095098 -1.419 0.1559
Year^11 -0.106700 0.089791 -1.188 0.2347
Year^12 0.102289 0.088613 1.154 0.2484
Year^13 0.125736 0.084283 1.492 0.1357
Year^14 -0.009941 0.084058 -0.118 0.9059
Year^15 -0.173013 0.088781 -1.949 0.0513 .
Year^16 -0.146597 0.090398 -1.622 0.1049
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 18687 on 80083 degrees of freedom
Residual deviance: 18120 on 80067 degrees of freedom
AIC: 18154
Number of Fisher Scoring iterations: 7
That output indicates that your predictor Year is an "ordered factor" meaning R not only understands observations within that variable to be distinct categories or groups (i.e., a factor) but also that the various categories have a natural order to them where one category is considered larger than another.
In this situation, R's default is to fit a series of polynomial functions or contrasts to the levels of the variable. The first is linear (.L), the second is quadratic (.Q), the third is cubic (.C), and so on. R will fit one fewer polynomial functions than the number of available levels. Thus, your output indicates there are 17 distinct years in your data.
You can probably think of those 17 (counting the intercept) predictors in your output as entirely new variables all based on the order of your original variable because R creates them using special values that make all the new predictors orthogonal (i.e., unrelated, linearly independent, or uncorrelated) to each other.
One way to see the values that got used is to use the model.matrix() function on your model object.
model.matrix(glm(DEPENDENT ~ Year, data = HAVE, family = "binomial"))
If you run the above, you will find a bunch of repeated numbers within each of the new variable columns where the changes in repetition correspond to where your original Year predictor switched categories. The specific values themselves hold no real meaning to you because they were chosen/computed by R to make all the contrasts linearly independent of one another.
Therefore, your model in the R output would be:
logit(p) = -3.57 + -2.21 * Year.L + -0.93 * Year.Q + ... + -0.15 * Year^16
where p is the probability of presence of the characteristic of interest, and the logit transformation is defined as the logged odds where odds = p / (1 - p) and logged odds = ln(odds). Therefore logit(p) = ln(p / (1 - p)).
The interpretation of a particular beta test is then generalized to: Which contrasts contribute significantly to explain any differences between levels in your dependent variable? Because your Year.L predictor is significant and negative, this suggests a linear decreasing trend in logit across years, and because your Year.Q predictor is significant and negative, this suggests a deacceleration trend is detectable in the pattern of logits across years. Third order polynomials model jerk, and fourth order polynomials model jounce (a.k.a., snap). However, I would stop interpreting around this order and higher because it quickly becomes nonsensical to practical folk.
Similarly, to interpret a particular beta estimate is a bit nonsensical to me, but it would be that the odds of switching categories in your outcome at a given level of a particular contrast (e.g., quadratic) as compared to the odds of switching categories in your outcome at the given level of that contrast (e.g., quadratic) less one unit is equal to the odds ratio had by exponentiating the beta estimate. For the quadratic contrast in your example, the odds ratio would be exp(-0.9328) = 0.3935, but I say it's a bit nonsensical because the units have little practical meaning as they were chosen by R to make the predictors linearly independent from one another. Thus I prefer focusing on the interpretation of a given contrast test as opposed to the coefficient in this circumstance.
For further reading, here is a webpage at UCLA's wonderful IDRE that discusses how to interpret odds ratios in logistic regression, and here is a crazy cool but intense stack exchange answer that walks through how R chooses the polynomial contrast weights.

Does the varIdent function, used in LME work fine?

I would be glad if somebody could help me to solve this problem. I have data with repeated measurements design, where we tested a reaction of birds (time.dep) before and after the infection (exper). We have also FL (fuel loads, % of lean body mass), fat score and group (Experimental vs Control) as explanatory variables. I decided to use LME, because distribution of residuals doesn’t deviate from normality. But there is a problem with homogeneity of residuals. Variances of groups “before” and “after” and also between fat levels differ significantly (Fligner-Killeen test, p=0.038 and p=0.01 respectively).
ring group fat time.dep FL exper
1 XZ13125 E 4 0.36 16.295 before
2 XZ13125 E 3 0.32 12.547 after
3 XZ13126 E 3 0.28 7.721 before
4 XZ13127 C 3 0.32 9.157 before
5 XZ13127 C 3 0.40 -1.902 after
6 XZ13129 C 4 0.40 10.382 before
After I have selected the random part of the model, which is random-intercept (~1|ring), I have applied the weight parameter for both “fat” and “exper” (varComb(varIdent(form=~1|fat), varIdent(form=~1|exper)). Now the plot of standardized residuals vs. fitted looks better, but I still get the violation of homogeneity for these variables (same values in fligner test). What do I do wrong?
A common trap in lme is that the default is to give raw residuals, i.e. not adjusted for any of the heteroscedasticity (weights) or correlation (correlation) sub-models that may have been used. From ?residuals.lme:
type: an optional character string specifying the type of residuals
to be used. If ‘"response"’, as by default, the “raw”
residuals (observed - fitted) are used; else, if ‘"pearson"’,
the standardized residuals (raw residuals divided by the
corresponding standard errors) are used; else, if
‘"normalized"’, the normalized residuals (standardized
residuals pre-multiplied by the inverse square-root factor of
the estimated error correlation matrix) are used. Partial
matching of arguments is used, so only the first character
needs to be provided.
Thus if you want your residuals to be corrected for heteroscedasticity (as included in the model) you need type="pearson"; if you want them to be corrected for correlation, you need type="normalized".

R: Regression with a holdout of certain variables

I'm doing a multi-linear regression model using lm(), Y is response variable (e.g.: return of interests) and others are explanatory variable (100+ cases, 30+ variables).
There are certain variables which are considered as key variables (concerning investment), when I ran the lm() function, R returns a model with adj.r.square of 97%. But some of the key variables are not significant predictors.
Is there a way to do a regression by keeping all of the key variables in the model (as significant predictors)? It doesn't matter if the adjusted R square decreases.
If the regression doesn't work, is there other methodology?
thank you!
==========================
the data set is uploaded
https://www.dropbox.com/s/gh61obgn2jr043y/df.csv
==========================
additional questions:
what if some variables have impact from previous period to current period?
Example: one takes a pill in the morning when he/she has breakfast and the effect of pills might last after lunch (and he/she takes the 2nd pill at lunch)
I suppose I need to take consideration of data transformation.
* My first choice is to plus a carry-over rate: obs.2_trans = obs.2 + c-o rate * obs.1
* Maybe I also need to consider the decay of pill effect itself, so a s-curve or a exponential transformation is also necessary.
take variable main1 for example, I can use try-out method to get an ideal c-o rate and s-curve parameter starting from 0.5 and testing by step of 0.05, up to 1 or down to 0, until I get the highest model score - say, lowest AIC or highest R square.
This is already a huge quantity to test.
If I need to test more than 3 variables in the same time, how could I manage that by R?
Thank you!
First, a note on "significance". For each variable included in a model, the linear modeling packages report the likelihood that the coefficient of this variable is different from zero (actually, they report p=1-L). We say that, if L is larger (smaller p), then the coefficient is "more significant". So, while it is quite reasonable to talk about one variable being "more significant" than another, there is no absolute standard for asserting "significant" vs. "not significant". In most scientific research, the cutoff is L>0.95 (p<0.05). But this is completely arbitrary, and there are many exceptions. recall that CERN was unwilling to assert the existence of the Higgs boson until they had collected enough data to demonstrate its effect at 6-sigma. This corresponds roughly to p < 1 × 10-9. At the other extreme, many social science studies assert significance at p < 0.2 (because of the higher inherent variability and usually small number of samples). So excluding a variable from a model because it is "not significant" really has no meaning. On the other hand you would be hard pressed to include a variable with high p while excluding another variable with lower p.
Second, if your variables are highly correlated (which they are in your case), then it is quite common that removing one variable from a model changes all the p-values greatly. A retained variable that had a high p-value (less significant), might suddenly have low p-value (more significant), just because you removed a completely different variable from the model. Consequently, trying to optimize a fit manually is usually a bad idea.
Fortunately, there are many algorithms that do this for you. One popular approach starts with a model that has all the variables. At each step, the least significant variable is removed and the resulting model is compared to the model at the previous step. If removing this variable significantly degrades the model, based on some metric, the process stops. A commonly used metric is the Akaike information criterion (AIC), and in R we can optimize a model based on the AIC criterion using stepAIC(...) in the MASS package.
Third, the validity of regression models depends on certain assumptions, especially these two: the error variance is constant (does not depend on y), and the distribution of error is approximately normal. If these assumptions are not met, the p-values are completely meaningless!! Once we have fitted a model we can check these assumptions using a residual plot and a Q-Q plot. It is essential that you do this for any candidate model!
Finally, the presence of outliers frequently distorts the model significantly (almost by definition!). This problem is amplified if your variables are highly correlated. So in your case it is very important to look for outliers, and see what happens when you remove them.
The code below rolls this all up.
library(MASS)
url <- "https://dl.dropboxusercontent.com/s/gh61obgn2jr043y/df.csv?dl=1&token_hash=AAGy0mFtfBEnXwRctgPHsLIaqk5temyrVx_Kd97cjZjf8w&expiry=1399567161"
df <- read.csv(url)
initial.fit <- lm(Y~.,df[,2:ncol(df)]) # fit with all variables (excluding PeriodID)
final.fit <- stepAIC(initial.fit) # best fit based on AIC
par(mfrow=c(2,2))
plot(initial.fit) # diagnostic plots for base model
plot(final.fit) # same for best model
summary(final.fit)
# ...
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 11.38360 18.25028 0.624 0.53452
# Main1 911.38514 125.97018 7.235 2.24e-10 ***
# Main3 0.04424 0.02858 1.548 0.12547
# Main5 4.99797 1.94408 2.571 0.01195 *
# Main6 0.24500 0.10882 2.251 0.02703 *
# Sec1 150.21703 34.02206 4.415 3.05e-05 ***
# Third2 -0.11775 0.01700 -6.926 8.92e-10 ***
# Third3 -0.04718 0.01670 -2.826 0.00593 **
# ... (many other variables included)
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 22.76 on 82 degrees of freedom
# Multiple R-squared: 0.9824, Adjusted R-squared: 0.9779
# F-statistic: 218 on 21 and 82 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(initial.fit)
title("Base Model",outer=T,line=-2)
plot(final.fit)
title("Best Model (AIC)",outer=T,line=-2)
So you can see from this that the "best model", based on the AIC metric, does in fact include Main 1,3,5, and 6, but not Main 2 and 4. The residuals plot shows no dependance on y (which is good), and the Q-Q plot demonstrates approximate normality of the residuals (also good). On the other hand the Leverage plot shows a couple of points (rows 33 and 85) with exceptionally high leverage, and the Q-Q plot shows these same points and row 47 as having residuals not really consistent with a normal distribution. So we can re-run the fits excluding these rows as follows.
initial.fit <- lm(Y~.,df[c(-33,-47,-85),2:ncol(df)])
final.fit <- stepAIC(initial.fit,trace=0)
summary(final.fit)
# ...
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 27.11832 20.28556 1.337 0.185320
# Main1 1028.99836 125.25579 8.215 4.65e-12 ***
# Main2 2.04805 1.11804 1.832 0.070949 .
# Main3 0.03849 0.02615 1.472 0.145165
# Main4 -1.87427 0.94597 -1.981 0.051222 .
# Main5 3.54803 1.99372 1.780 0.079192 .
# Main6 0.20462 0.10360 1.975 0.051938 .
# Sec1 129.62384 35.11290 3.692 0.000420 ***
# Third2 -0.11289 0.01716 -6.579 5.66e-09 ***
# Third3 -0.02909 0.01623 -1.793 0.077060 .
# ... (many other variables included)
So excluding these rows results in a fit that has all the "Main" variables with p < 0.2, and all except Main 3 at p < 0.1 (90%). I'd want to look at these three rows and see if there is a legitimate reason to exclude them.
Finally, just because you have a model that fits your existing data well, does not mean that it will perform well as a predictive model. In particular, if you are trying to make predictions outside of the "model space" (equivalent to extrapolation), then your predictive power is likely to be poor.
Significance is determined by the relationships in your data .. not by "I want them to be significant".
If the data says they are insignificant, then they are insignificant.
You are going to have a hard time getting any significance with 30 variables, and only 100 observations. With only 100+ observations, you should only be using a few variables. With 30 variables, you'd need 1000's of observations to get any significance.
Maybe start with the variables you think should be significant, and see what happens.

partition of anova and comparisons (orthogonal single df) in r

I want to do single df orthogonal contrast in anova (fixed or mixed model). Here is just example:
require(nlme)
data (Alfalfa)
Variety: a factor with levels Cossack, Ladak, and Ranger
Date : a factor with levels None S1 S20 O7
Block: a factor with levels 1 2 3 4 5 6
Yield : a numeric vector
These data are described in Snedecor and Cochran (1980) as an example
of a split-plot design. The treatment structure used in the experiment
was a 3\times4 full factorial, with three varieties of alfalfa and four
dates of third cutting in 1943. The experimental units were arranged
into six blocks, each subdivided into four plots. The varieties of alfalfa
(Cossac, Ladak, and Ranger) were assigned randomly to the blocks and
the dates of third cutting (None, S1—September 1, S20—September 20,
and O7—October 7) were randomly assigned to the plots.
All four dates were used on each block.
model<-with (Alfalfa, aov(Yield~Variety*Date +Error(Block/Date/Variety)))
> summary(model)
Error: Block
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 5 4.15 0.83
Error: Block:Date
Df Sum Sq Mean Sq F value Pr(>F)
Date 3 1.9625 0.6542 17.84 3.29e-05 ***
Residuals 15 0.5501 0.0367
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Error: Block:Date:Variety
Df Sum Sq Mean Sq F value Pr(>F)
Variety 2 0.1780 0.08901 1.719 0.192
Variety:Date 6 0.2106 0.03509 0.678 0.668
Residuals 40 2.0708 0.05177
I want to perform some comparison (orthogonal contrasts within a group), for example for date, two contrasts:
(a) S1 vs others (S20 O7)
(b) S20 vs 07,
For variety factor two contrasts:
(c) Cossack vs others (Ladak and Ranger)
(d) Ladak vs Ranger
Thus the anova output would look like:
Error: Block
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 5 4.15 0.83
Error: Block:Date
Df Sum Sq Mean Sq F value Pr(>F)
Date 3 1.9625 0.6542 17.84 3.29e-05 ***
(a) S1 vs others ? ?
(b) S20 vs 07 ? ?
Residuals 15 0.5501 0.0367
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Error: Block:Date:Variety
Df Sum Sq Mean Sq F value Pr(>F)
Variety 2 0.1780 0.08901 1.719 0.192
(c) Cossack vs others ? ? ?
(d) Ladak vs Ranger ? ? ?
Variety:Date 6 0.2106 0.03509 0.678 0.668
Residuals 40 2.0708 0.05177
How can I perform this ? ....................
First of all, why use ANOVA? You can use lme from the nlme package and in addition to the hypothesis tests aov gives you, you also get interpretable estimates of the effect sizes and the directions of the effects. At any rate, two approaches come to mind:
Specify contrasts on the variables manually, as explained here.
Install the multcomp package and use glht.
glht is a little opinionated about models that are multivariate in their predictors. Long story short, though, if you were to create a diagonal matrix cm0 with the same dimensions and dimnames as the vcov of your model (let's assume it's an lme fit called model0), then summary(glht(model0,linfct=cm0)) should give the same estimates, SEs, and test statistics as summary(model0)$tTable (but incorrect p-values). Now, if you mess around with linear combinations of rows from cm0 and create new matrices with the same number of columns as cm0 but these linear combinations as rows, you'll eventually figure out the pattern to creating a matrix that will give you the intercept estimate for each cell (check it against predict(model0,level=0)). Now, another matrix with differences between various rows of this matrix will give you corresponding between-group differences. The same approach but with numeric values set to 1 instead of 0 can be used to get the slope estimates for each cell. Then the differences between these slope estimates can be used to get between-group slope differences.
Three things to keep in mind:
As I said the p-values are going to be wrong for models other than lm, (possibly, haven't tried) aov, and certain survival models. This is because glht assumes a z distribution instead of a t distribution by default (except for lm). To get correct p-values, take the test statistic glht calculates and manually do 2*pt(abs(STAT),df=DF,lower=F) to get the two-tailed p-value where STAT is the test statistic returned by glht and DF is the df from the corresponding type of default contrast in summary(model0)$tTable.
Your contrasts probably no longer test independent hypotheses, and multiple testing correction is necessary, if it wasn't already. Run the p-values through p.adjust.
This is my own distillation of a lot of handwaving from professors and colleagues, and a lot of reading of Crossvalidated and Stackoverflow on related topics. I could be wrong in multiple ways, and if I am, hopefully someone more knowlegeable will correct us both.

Resources